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INTRODUCTION 
 

Sarcopenia is a common clinical condition characterized 

by reduced muscle mass and muscle strength with aging 

[1]. Morbidity and mortality from cardiovascular disease 

(CVD) are increasing worldwide due to aging [2]. 

Coronary artery disease (CAD) is the most common form 

of CVD and a major global health problem that imposes a 

great economic burden [2]. A series of observational 

studies have examined the association between sarcopenia 

and CVD; however, no consensus has been reached [3–6]. 

A recent meta-analysis study illustrated that handgrip  

 

strength was an independent predictor of CVD in 

community-dwelling populations [3], but this association 

disappeared after adjusting for baseline CVD risk factors 

in another prospective cohort study [4]. Furthermore, 

reverse association between muscle mass and CAD has 

also been observed in traditional studies [5, 6]. A possible 

mechanism underlying these contradictory results might 

be the association between both CAD and sarcopenia with 

high body fat mass [7, 8] and other unmeasured potential 

confounders. Less muscle mass reduces total energy 

expenditure, which might lead to higher fat mass and a 

subsequent increase in risk of CAD. On the other hand, 
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ABSTRACT 
 

Previous Mendelian randomization (MR) studies have yielded a conflicting causal relationship between 
sarcopenia and coronary artery disease (CAD), and lack the association of CAD with sarcopenia. We 
performed a bi-directional MR approach to clarify the causality and causal direction between sarcopenia-
related traits and CAD. In stage 1 analysis, estimates of inverse variance weighting (IVW) and several 
sensitivity analyses were obtained by applying genetic variants that predict sarcopenia-related traits to CAD. 
Conversely, we also applied genetic variants that predict CAD to sarcopenia-related traits in stage 2 analyses. 
IVW analysis showed that higher handgrip strength reduces risk for CAD: A 1-kilogram (kg) increase in 
genetically determined left handgrip strength reduced odds of CAD by 36% [odds ratio (OR) = 0.64, 95% 
confidence interval (CI) 0.498 - 0.821, p = 4.56E-04], and right handgrip strength reduced odds of CAD by 
41.1% (OR =  0.599, 95% CI 0.476 - 0.753, p = 1.10E-05). However, genetically predicted CAD did not show any 
causal association with handgrip strength, and no significant causal relationship was detected between 
genetically instrumented body lean mass and CAD. Our results suggest that decreased muscle strength but 
not decreased muscle mass leads to the increased risk of CAD in sarcopenia.  
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accumulated body fat mass induces chronic inflammation, 

which further contributes to the development and 

progression of sarcopenia and CAD [7–9]. 

 

Mendelian randomization (MR) analysis has been 

widely performed to investigate the potential causality 

between genetically predicted environmental factors 

and diseases independent of the factors that might 

confound observational studies [10–12]. MR studies 

have also yielded a conflicting causal relationship 

between sarcopenia-related traits (handgrip strength) 

and CVD [13–16]. A two-sample MR (TSMR) study 

reported that increased handgrip strength was causally 

related to lower risk of CAD [13], and similar results 

were also obtained between handgrip strength and CVD 

in UK individuals with one-sample MR analysis [15, 

16]. However, another TSMR analysis did not find 

causal evidence between handgrip strength and CAD 

[14]. To our knowledge, no MR analysis has been 

conducted between muscle mass and CAD, nor was the 

MR study focused on the association of CAD on 

sarcopenia. Therefore, we performed a bi-directional 

MR approach to clarify the causality and causal 

direction between sarcopenia-related traits (muscle 

mass and muscle strength) and CAD. 

 

RESULTS  
 

Stage 1: Influence of genetically predicted 

sarcopenia-related traits on CAD 
 

In total, we obtained 399, 81, and 95 linkage 

disequilibrium (LD)-independent (r2 < 0.001) 

instrumental variables (IVs) that achieved genome-wide 

significance level (p < 5×10−8) from body lean mass, left 

handgrip strength, and right handgrip strength, 

respectively (Supplementary Table 1). F statistics are 

presented to demonstrate the strength of selected IVs. 

The F statistics for selected IVs and the variance 

explained by them for body lean mass, left handgrip 

strength and right handgrip strength were 81.02 and 

8.9%, 50.34 and 1.1%, and 46.55 and 1.3%, respectively. 

F statistics were larger than 10, indicating that selected 

IVs were powerful enough to mitigate any potential bias 

of the causal IVs estimate. The negative control analysis 

results showed that body lean mass, left handgrip 

strength and right handgrip strength were not related to 

myopia, indicating the selected IVs of exposures were 

appropriate (Supplementary Tables 4–6).  

 

As the heterogeneity test showed significant 

heterogeneity among selected IVs (p < 0.05, Table 1), 

inverse variance weight (IVW) in a random-effects 

model was used. IVW analysis showed that higher 

handgrip strength reduces risk for CAD: A 1-kg 

increase in genetically determined left handgrip strength 

reduced odds of CAD by 36% [odds ratio (OR) = 0.640, 

95% confidence interval (CI) 0.498- 0.821, p = 4.56E-

04], and a 1-kg increase in genetically determined right 

handgrip reduced odds of CAD by 41.1% (OR = 0.599, 

95% CI 0.476- 0.753, p = 1.10E-05) (Table 1). The 

MR-Egger analysis did not detect any pleiotropy for the 

selected IVs (left handgrip strength, intercept = 0.008, p 
= 0.307; right handgrip strength, intercept = 0.004, p = 

0.524) (Table 1). Consistent with the IVW results, all 

sensitivity analyses identified significant causal effect 

of handgrip strength on CAD (Tables 2 and 3).  

 

After removing the proxy IVs and the potential 

pleiotropic IVs, both left and right handgrip strength 

were still negatively associated with CAD (Tables 1–3, 

Supplementary Table 1). However, our standard IVW 

and sensitivity analysis did not detect a significant 

association between genetically determined body lean 

mass and CAD (Tables 1–3).  

 

Stage 2: Influence of genetically predicted CAD on 

sarcopenia-related traits 

 

In total, we obtained 39 LD-independent (r2 < 0.001) 

IVs that achieved genome-wide significance level (p < 

5×10−8) from CAD (Supplementary Table 2). F 
statistics are presented to demonstrate the strength of 

the relationship between IVs and sarcopenia-related 

traits. The F statistics for selected IVs of CAD was 

larger than 10 (F = 64.17), and variance explained by 

these IVs is shown in Supplementary Table 3. Further, 

the negative control analysis results showed that CAD 

was not related to myopia, indicating the selected IVs of 

exposure were appropriate (Supplementary Tables 4–6).  

 

As the heterogeneity test showed significant 

heterogeneity among the selected IVs (p < 0.05, Table 

1), IVW in random-effects model was used. We did not 

detect a relationship between the genetically 

instrumented CAD and sarcopenia-related traits (body 

lean mass, left handgrip strength and right handgrip 

strength) in either IVW analysis or sensitivity analysis, 

even after removing the proxy IVs (Tables 1–3).  

 

DISCUSSION  
 

In the current study, by applying bi-directional MR 

analysis, we successfully confirmed that increased 

handgrip strength was associated with decreased risk of 

CAD. However, no significant causal effect of CAD on 

handgrip strength was observed. Additionally, no 

significant causal relationship was detected between 

genetically determined body lean mass and CAD. To 

our knowledge, this is the first bi-directional MR study 

conducted on the topic of sarcopenia and CAD, 

simultaneously considering both muscle mass and 
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Table 1. Association between sarcopenia-related traits and CAD using MR Egger and IVW analysis.  

Exposures  Outcomes 
IVs 

selection a 
No. of IVs 

Heterogeneity 

test 
MR Egger 

IVW  

(random-effect model) 

Cochran's Q (p) Intercept (p) 
OR  

(95% CI) 
p 

Body lean 

mass 
CAD All 399 842.005 (<0.001) -0.001 (0.65) 

0.929  

(0.834, 1.033) 
0.170 

  
Removed 1 398 830.824 (<0.001) 

-0.001 

(0.548) 

0.924  

(0.831, 1.027) 
0.144 

  
Removed 2 387 805.502 (<0.001) 0 (0.957) 

0.901  

(0.808, 1.005) 
0.061 

Left 

handgrip 

strength 

CAD All 81 156.954 (<0.001) 0.008 (0.307) 
0.640  

(0.498, 0.821) 
4.56E-04* 

  
Removed 1 79 149.928 (<0.001) 0.007 (0.330) 

0.645  

(0.502, 0.829) 
0.001* 

  
Removed 2 76 148.771 (<0.001) 0.009 (0.284) 

0.647  

(0.498, 0.841) 
0.001* 

Right 

handgrip 

strength 

CAD All 95 
180.1231 

(<0.001) 
0.004 (0.524) 

0.599  

(0.476, 0.753) 
1.10E-05* 

  
Removed 1 93 173.892 (<0.001) 0.004 (0.513) 

0.606  

(0.482, 0.762) 
0* 

  
Removed 2 91 172.782 (<0.001) 0.006 (0.408) 

0.604  

(0.477, 0.765) 
0* 

CAD 
Body lean 

mass 
All 39 898.685 (<0.001) 0.003 (0.366) 

0.992  

(0.963, 1.023) 
0.618 

  
Removed 1 36 893.680 (<0.001) 0.003 (0.379) 

0.992  

(0.976, 1.007) 
0.616 

CAD 
Left handgrip 

strength 
All 39 110.459 (<0.001) 0 (0.913) 

0.997  

(0.985, 1.009) 
0.642 

  
Removed 1 36 109.932 (<0.001) 0 (0.886) 

0.997  

(0.99, 1.003) 
0.62 

CAD 
Right handgrip 

strength 
All 39 102.492 (<0.001) 

-0.001 

(0.695) 

0.996  

(0.984, 1.008) 
0.531 

  
Removed 1 36 101.680 (<0.001) 0 (0.667) 

0.996  

(0.99, 1.002) 
0.505 

a‘All’ represents analyses with all selected IVs; ‘Removed 1’ represents analyses after removing proxy IVs; ‘Removed 2’ 
represents analyses after removing potential pleiotropic SNPs (related to body fat mass and height). 
Bonferroni corrected significance level (0.05/3 = 0.016) was used to correct for multiple comparisons. 
*p<0.016. 
CAD: coronary artery disease; MR: mendelian randomization; IVW: inverse variance weighted; IVs: instrumental variables; CI: 
confidence interval; OR: odds ratio. 
 

muscle strength and the potential causality and reverse 

causality between sarcopenia and CAD. 

 

The causal relationship of muscle strength with CAD 

has been discussed in previous TSMR studies [13, 14]. 

Xu and Hao’s TSMR analysis applied two genetic 

variants that predict handgrip strength in a European 

population to CAD in a mixed population of various 

ethnicities, indicating that increased handgrip reduced 

the risk of CAD [13]. However, another MR analysis 

did not find evidence for causality in the associations 

between handgrip strength (European population) and 

CAD (mixed population). A total of 20 genetic variants 

were selected to predict handgrip strength in this study 

[14]. These inconsistent results may be caused by 

different ancestry of exposure (handgrip strength) and 
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Table 2. Association between sarcopenia-related traits and CAD using weighted median and RAPS analysis. 

Exposures  Outcomes  
IVs 

selection a 

No. of 

IVs 

Weighted median RAPS 

OR (95% CI) p OR (95% CI) p 

Body lean 

mass 
CAD All 399 0.961 (0.84, 1.097) 0.554  0.919 (0.827, 1.019) 0.110  

  Removed 1 398 0.959 (0.844, 1.091) 0.524 0.916 (0.825, 1.015) 0.095 

  Removed 2 387 0.941 (0.827, 1.07) 0.356 0.89 (0.8, 0.991) 0.033 

Left 

handgrip 

strength  

CAD All 81 0.631 (0.47, 0.849) 0.002* 0.642 (0.493, 0.836) 0.001* 

  Removed 1 79 0.614 (0.461, 0.817) 0.001* 0.649 (0.498, 0.846) 0.001* 

  Removed 2 76 0.638 (0.478, 0.85) 0.002* 0.645 (0.489, 0.851) 0.002* 

Right 

handgrip 

strength  

CAD All 95 0.61 (0.466, 0.799) 3.32E-04* 0.593 (0.466, 0.757) 2.55E-05* 

  Removed 1 93 0.613 (0.470, 0.800) 0* 0.6 (0.471, 0.764) 0* 

  Removed 2 91 0.673 (0.515, 0.880) 0.004* 0.592 (0.46, 0.76) 0* 

CAD 
 Body lean 

mass 
All 39 0.998 (0.987, 1.008) 0.685 0.988 (0.968, 1.008) 0.234 

  Removed 1 36 0.997 (0.992, 1.002) 0.563 0.986 (0.976, 0.996) 0.199 

CAD 

Left 

handgrip 

strength 

All 39 0.995 (0.983, 1.007) 0.390 0.994 (0.983, 1.005) 0.261 

  Removed 1 36 0.995 (0.989, 1) 0.382 0.993 (0.987, 0.999) 0.232 

CAD 

Right 

handgrip 

strength  

All 39 1.002 (0.99, 1.014) 0.751 0.993 (0.982, 1.004) 0.218 

  Removed 1 36 1.001 (0.995, 1.007) 0.877 0.992 (0.987, 0.998) 0.188 

a‘All’ represents analyses with all selected IVs; ‘Removed 1’ represents analyses after removing proxy IVs; ‘Removed 2’ 
represents analyses after removing potential pleiotropic SNPs (related to body fat mass and height). 
Bonferroni corrected significance level (0.05/3 = 0.016) was used to correct for multiple comparisons. 
*p<0.016. 
CAD: coronary artery disease; RAPS: robust adjusted profile score; IVs: instrumental variables; CI: confidence interval; OR: 
odds ratio. 
 

outcome (CAD), the number of genetic variants selected 

as IVs, different methods applied, and even potential 

pleiotropic confounding IVs (body fat mass-related 

genetics variables). Compared to these two previous 

TSMR analyses [13, 14], more selected IVs were 

utilized to increase the interpretation of exposures. 

Several sensitivity analyses were performed to reduce 

the potential pleiotropic IVs, and results indicated a 

decreased causal effect of handgrip strength on risk of 

CAD. Epidemiological evidence has also suggested that 

muscle strength is negatively associated with CVD 

events and mortality [15], and similar results were also 

obtained between handgrip strength and CVD in UK 

individuals with one-sample MR analysis [15, 16].  

 

Furthermore, a serial of traditional studies have 

frequently examined the association between muscle 

mass and CVD; however, they reached conflicting 

conclusions [5, 6, 17]. Previous studies indicated that the 

conflicting association of muscle mass with CVD might 

be confounded by body fat mass [7, 8] and subtypes of 

CVD (CAD, stroke, heart failure and atrial fibrillation). 

Other studies found evidence for low muscle mass as an 

independent risk factor of CAD [5], while inverse results 

were observed in obese postmenopausal women [6]. A 

possible mechanism underlying these contrasting 

association results between muscle mass and CVD might 

be a confounding common risk factor of high body fat 

mass [7, 8]. Accumulated body fat mass induces chronic 

inflammation, which further contributes to the 

development and progression of sarcopenia and CAD  

[7–9]. Unfortunately, few previous studies have been 

conducted to determine the causation between muscle 

mass and CAD, especially in the context of robust MR 
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Table 3. Association between sarcopenia-related traits and CAD using MR-PRESSO analysis. 

Exposures Outcomes 
IVs 

selection a 

No. of 

IVs 

MR-PRESSO 

OR (95% CI) p IVs outliers 

Body lean 

mass 
CAD All 399 

0.919  

(0.834, 1.012) 
0.0866 

rs11065979, rs216193, rs2289976, 

rs2678204, rs28391281, rs3843751, 

rs66922415, rs7097872, rs7781964 

  Removed 1 398 
0.996  

(0.986, 1.007) 
0.494 

rs11065979, rs216193, rs2289976, 

rs2678204, rs28391281, rs3843751, 

rs66922415, rs7097872, rs7781964 

  Removed 2 387 
0.894  

(0.808, 0.989) 
0.030 

rs11065979, rs216193, rs2678204, 

rs28391281, rs3843751, rs66922415, 

rs7097872 

Left handgrip 

strength 
CAD All 81 

0.663  

(0.521, 0.843) 
0.001* rs11130333 

  Removed 1 79 
0.669 (0.526, 

0.852) 
0.002* rs11130333 

  Removed 2 76 
0.672  

(0.523, 0.865) 
0.003* rs11130333 

Right 

handgrip 

strength 

CAD All 95 
0.599  

(0.476, 0.753) 
2.9E-05* No significant outliers 

  Removed 1 93 
0.606  

(0.482, 0.762) 
4.3E-05* No significant outliers 

  Removed 2 91 
0.604  

(0.477, 0.765) 

6.81E-

05* 
No significant outliers 

CAD 
Body lean 

mass 
All 39 

0.997  

(0.986, 1.008) 
0.575 

rs10840293, rs11065979, rs11191416,  

rs17087335, rs2681472, rs3918226,  

rs56289821, rs663129, rs7528419 

  Removed 1 36 
0.995  

(0.99, 1) 
0.381 

rs10840293, rs11065979, rs11191416,  

rs17087335, rs2681472, rs3918226,  

rs56289821, rs663129, rs7528419 

CAD 

Left 

handgrip 

strength 

All 39 
0.992  

(0.983, 1) 
0.052 rs2519093, rs663129, rs9349379 

  Removed 1 36 
0.991  

(0.987, 0.995) 
0.049 rs2519093, rs663129, rs9349379 

CAD 

Right 

handgrip 

strength 

All 39 
0.992  

(0.983, 1) 
0.064 rs2519093, rs663129, rs9349379 

  Removed 1 36 
0.991  

(0.987, 0.995) 
0.058 rs2519093, rs663129, rs9349379 

MR-PRESSO analysis was only carried out for associations with a significant global test p value (p < 0.05). 
a‘All’ represents analyses with all selected IVs; ‘Removed 1’ represents analyses after removing proxy IVs; ‘Removed 2’ 
represents analyses after removing potential pleiotropic SNPs (related to body fat mass and height).  
Bonferroni corrected significance level (0.05/3 = 0.016) was used to correct for multiple comparisons. 
*p<0.016. 
CAD: coronary artery disease; MR-PRESSO: Mendelian Randomization Pleiotropy RESidual Sum and Outlier; IVs: instrumental 
variables; CI: confidence interval; OR: odds ratio. 
 

analysis for causal inference. In this study, we used a bi-

directional MR study to make up for the lack of causal 

relationship between muscle mass and CAD, suggesting 

there is no significant causal relationship between 

genetically determined muscle mass and CAD even after 

removing genetic variants associated with potential 

confounders (body fat mass, body fat percentage and 

body fat distribution).  
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The main strength of this study is the application of 

bidirectional MR design, which is more robust to 

confounding and reverse causation and could clarify the 

causal direction between sarcopenia-related traits (muscle 

mass and muscle strength) and CAD. Secondly, we 

included absolute handgrip strength, which might be 

more appropriate to assess muscle strength than relative 

handgrip strength (handgrip strength/body weight), as 

relative grip strength may not only represent a change in 

muscle strength but also a change in body fat mass and 

bone mass. Additionally, several sensitivity analyses 

were performed to ensure the valid estimation of true MR 

causal effect size. Furthermore, as sarcopenia and CAD 

are closely related to body fat mass, we also detected and 

removed the potential pleiotropic effects introduced by 

those SNPs associated with body fat mass-related traits 

(body fat mass, body fat distribution and body fat 

percentage) by obtaining their association effect size 

from the GWAS Catalog (https://www.ebi.ac.uk/gwas) 

[18]. Finally, both sarcopenia and CAD unrelated trait 

(myopia) was used as negative control to demonstrate the 

validity of selected IVs, further validating our analyses 

and results.  

 

This study has some potential limitations. Firstly, we 

used body lean mass rather than appendicular lean mass 

to measure muscle mass, which might be not exactly 

appropriate, as the measurement could be biased by other 

components of non-fat soft tissue, such as lungs, liver, 

and other viscera. Moreover, compared with absolute 

muscle mass, relative muscle mass (appendicular lean 

mass/height2) may be more appropriate to measure 

muscle mass [1]. Therefore, the conclusion of no 

significant association between muscle mass and CAD 

might not be easily generalized. Secondly, it is important 

to acknowledge that MR analysis has several other 

potential limitations [19], and while using multiple 

genetic instruments improves the power of MR, there  

is always some risk of pleiotropy despite extensive 

sensitivity analyses. Therefore, Mendelian 

Randomization Pleiotropy RESidual Sum and Outlier 

(MR-PRESSO) was performed to identify and remove 

the possible pleiotropic genetic variables and provide 

outlier-adjusted estimates, which should have minimized 

this possibility. Thirdly, we believe that sex- and age-

specific analysis would be helpful, given the difference in 

incidence of sarcopenia and CAD by age and sex. As we 

only used summary statistics and had no access to the 

original individual measures, sex- and age-specific 

analysis may be difficult to perform. Fortunately, age and 

sex were all adjusted in genetics association of 

CARDIoGRAMplusCD4 and UK Biobank consortium 

[20–22], which should have minimized this possibility. 

Finally, as we only used summary statistics and had no 

access to the original individual measures, different 

standards of quality control and selection in individual-

level GWAS may affect our results. Therefore, the results 

may not be easily generalized. 

 

In summary, we found that increased genetically 

predicted muscle strength was causally associated with 

decreased risk of CAD, yet we did not identify a 

significant causal effect of CAD on muscle strength. 

Moreover, no significant causal association between 

muscle mass and CAD was observed in bi-directional 

MR analysis. Our results suggest that decreased muscle 

strength, but not decreased muscle mass, leads to the 

increased risk of CAD in sarcopenia.  

 

MATERIALS AND METHODS 
 

Study design 

 

The genetic variants used as IVs in TSMR analysis 

must satisfy three assumptions as follows (Figure 1A): 

1) IVs are strongly associated with exposure. 2) The IVs 

are independent of any known confounders. 3) The 

selected IVs are conditionally independent of outcome, 

given exposure and potential confounders. The second 

and third assumptions are known as independence from 

pleiotropy [23]. In the current study, we performed a bi-

directional MR study design to clarify the causal 

association between sarcopenia-related traits (muscle 

mass and muscle strength) and CAD with independent 

GWAS summary-level dataset (Figure 1B). In the first 

stage, we assessed whether sarcopenia-related traits 

were causally related to CAD. In the second stage, we 

also examined whether genetically driven CAD was 

causally associated with sarcopenia-related traits.  

 

Sarcopenia-related traits  

 

Bioelectrical impedance analysis (BIA) was used to 

measure body lean mass (kilogram, kg) as a valid 

alternative for the assessment of body composition [24]. 

Body lean mass represents lipid-free soft tissue 

including muscle mass, body water, protein, glycerol 

and soft tissue mineral mass [25], which is considered 

to be a valid measure of muscle mass [26]. 

 

Handgrip strength (kg) was measured by a calibrated 

hydraulic hand dynamometer adjusted for hand size 

[20]. We used absolute rather than relative handgrip 

strength (absolute handgrip strength/weight) as a proxy 

for muscle strength, because absolute handgrip strength 

might have a higher correlation with muscle strength 

than relative grip strength [27].  

 

Data sources 
 

GWAS summary statistics for body lean mass (n = 

331, 291) and handgrip strength (left hand, n = 335, 

https://www.ebi.ac.uk/gwas
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821; right hand, n = 335, 842) were obtained from the 

UK biobank study [20], and CAD summary  

statistics (n = 184, 305) were obtained from  

the CARDIoGRAMplusC4D consortium [21]. 

Sarcopenia-related traits’ GWAS summary statistics 

of UK Biobank were conducted on European 

populations from population-based cohorts, and age, 

age2, sex, sex × age and sex × age2 were adjusted for 

in genetic association analysis [20]. 

CARDIoGRAMplusC4D Genomes-based GWAS 

summary statistics is a meta-analysis of 48 GWAS 

studies involving 60,801 CAD cases and 123,504 

controls from European (~ 74%) and Asian (~ 26%) 

subjects, adjusted for sex and age in analyses of 

individual GWASs [21, 22].  

 

Selection and validation of IVs 
 

To satisfy the three assumptions of MR (Figure 1A), we 

firstly selected independent (linkage disequilibrium 
r2 < 0.001) [28] SNPs that were strongly (p < 5 × 10−8) 

associated with exposure. Then, we obtained the 

corresponding effect estimates of these SNPs in outcome 

GWAS summary statistics. For the SNPs that were not 

available in the outcome, we used proxy SNPs that were 

highly correlated (r2 > 0.8) with the requested SNPs. 

 

 
 

Figure 1. Schematic Representation of Bi-directional MR Analysis. (A) illustrates three assumptions of MR analysis as follows: 1) 
Instrumental variables must be associated with exposure, 2) instrumental variables must not be associated with confounders, and 3) 
instrumental variables must influence outcome only through exposure. (B) illustrates bi-directional MR analysis. In stage 1 analysis, influence 
of genetically predicted sarcopenia-related traits (body lean mass, left handgrip strength and right handgrip strength) on risk of CAD was 
estimated. In stage 2 analysis, influence of genetically predicted CAD on risk of sarcopenia-related traits (body lean mass, left handgrip 
strength and right handgrip strength) was estimated. TSMR: two-sample mendelian randomization; CAD: coronary artery disease.  
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Additionally, MR-Egger regression was applied to 

assess the horizontal pleiotropy of selected IVs [23], 

and the intercept that deviates from the origin may 

provide evidence for potential pleiotropic effects across 

the IVs. We also performed MR-PRESSO to identify 

and remove pleiotropic IVs [29]. To further validate the 

strength of the selected IVs, we computed the F statistic 

of selected IVs using an online tool (https://sb452. 

shinyapps.io/overlap) [30]. F statistics greater than 10 

are often considered as powerful enough to mitigate any 

potential bias of the causal IV estimate. Finally, MR-

Steiger test was conducted to calculate the pooled 

variance explained in exposure and outcome by the 

selected IVs (r2) [31], and to further assess whether the 

variance explained in the exposure is larger than that in 

the outcome. 

 

MR analysis 

 

IVW was conducted to estimate the causal effect 

between exposure and outcome, which was calculated 

as the SNP-outcome association effect size divided by 

the SNP-exposure association effect size [32]. The 

causal effect β was estimated as wi (αi/γi), where i refers 

to the ith IV, αi defines as the association effect of IVs 

on exposure, γi represents the association effect of IVs 

on outcome, and wi means the weights of the causal 

effect of exposure on outcome [32]. The IVW method 

was considered the most reliable indicator if there was 

no evidence of directional pleiotropy (p for MR-Egger 

intercept > 0.05) among the selected IVs [33, 34]. Given 

the multiple testing situation (body lean mass, left 

handgrip strength and right handgrip strength were 

included), we used a conservative approach and applied 

a Bonferroni corrected significance level of 0.016 

(0.05/3).  

 

Sensitivity analysis  

 

To further ensure the valid estimation of the true MR 

causal effect, we conducted several sensitivity 

analyses. Firstly, weighted median estimate was 

performed because it tends to provide valid estimates 

when at least 50% of information is derived from 

valid IVs [35]. Secondly, the MR might fail if the 

selected IVs are weak instruments. Therefore, we 

carried out a recently proposed method called Robust 

Adjusted Profile Score (RAPS), which considers the 

measurement error in SNP-exposure effects and is 

unbiased even when there are many (e.g. hundreds of) 

weak instruments [36]. Also, RAPS is robust to 

systematic pleiotropy. Thirdly, MR-PRESSO was 

performed to identify and remove the possible 

pleiotropic IVs, assuming that at least 50% of the IVs 

were valid IVs [29]. MR-PRESSO can also identify 

outlier IVs and provides outlier-adjusted estimates. 

MR-PRESSO detects pleiotropy by assessing outliers 

among the selected IVs contributing to the MR 

estimate and provides adjusted estimates. MR-

PRESSO analysis was only carried out for 

associations with a significant global test p value (p < 

0.05). Next, in order to guarantee that the MR 

estimates were not influenced by the inclusion of 

proxy SNPs, we repeated the analysis after excluding 

proxy SNPs. Finally, as muscle mass and CAD were 

closely related to body fat mass, we intend to exclude 

the potential pleiotropic effects introduced by those 

SNPs associated with body fat-related traits (body fat 

distribution and body fat percentage) by obtaining 

their association effect size from GWAS Catalog 

(https://www.ebi.ac.uk/gwas) [18].  

 

Negative control 
 

To further demonstrate the validity of the selected IVs, 

we included myopia as negative control in our analysis, 

as there is little evidence presented that sarcopenia and 

CAD are associated with myopia. The summary 

statistics of myopia were derived from UK Biobank 

imputed genotype data, including 335,700 individuals 

of European descent [20]. 

 

All the analyses were performed using R statistical 

software (Version 3.4.2) with the R packages 

“TwosampleMR”, “MendelianRandomization” and 

“MRPRESSO”. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 4 

 

Supplementary Table 1. Independent IVs of body lean mass (kg), handgrip strength (left, kg) and handgrip strength 
(right, kg) in stage 1 analysis. 

 

Supplementary Table 2. Independent IVs of body lean mass (kg), handgrip strength (left, kg) and handgrip strength 
(right, kg) in stage 2 analysis. 

 

Supplementary Table 3. MR-Egeer analysis and variance explained by IVs in stage 2 analysis. 

Exposure outcome egger_intercept  se p-value snp_r2.exposure snp_r2.outcome 
MR-Steiger 

test 

CAD 
Body lean 

mass 
0.003232 0.003535 0.3664673 0.0134791 0.0028114 TRUE 

CAD 
Hand grip 

strength (left) 
-0.00016 0.0014287 0.9125408 0.0134791 0.0003529 TRUE 

CAD 
Hand grip 
strength 
(right) 

-0.00054 0.0013761 0.6950098 0.0134791 0.0003309 TRUE 

 
 

Supplementary Table 4. Independent IVs of body lean mass (kg), handgrip strength (left, kg) and handgrip strength 
(right, kg) and coronary artery disease in negative control analysis. 
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Supplementary Table 5. Two-sample mendelian randomization analysis of negative control (myopia). 

Exposure outcome method n. IVs P.value beta (95% CI) 

CAD myopia MR Egger 39 0.374 -0.004 (-0.013,0.005) 

CAD myopia Weighted median 39 0.238 -0.003(-0.007,0.002) 

CAD myopia Inverse variance weighted 39 0.75 0.001(-0.003,0.004) 

CAD myopia 
Inverse variance weighted  

(multiplicative random effects) 
39 0.75 0.001(-0.003,0.004) 

CAD myopia Inverse variance weighted (fixed effects) 39 0.657 0.001(-0.002,0.003) 

CAD myopia Robust adjusted profile score (RAPS) 39 0.99 0(-0.004,0.004) 

body lean mass myopia MR Egger 405 0.883 -0.001(-0.018,0.015) 

body lean mass myopia Weighted median 405 0.02 0.009(0.001,0.017) 

body lean mass myopia Inverse variance weighted 405 0.17 0.005(-0.002,0.011) 

body lean mass myopia 
Inverse variance weighted  

(multiplicative random effects) 
405 0.17 0.005(-0.002,0.011) 

body lean mass myopia Inverse variance weighted (fixed effects) 405 0.065 0.005(0,0.01) 

body lean mass myopia Robust adjusted profile score (RAPS) 405 0.099 0.006(-0.001,0.012) 

Hand grip 

strength (left) 
myopia MR Egger 85 0.233 0.039(-0.024,0.102) 

Hand grip 

strength (left) 
myopia Weighted median 85 0.145 0.014(-0.005,0.032) 

Hand grip 

strength (left) 
myopia Inverse variance weighted 85 0.399 0.007(-0.009,0.022) 

Hand grip 

strength (left) 
myopia 

Inverse variance weighted  

(multiplicative random effects) 
85 0.399 0.007(-0.009,0.022) 

Hand grip 

strength (left) 
myopia Inverse variance weighted (fixed effects) 85 0.264 0.007(-0.005,0.019) 

Hand grip 

strength (left) 
myopia Robust adjusted profile score (RAPS) 85 0.262 0.009(-0.007,0.024) 

Hand grip 

strength (right) 
myopia MR Egger 101 0.173 0.035(-0.015,0.085) 

Hand grip 

strength (right) 
myopia Weighted median 101 0.176 0.011(-0.005,0.027) 

Hand grip 

strength (right) 
myopia Inverse variance weighted 101 0.505 0.004(-0.009,0.018) 

Hand grip 

strength (right) 
myopia 

Inverse variance weighted  

(multiplicative random effects) 
101 0.505 0.004(-0.009,0.018) 

Hand grip 

strength (right) 
myopia Inverse variance weighted (fixed effects) 101 0.421 0.004(-0.006,0.015) 

Hand grip 

strength (right) 
myopia Robust adjusted profile score (RAPS) 101 0.457 0.005(-0.008,0.018) 

CAD: coronary artery disease; IVs: instrumental variables. 
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Supplementary Table 6. MR-Egeer analysis and explained by selected IVs of negative control (myopia). 

Exposure outcome MR-Egeer. intercept se p.val r2.exposure r2.outcome 

CAD myopia 0.0004999 0.0004338 0.25656 0.0134791 0.0002211 

lean mass myopia 0.0000988 0.0001305 0.44943 0.0898249 0.0022361 

Hand grip strength (left) myopia -0.0004489 0.0004375 0.307857 0.0119751 0.0004522 

Hand grip strength (right) myopia -0.0004309 0.0003468 0.216888 0.0142341 0.0004624 

r 2 means phenotypes explained by selected IVs. CAD: coronary artery disease; IVs: instrumental variables. 
 


