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INTRODUCTION 
 

Ovarian cancer (OC) is one of the highest mortality rate 

malignant tumors of the female reproductive system [1]. 

There are more than 239,000 new cases, and about 

152,000 deaths worldwide from OC every year [2]. The 

standard treatment plan for this disease is tumor 

cytoreductive surgery combined with platinum-based 

chemotherapy [3]. In this treatment mode, more than 

two-thirds of patients have a total survival of less than 

10 years, and the survival rate with advanced (III-IV) 

stage patients is less than 20% [1]. 

 

The occurrence, development, and therapeutic efficacy 

of OC are closely related to many factors such as 

disease pathological type, TNM stage, treatment 

timing, and endocrine level [2, 4–6]. Most recent 

studies revealed genetic changes are notably linked 

with the occurrence and the treatment efficacy of OC. 

For example, from the perspective of the disease 
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ABSTRACT 
 

Mounting evidence suggests that immune cell infiltration within the tumor microenvironment (TME) is a crucial 
regulator of carcinogenesis and therapeutic efficacy in ovarian cancer (OC). In this study, 593 OC patients from 
TCGA were divided into high and low score groups based on their immune/stromal scores resulting from 
analysis utilizing the ESTIMATE algorithm. Differential expression analysis revealed 294 intersecting genes that 
influencing both the immune and stromal scores. Further Cox regression analysis identified 34 differentially 
expressed genes (DEGs) as prognostic-related genes. Finally, the nine-gene signature was derived from the 
prognostic-related genes using a Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression. 
This nine-gene signature could effectively distinguish the high-risk patients in the training (TCGA database) and 
validation (GSE17260) cohorts (all p < 0.01). A time-dependent receiver operating characteristic (ROC) analysis 
showed that the nine-gene signature had a reasonable predictive accuracy (AUC = 0.707, AUC =0.696) in both 
cohorts. In addition, this nine-gene signature is associated with immune infiltration in TME by Gene Set 
Variation Analysis (GSVA), and can be used to predict the survival of patients with OC. 
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occurrence, the low-grade serous, endometrioid, clear 

cell, and mucinous subtypes are characterized as 

genetically stable, showing local invasive growth; 

therefore the patient has a better prognosis. About 75% 

of OC are high-grade serous type and genetically 

unstable. Majority of the patients carry p53 mutation 

and possible BRCA1 and BRCA2 mutations. Clinical 

observations of this type of patients are usually 

accompanied by metastatic lesions and poor prognosis 

[7]. From the perspective of treatment efficacy, the 

global loss of 5-Hydroxymethylcytosine is associated 

with platinum drug resistance, shortened progression-

free survival (PFS), and shortened overall survival 

(OS) in patients with high grade serous OC [8]. OC 

patients with high expression of Cyclin-dependent 

kinase 9 (CDK9) in relapsed and metastatic lesions 

have a worse prognosis than patients with low 

expression of CDK9 [9]. A number of studies in 

transcription and epigenetics have confirmed that the 

occurrence, development, and therapeutic efficacy of 

OC are influenced by the dynamic changes of multiple 

oncogenes and tumor suppressor genes [10–15]. 

 

Existing research shows that tumor cell and host cell 

interaction is an important factor in promoting tumor 

growth and disease progression [16]. Immune cells (T 

lymphocytes and tumor-associated macrophages), 

stromal cells (fibroblasts, etc.), and extracellular 

matrix together form a tumor microenvironment 

(TME) in cancer patients [17, 18]. This TME plays a 

role in disease progression and formation of metastatic 

lesions. For example, cancer-associated fibroblasts 

(CAFs) facilitate OC metastasis by promoting 

angiogenesis, lymphangiogenesis, and tumor cell 

invasion [19]. CAFs induce the upregulation of 

Lipoma-preferred partner (LPP) in microvascular 

endothelial cells that can lead to chemoresistance in 

OC [20]. Matrix Metallopeptidase 1 (MMP1) mRNA 

in extracellular vesicles (EVs) secreted by OC cells 

can induce apoptosis of peritoneal mesothelial cells, 

thereby destroying the peritoneal mesothelial barrier 

and promoting the transfer of tumor cells to the 

peritoneum in OC patients [21]. 

 

Large and complicated biological data has been 

generated with the advent of high-throughput detection 

technology and bioinformatics development. The 

Cancer Genome Atlas (TCGA) database is one of the 

largest cancer genome program that provides 

researchers with multi-omics and standardized clinical 

data that can be used to design basic bioinformatics 

research [22, 23]. The ESTIMATE algorithm can 

predict tumor purity by calculating the immune and 

stromal scores based on specific molecular biomarker 

expression in both immune and stromal cells [24]. 

Subsequently, ESTIMATE has been applied to many 

neoplasms, such as prostate cancer [25], glioblastoma 

[26], and clear cell renal cell carcinoma [27]. However, 

the immune/stromal scores of OC have not been 

investigated in detail. 

 

In the present study, 593 OC patients were obtained 

from TCGA, and their immune/stromal scores were 

derived from ESTIMATE algorithm. The patients were 

divided into high and low immune/stromal score groups 

with the immune/stromal score median value as the cut-

off value. Differential expression analysis revealed 294 

intersecting genes that influencing both the immune and 

stromal scores. Further univariate Cox analysis 

narrowed the list down to 34 genes. A final prognostic 

nine-gene signature was derived with a Lasso-Cox 

regression analysis. The prognostic nine-gene signature 

was trained and validated on the TCGA and Gene 

Expression Omnibus (GEO) datasets respectively. 

Time-dependent receiver operating characteristic (ROC) 

analysis was used to evaluate the performance of the 

nine-gene signature. Functional enrichment analysis and 

GSVA as well as Tumor Immune Estimation Resource 

(TIMER) were used to elucidate the valuable gene-

related functions in the TME. The findings indicate that 

the prognostic nine-gene signature could be used as a 

predictive tool to assess the survival rate of patients 

with OC and provide novel strategies for future 

immunotherapy. 

 

RESULTS  
 

Clinical characteristics of the study patients 

 

Figure 1 shows the workflow for the identification, 

validation, and functional analysis of the prognostic nine-

gene signature. Four hundred sixty-five OC patients from 

the TCGA database were included as training cohort. One 

hundred and nine OC patients from the GEO dataset 

GSE17260 were used as a validation cohort. The detailed 

clinical characteristics of the training and validation 

cohort were summarized in Table 1.  

 

Analysis of differential gene expression profile with 

immune and stromal scores in OC 
 

By comparing the gene expression profiles of patients 

with high immune scores against those with low 

immune scores, a total of 480 (438 upregulated, 42 

downregulated) DEGs were identified (Figure 2A). 

Four hundred thirty-two (414 upregulated, 18 

downregulated) DEGs were identified by comparing 

the high and low stromal score groups (Figure 2B). A 

fold-change > 1.5 and normalized p values < 0.05 were 

used as criterions for screening DEGs. A total of 281 

DEGs were in common among the high 

immune/stromal score groups. A total of 13 DEGs 
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were in common among the low immune/stromal score 

groups. (Figure 2E and 2F). 

 

DEGs functional enrichment analysis 
 

To dissect the underlying biological function of DEGs, 

we performed a functional enrichment analysis 

utilizing the R package clusterProfiler. Immune- 

related 480 DEGs were significantly enriched in 

Human T-cell leukemiavirus 1 infection, Human 

immunodeficiency virus 1, Human cytomegalovirus, 

Herpes simplex virus 1, and cytokine-cytokine 

receptor interaction (Figure 2C). The statistically 

significant pathways of 432 stromal-related DEGs are 

as follows: focal adhesion, human papillomavirus 

infection, PI3K-Akt signaling pathway, proteoglycans 

in cancer, and the cytokine-cytokine receptor 

interaction (Figure 2D).  

 

Derivation of prognostic DEGs and construction of a 

gene risk score model 
 

In the process of screening for prognostic-related 

biomarkers, the 294 DEGs in common among the high 

immune/stromal score and low immune/stromal score 

groups were subjected to a univariate Cox proportional 

hazard regression analysis. Out of which, 34 DEGs 

were found to be significantly (p < 0.05) correlated 

with the OS of the 465 OC patients from the TCGA 

database. Subsequently, these 34 candidate markers 

were used to construct a prognostic model with a 

Lasso-Cox proportional hazards regression. The 

resulting optimal prognostic signature for predicting 

the OS consists of nine genes: Ubiquitin D (UBD), V-

Set And Immunoglobulin Domain Containing 4 

(VSIG4), C-X-C Motif Chemokine Ligand 11 

(CXCL11), Guanylate Binding Protein 2 (GBP2), C-X-

C Motif Chemokine Ligand 13 (CXCL13), C-X3-C 

Motif Chemokine Receptor 1 (CX3CR1), Complement 

C5a Receptor 1 (C5AR1), Tissue Factor Pathway 

Inhibitor 2 (TFPI2), and DNA segment on chromosome 

4 (unique) 234 expressed sequence (D4S234E). The 

Cox proportional hazard assumption was examined and 

validated through a Schoenfeld residuals test (P = 

0.2259). The detailed information regarding the nine 

genes is provided in Table 2. The following is the 

formula for calculating the prognosis risk score: 

 

Risk score = (-0.033 × expressionUBD) + (0.066 × 

expressionVSIG4) + (-0.049 × expressionCXCL11) + (-

0.035 × expressionGBP2) + (-0.003 × 

expressionCXCL13) + (0.009 × expressionCX3CR1) + 

(0.009 × expressionC5AR1) + (0.032 × expressionTFPI2) 

+ (-0.050×expressionD4S234E). Each patient was 

assigned a risk score based on the formula and divided 

into either high-risk group or low-risk group according 

 

 
 

Figure 1. The overall design of the study. TCGA-OC: TCGA-ovarian serous adenocarcinoma; ESTIMATE: Estimation of STromal and 
Immune cells in Malignant Tumor tissues using Expression data; LASSO: least absolute shrinkage and selection operator; GSVA: Gene Set 
Variation Analysis. 
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Table 1. Baseline characteristics of study patients. 

Variables Training cohort No. (%) Validation cohort No. (%) 

No. of patients 465 109 

Age (years) 59.68±11.49 (mean ± SD)  

Vital status   

Alive 207(44.5%) 63 (58.2%) 

Dead 258(55.5%) 46 (41.8%) 

FIGO stage   

Stage II 24(5.2%)  

Stage III 362(77.8%) 92(84.5%) 

Stage IV 17(16.1%)  17(15.5%)  

Unknown 4(0.9%)  

Grade   

GB 1(0.2%)  

G1  26(23.6%) 

G2 56(12.0%) 40(37.3%) 

G3 397(85.4%) 43(39.1%) 

G4 1(0.2%)  

Unknown 10(2.2%)  

Venous invasion   

NO  52(11.2%)  

YES 70(15.1%)  

Unknown 343(73.8%)  

Lymphatic invasion   

NO  60(12.9%)  

YES  112(24.1%)  

Unknown  293(63.0%)  

Tumor residual disease   

No Macroscopic disease 88(18.9%)  

1-10 mm 214(46.0%)  

11-20 mm 28(6.0%)  

>20 mm 85(18.3%)  

Unknown 50(10.8%)  

 

to the best cut-off in two cohorts. The distribution of the 

gene-based risk scores, OS, OS status, and the nine-gene 

expression profile of the patients in the training and 

validation cohorts are presented in Figure 3. The heat map 

showed that the five protective genes (UBD, CXCL11, 

GBP2, CXCL13, and D4S234E) exhibit low expression in 

the high-risk group. In contrast, the four risk genes 

(VSIG4, CX3CR1, CA5R1, and TFP12) have high 

expression in the high-risk group. Moreover, Kaplan-

Meier curves were used to compare the OS of the two 

groups and the analysis showed that the OS of the high-

risk group was substantially shorter than the low-risk 

group (p < 0.001; Figure 4). 

 

The results of the univariate and multivariate Cox 

proportional hazard regression analyses identified that the 

nine-gene signature, age, and tumor residual disease as 

independent prognostic variables for the OS (Table 3). 

Risk score model accuracy assessment 
 

The time-dependent ROC curve analysis was conducted 

and the area under the curve (AUC) value was used to 

evaluate the predictive effect of the nine-gene signature. 

In the training cohort, the three-year AUC was 0.684 and 

the five-year AUC was 0.707. In the validation cohort, the 

three-year AUC was 0.606 and the five-year AUC was 

0.696 (Figure 5A and 5B). By comparing the nine-gene 

signature against other prognostic factors and single gene 

individually, the nine-gene signature demonstrated a 

higher prognostic accuracy (Figure 5C and 5D).  

 

Comparing the immune infiltration between the 

high- and low-risk groups 
 

To provide novel insight into the biological role of each 

of the risk groups, we performed immune infiltration 
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analysis using the GSVA method. Among the low-risk 

group, the level of immune infiltration (e.g., “Activated 

B cell”, “Activated CD4 cell”, “Activated CD8 cell”, 

“Effector memory CD8 T cell”, and “Immature B cell”) 

were found to be significantly higher than that of the 

high-risk group (Figure 6A). In contrast, “Central 

memory CD8 T cells”, “Immature dendritic cells”, and 

“Plasmacytoid dendritic cells” were significantly 

enriched in the high-risk group (Figure 6A).  

Since tumor-infiltrating lymphocytes are an 

independent prognostic predictor of survival in various 

tumors [28–30], we performed correlation analysis 

between the nine genes and immune infiltration level 

for OC. The results showed that the association between 

the nine genes and the immune microenvironment is 

significant, as each of the nine genes had a significant 

correlation with tumor purity (Figure 6B). Among these 

genes, D4S234E was positively correlated with tumor 

 

 
 

Figure 2. Differentially expressed genes based on immune scores and stromal scores. (A) The volcano plot showed that 438 genes 
were up-regulated and 42 genes down-regulated in the high immune scores group compared with the low scores group. (B) In a similar way, 
414 upregulated genes and 18 downregulated genes were identified by comparing stromal scores. (C, D) Significantly enriched gene sets of 
the immune or stromal score group. (E, F) A total of 281 DEGs were in common among the high immune/stromal score groups and 13 DEGs 
in low immune/stromal score groups. 
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Table 2. Nine prognostic genes significantly associated with OS in the training cohort. 

Name Coefficient Type Down/up-regulated HR 95%CI P value 

UBD -0.033 Protective Up 0.90 0.85 - 0.96 <0.001 

VSIG4 0.066 Risky Up 1.14 1.05 - 1.25 0.002 

CXCL11 -0.049 Protective Up 0.86 0.80 - 0.93 <0.001 

GBP2 -0.035 Protective Up 0.90 0.82 – 1.00 0.048 

CXCL13 -0.003 Protective Up 0.81 0.73 - 0.91 <0.001 

CX3CR1 

C5AR1 

TFPI2 

D4S234E 

0.009 

0.009 

0.032 

-0.050 

Risky 

Risky 

Risky 

Protective 

Up 

Up 

Up 

Down 

1.15 

1.21 

1.08 

0.90 

1.06 - 1.25 

1.04 - 1.40 

1.01 - 1.15 

0.83 - 0.98 

<0.001 

0.012 

0.028 

0.011 

Abbreviations: OS, overall survival; CI, confidence interval. 
 

purity, whereas the other eight genes were negatively 

correlated with tumor purity. The most relevant  

genes among the nine gene signature associated with 

immune infiltration included: CX3CR1 (related B cell, 

cor = 0.311), GBP2 (related CD8+ T cell, dendritic cell, 

cor = 0.403, 0.495), CXCL13 (related CD4+ T cell, cor 

= 0.308), and VSIG4 (related macrophage and 

neutrophil cor = 0.51, 0.605). 

Stratification analysis based on clinical information 

 

Risk stratification analysis was performed to test 

whether the nine-gene signature could predict  

OS regardless of tumor residual disease. The results 

shown that patients with low-risk scores  

had significantly longer OS than patients with high-risk 

scores in no macroscopic disease (p=0.0014, 1-10 mm 

 

 
 

Figure 3. The nine‐gene signature predicts overall survival with ovarian cancer. (A, B) The distribution of risk score, overall survival, 
vital status, and the heat map of the nine gene expression profile in the training cohort and validation cohort. 
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(p =0.00026), >20 mm (p=0.0001)) (Supplementary 

Figure 1).  

 

DISCUSSION  
 

OC represents one of the diseases with the highest 

mortality rate of the female reproductive system [1]. 

Due to the lack of early and effective detection 

methods, most OC patients were diagnosed at an 

advanced stage who subsequently missed the optimal 

treatment period and resulting in a poor clinical 

outcome. Recent studies have shown that TME played 

a vital role during OC progression [31–33]. Moreover, 

TME-related molecular markers can be used as 

predictors to precisely assess patients’ immunotherapy 

response, thereby enhancing their clinical outcome 

[34–36]. However, immune infiltration and its 

molecular mechanisms have not been thoroughly 

explained in OC. 

 

To our knowledge, our work is the first to use the 

ESTIMATE algorithm combined with LASSO-Cox to 

explore molecular markers associated with OC 

prognosis. Firstly, we derived a series of TME-

associated DEGs by comparing the transcriptional 

expression profiles in 593 OC patients with high 

versus low stromal/immune scores based on TCGA 

data. The DEGs functional enrichment analysis 

indicated that the main pathways were associated with 

immune response and cancer (e.g., cytokine-cytokine 

receptor interaction, Human immunodeficiency virus 1 

infection, focal adhesion, proteoglycans in cancer, and 

PI3K-Akt signaling pathway), which are in agreement 

with findings that immune response and cancer 

progression exhibit crosstalk and interact with each 

other [37]. Based on the obtained DEGs, we built a 

nine-gene signature that was notably related to the OS 

in OC patients in both the training and validation 

cohorts. The patients could be divided into high-risk 

and low-risk groups with distinct differences in the 

five-year OS with this nine-gene signature. The results 

of the GSVA analysis showed that “Activated CD8 T 

cells”, “Effector memory CD8 T cell”, “Activated B 

cells”, and “Activated CD4 T cells” were associated 

with significantly lower infiltration in the high-risk 

group. In contrast, “Central memory CD8 T cells”, 

“Immature dendritic cells”, and “Plasmacytoid 

dendritic cells” were associated with significantly 

higher infiltration in the high-risk group. 

 

Numerous studies have documented that CD8+ T cell 

high infiltration in the TME is associated with positive 

anti-tumor effects in various cancer [38–40]. Natural 

killer (NK)-dendritic cell (DC) cross talk results in 

upregulation of Chemokine (C-X-C motif) ligand 9 

(CXCL9), Chemokine (C-X-C motif) ligand 10 

(CXCL10), and Chemokine (C-C motif) ligand 5 

(CCL5) on DCs leading to CD8+ effector T cells 

recruitment into TME, thereby promote antitumor 

immune response in OC [41]. On the other hand, the 

expression of inhibitory molecules such as CTLA4, PD-

1, and LAG3 on CD8+ T cells are promoted by IL-6 and 

IL-10, that produced by tumor cells and tumor-

associated macrophages, in turn inhibit CD8+ T cells 

infiltration [42–44]. Another example of CD8+ T cells 

inhibition shown C-C motif chemokine 22 (CCL22) can 

promote CTLA4+ FOXP3+ GITR+ Tregs and CCR4+ 

Tregs infiltration in TME, thereby inhibiting CD8+ T 

cells activation [45, 46].  

 

Curdin et al. reported that plasmacytoid DCs can induce 

immunosuppression in OC by providing ICOS+ Treg 

 

 
 

Figure 4. Kaplan‐Meier curves to compare overall survival of high‐risk and low‐risk groups based on the nine-gene signature in the training 
cohort (A) and validation cohort (B). 
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Table 3. Univariate and multivariate Cox proportional hazards regression analyses in the training cohort. 

Variables 
Univariate analysis Multivariate analysis 

Hazard ratios (95%CI) P-value Hazard ratios (95%CI) P-value 

Age 1.022(1.012-1.033) <0.001 1.017(1.006-1.028) <0.001 

Grade     

G2 Referent    

G3 1.165(0.820-1.654) 0.394   

Unknown 1.194(0.531-2.684) 0.669   

FIGO stage     

II Referent    

III 2.355(1.109-5.001) 0.026   

IV 2.961(1.350-6.495) 0.007   

Unknown 3.923(0.814-18.91) 0.089   

Venous invasion     

No Referent    

Yes 0.967(0.560-1.671) 0.905   
Unknown 1.249 (0.867-1.934) 0.318   

Lymphatic invasion     

No Referent    

Yes 1.264(0.798-2.001) 0.127   

Unknown 1.094 (0.732-1.636) 0.374   

Tumor residual disease     

No Macroscopic disease Referent  Referent  

1-10 mm 1.899(1.324-2.722) <0.001 1.469(1.006-2.144) 0.046 

11-20 mm 2.191(1.259-3.814) <0.001 2.034(1.140-3.629) 0.016 

>20 mm 2.313(1.536-3.483) <0.001 1.803(1.177-2.762) 0.007 

Unknown 0.975(0.595-1.597) 0.919 1.034(0.626-1.709) 0.896 

Nine-mRNA signature 21.48(10.15-45.42) <0.001 15.60(6.963-34.96) <0.001 

 

cells with Inducible T Cell Costimulator Ligand (ICOS-L) 

stimulation, thereby enhancing the capability of Treg cell 

impairments of T cell proliferation [47]. Immature DCs 

express low levels of Major histocompatibility complex 

(MHC) and co-stimulatory molecules, therefore T cells 

activation by immature DCs is inefficient [48, 49]. These 

results suggest that a low density of activated T cells or 

high infiltration of immature/plasmacytoid DCs may be 

the cause of poor clinical outcome of cancer patients.  

 

Tumor progression and metastasis typically occur in 

adipose tissue-rich areas such as omentum, one of the 

main metastatic sites in OC. Adipose tissue is composed 

of a variety of cells including adipocytes, adipose stem 

cells, endothelial cells, and infiltrating immune cells that 

secrete diverse soluble tumor-promoting factors such as 

hormones, cytokines, reactive oxygen species, 

extracellular matrix, and lipid metabolites. These secreted 

factors not only directly promote tumor progression but 

can also reduce the anti-tumor immune response by 

altering the TME. For example, chemokines (e.g., TNF-α, 

IL-6, and IL-1b) recruit immunosuppressive neutrophils 

and M2 macrophages to the TME, thereby inhibiting anti-

tumor cell activity (e.g., TCD 8+ lymphocytes and NKTs) 

[50]. Besides, adipose tissue associated PD-L1 is found to 

attenuate T cell activation which also contributes to an 

immune suppressive microenvironment [51]. A large 

number of adipose tissue infiltrating M1 macrophages can 

lead to adipocyte death. Moreover, the release of 

intracellular substances of dead adipocyte not only 

aggravates inflammation but also provides energy 

required for tumor cell growth. These factors all provide a 

favorable microenvironment for tumor growth [52]. 

 

Cancer is a heterogeneous disease for which the 

identification of dysregulated genes involved in 



 

www.aging-us.com 4887 AGING 

 
 

Figure 5. Time-dependent ROC curves were generated to evaluate the nine-gene signature performance. (A, B) Three-years or 
five-years ROC curves of the nine-gene signature in the training cohort and validation cohort. (C) Five-years ROC curves for nine-gene 
signature and single gene. (D) Five-years ROC curves for nine-gene signature and clinical risk factor. 

 

 
 

Figure 6. The relationship between the nine-gene signature and immune infiltration. (A) Comparison of relative immune cell 
abundance based on GSVA score in high-risk and low-risk groups (B) Partial Spearman's correlation of nine genes expression and immune 
infiltrates. *: Statistically significant p < 0.05, **: Statistically significant p < 0.01. 
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tumorigenesis and progression might aid in improving 

prognostic and treatment strategies. In this study, we 

identified a group of nine genes (CX3CR1, UBD, 

GBP2, D4S234E, CXCL11, CXCL13, VSIG4, TFPI2 

and C5AR1) that can effectively predict the OS in OC. 

Among these genes, CX3CR1 and UBD can promote 

tumor metastasis and the epithelial to mesenchymal 

transition [53–55]. As p53-related genes, GBP2 and 

D4S234E have been previously shown to regulate 

mitochondrial fission and apoptosis of cancer cells [56–

58]. CXCL11 and CXCL13 are associated with CD8+ T 

cell and B cell infiltration, which act as a protective 

factor inhibiting tumor [59, 60]. VSIG4 inhibits T cell 

proliferation and IL-2 production as well as regulates 

Treg differentiation and stability leading to immune 

tolerance [61, 62]. TFPI2 is a serum biomarker for the 

detection of ovarian clear cell adenocarcinoma, and its 

predictive values are superior to that of CA125 [63]. 

Great promise for immunotherapies has been achieved 

by the Conduct Phase II and III clinical trials for the 

discovery of a drug that targets the C5a-C5aR1 pathway 

[64]. Therefore, our nine-gene signature could 

potentially be used as a predictive tool for risk 

assessment and might offer potential targets for 

immunotherapy in the clinical management of OC. 

 

There are also some limitations associated with this 

research that should be addressed. First, the biological 

function of the nine identified genes should be validated 

in wet lab experiments, particularly regarding the 

association with immune infiltration. Second, missing 

information in OC clinical characteristics (contains many 

patients with “unknown” information in venous invasion 

and lymphatic invasion) in TCGA limited us in building a 

nomogram for incorporating clinical characteristics to 

improve the predicted accuracy of the model. Third, the 

risk score model requires further validation in multiple 

cohorts to evaluate the model generalization ability.  

 

In conclusion, the gene expression profile and clinical 

characteristics of the TCGA database were analyzed by 

ESTIMATE and a Lasso-Cox algorithm to obtain the nine 

gene prognostic signature related to TME in OC. This 

molecular signature can effectively distinguish high-risk 

populations from OC patients in TCGA and GSE17260 

datasets. In addition, the expression of each gene in the 

model is significantly correlated with the TME 

components, which further supports the important role of 

the TME in the occurrence and development of OC. 

 

MATERIALS AND METHODS  
 

Data source 
 

The available Level 3 gene expression profiles of the 

OC patients were downloaded from the TCGA database 

(https://tcga-data.nci.nih.gov/tcga/). RNA expression 

detection of ovarian serous adenocarcinoma was 

performed on Affymetrix HT Human Genome U133a 

microarray. Clinicopathological characteristics 

including age, histological type, FIGO stage, venous 

invasion, lymphatic invasion, tumor residual disease, 

survival, and outcome were also downloaded from the 

TCGA data coordination center. ESTIMATE algorithm 

was used to calculate immune and stromal scores using 

"estimate" package (http://r-forge.rproject.org; repos= 

rforge, dependencies=TRUE) [24].  

 

There were 593 ovarian cancer samples with gene 

expression data in the TCGA. The data from 576 primary 

solid tumors patients were retained after removing 17 

recurrent solid tumors samples. The samples were further 

trimmed to 465 to include only patients with 

corresponding clinical information. The distribution of the 

values for the samples we have selected was viewed 

graphically as a box plot and no outliers were identified. 

All 465 serous adenocarcinoma samples contained 

complete survival information (survival time and 

outcome). All 12,042 coding genes of each patient did not 

contain missing values. Gene expression values were 

normalized by log2 (Affy RMA). The 465 OC patients 

were grouped as a training cohort. To confirm whether 

our nine-gene signature could predict prognosis of OC 

patients in an independent dataset, we selected to use 

publicly available data (GSE17260) with clinical 

informations such as OS time, samples were diagnosed as 

serous adenocarcinoma, obtained from primary lesion, 

and gene expression profiling was measured by 

microarray. The raw data for the validation set GSE17260 

was downloaded from the GEO database, which include 

109 OC samples (a low quality sample was removed) and 

its corresponding clinical information (Grade, FIGO 

stage). R package limma was used for quality control and 

normalization. Gene expression value for genes with 

multiple probes was calculated as the average of the 

probes.  

 

Identification of prognosis-related genes  
 

We divided the patients into two groups based on the 

median value of the immune scores and stromal scores. 

The differential expression analysis was performed with 

R package limma [65], and the fold-change (> 1.5) and 

an eBayes test p-value (< 0.05) were used as criteria to 

screen for DEGs between the high and low groups. We 

subsequently performed a functional enrichment 

analysis with the R package “clusterprofiler” [66] to 

identify the potential biological function of the DEGs. 

The intersection of immune and stromal DEGs was 

subjected to a univariate Cox regression analysis to 

identify the OS-related signature. A threshold of p < 

0.05 was deemed significant. 

https://tcga-data.nci.nih.gov/tcga/
http://r-forge.rproject.org/
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Construction of risk score system of OC 
 

We performed the least absolute shrinkage and selection 

operator (LASSO) on the Cox regression model using R 

package glmnet [67]. The 10-fold cross-validation 

approach and “one-standard error (1se)” was used to 

identify the optimum parameter λ. After the Lasso-Cox 

analysis, we obtained the corresponding regression 

coefficients and signatures of the nine genes and 

constructed the following formula:  

 

Risk score = sum of each gene’s (regression coefficients 

× level of gene expression) 

 

Each patient was assigned a risk score according  

to this formula. The optimal cut-off of the risk score 

was determined by the “surv_cutpoint” function of the 

“survminer” R package (https://www.r-project.org/) and 

used to stratify the OC patients into high- and low-risk 

groups. A comparison of the survival between the two 

groups was analyzed with a Kaplan-Meier estimator and 

log-rank test. 

 

Time-dependent ROC curve analysis 
 

A time-dependent ROC Curve method can be 

implemented to estimate the three- and five-years 

prognostic model prediction performance in a training and 

validation cohort [68]. A stratified analysis was conducted 

to investigate whether the prognostic model was widely 

applicable to clinical characteristics. Furthermore, the 

AUC was used to determine whether the prognostic 

model was superior to that of other risk factors. 

 

The correlation between gene expression and 

immune infiltration 
 

Gene sets for 28 subpopulations of tumor-infiltrating 

lymphocytes resulting from the study by Charoentong et 

al. [69], containing cell types related to adaptive 

immunity (activated, central memory, effector memory 

CD4+ and CD8+ T cells, γδ T cells, type 1 helper T 

(TH1) cells, TH2 cells, TH17 cells, regulatory T cells, 

follicular helper T cells, as well as activated immature 

and memory B cells) and innate immunity 

(macrophages; monocytes; mast cells; eosinophils; 

neutrophils; activated, plasmacytoid and immature 

dendritic cells; natural killer cells; natural killer T cells, 

and myeloid-derived suppressor cells). The gene set 

parameter was subjected to GSVA analysis. GSVA 

transformed gene expression into an absolute 

enrichment score, which was represented as relative 

immune cell abundance in each sample [70]. A t-test 

was performed to compare the GSVA score between the 

high- and low-risk groups. The Tumor Immune 

Estimation Resource (TIMER, https://cistrome. 

shinyapps.io/timer/) was used to investigate the 

correlation between gene expression and tumor-

infiltrating immune cells, including B cells, CD4+ T 

cells, CD8+ T cells, neutrophils, macrophages, and 

dendritic cells in OC [71]. A heat map was generated 

with partial Spearman's correlation and p < 0.05 was 

regarded as statistically significant. 
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SUPPLEMENTARY MATERIAL 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Kaplan‐Meier curves of OS in the subgroups stratified by tumor residual disease. (A) No Macroscopic 
disease (B) Tumor residual size is 1-10 mm (C) tumor residual size >20 mm. 

 

 


