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ABSTRACT

We aimed to develop an HCCclassificationmodel basedon the integrated gene expressionand methylation
data of methylation-driven genes.Genome,methylome, transcriptome,proteomicsand clinicaldata of 36 9HC(
patients from The CancerGenomeAtlas Network were retrieved and analyzed.Consensuglustering of the
integrated gene expressionand methylation data from methylation-driven genesidentified 4 HCCsubchsse:
with significant prognosisdifference. HS1was well differentiated with a favorable prognosis.HS2had high
serumh -fetoprotein level that was correlated with its poor outcome. High percentageof CTNNBInutations
correspondedwith its activation in WNT signalingpathway. HS3was well differentiated with low serumbh -
fetoprotein level and enrichedin metabolism signatures,but was barely involved in immune signatures.HS!
also had high percentageof CTNNBInutations and therefore enrichedin WNT activation sighature. HS4was
poorly differentiated with the worst prognosisand enriched in immune-related signatures,but was barely
involved in metabolismsignatures.Subsequentlya prediction model was developed.Theprediction model had
high sensitivity and specificity in distributing potential HCCsamplesinto groups identical with the training
cohort. In conclusion, this work shedslight on HCCpatient prognostication and prediction of responseto
targetedtherapy.

INTRODUCTION

Hepatocellular carcinoma (HCC) ithe sixth most
common cancer and the thiteading cause of cancer
related death worldwidgl]. It is estimated that by 2020
the number of HCC cases will reach 78,000 in Europe
and 27,000 in the United Statefl]. A better
understanding of the underlying mechanisms of HCC
diversity will increase the chances for effective
treatment and improvement in survival rate.

Genomewide analyses of mRNA expression profiles
have contributedat developing HCC targeted therapies
over the past two decades. Boyault et al. performed
transcriptome analyses on 57 HCCs and 3
hepatocellular adenomas. Six robust subgroups of HCC
(G1-G6) associated with clinical and genetic
characteristics were identifie [2]. Hoshida et al.
classified a total of 603 patients into 3 robust HCC
subclasses (S1, S2, aB@) based on gene expression
profiles. Each subclass was correlated with clinical
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parameters such as tumsize and extent of cellular
differentiation [3]. Chiang et al. divided 91 HCC

RESULTS

samples into 5 subclasses based on gene expression |dentification of 4 HCC subclasses

profiles [4]. Lee et al. analyzed global gene expression
patterns of 91 HCCs. The samples were classified into
two distinctive subclasses that were highly associated
with patient survival[5]. The existing classifications are
mainly based on gene expression profiles, and few of
them are based on DNA methylation profiles. However,
HCC is a complex disease arising from accumulation of
both genetic and epigenetic alteration$6].
Transcriptome data alone is insufficient for revealing
the heterogeneity of HCC. It has been demonstrated that
classification of HCC with DNA methylation data is
clinically significant[7].

As oneof the core elements in epigenetic modifications,
DNA methylation participates in a diverse range of
cellular and biological processes such as cell
differentiation, aging, tissuspecific gene expression,
genome stability and genomic imprinting8]. In
addtion to the implication during normal development,
DNA methylation involves in pathologies such as
carcinogenesif9]. Hypermethylation of CpG islands in
promoter sequences can cause epigenetic inactivation of
tumor suppressor genes followed by mRNA transcript
repression[9]. Unlike DNA aberrations, epigenetic
changes are reversible, which makes them potential
therapeuticdrgetq9].

Aberrant methylation of several tumor suppressor genes
and tumotrelated genes such BASSF1AhMLH1 and
SOCSIis constantly identified in HC{10]. TMSLlis a
proapoptotic gene with promoter methylation observed
in 80% HCC patientd11]. Aberant methylation of
SEMAS3B is reported in 80% HCC$11]. SEMA3B
induces apoptosis and is detected in lung cancers and
gliomas [11]. A number of studies on these DNA
methylationdriven genes have already been published
[12, 13]

To obtain a better undesstding of HCC heterogeneity,
we established an HCC classificatiobased on
integrated gene expression and methylation data of
methylationdriven  genes  (MDGs). Consensus
clustering identified 4 HCC subclasses significantly
associated with prognosis valuehel 4 subclasses
showed distinct clinical features and enrichment in
different signatures. Somatic mutations and copy
number mutations data were analyzed and visualized.
Besides, HCC patients were clustered into distinct CpG
island methylator phenotype (CRJ based on the
methylation level of 674 most variable CpGs. The
accuracy of the transcripton@sed prediction model
constructed by machine learning algorithms was
favorable.

Messenger RNA expression data anethglation data
were integrated under the same samplgéh the
MethylMix R package[14] to identify MDGs. 401
MDGs with |logFC| > 0, P < 0.05 and [Cor| > 0.3 were
reserved for subsequent analyses (Supplementary Table
1). Then, 369 HCC patients were clustébased on the
integrated MRNA expression and methylation data of
401 MDGs by
CancerSubtypespackage [15]. Optimal number of
clusters was determined according to comprehensive
consideration of Silhouette width value and clinical
significance (Figure 1A, 1B and Supplementary Figure
1). When the samples were classified into 2, 3 and 4
subtypes, average silhouette widths were 0.93, 0.97 and
0.94, respectively. If Silhouette width is close to 1, it
means the samples are well classifiSilhouette widths

for 2, 3 and 4 clusters were all close to 1. Besides, when
the samples were classified into 3 groups, no
significance in survival was identified (p=0.0692). We
considered it more appropriate to divide the samples
into 4 subclasses torguvide more information for
diagnosis based on their different molecular features.
The 4 HCC subclasses identified were named HCC
Subclass 1 (HS1), HCC Subclass 2 (HS2), HCC
Subclass 3 (HS3) and HCC Subclass 4 (HS4). To
val i dat e
distributed stochastimeighbor embedding -8NE) to
decrease the dimension of features and found that
subtype designations were largely concordant with two
dimensional4SNE distribution patterns (Figure 1C).

Survival analysis was conductedand significant
prognostic difference was observed when using overall
survival (OS) as an endpoint (legnk testP = 0.0(%7,
Figure 1D). A longer median survival time (MST) was
detected for HSIMST=2839 days, 95% CI: 1743929
days) compared with HSMST= 1622 days, 95% CI:
9292315 days,P = 0.0609), HS3 (MST=1818 days,
95% CI: 12132423 daysP = 0.5308) and HS4 (MST=
1135 days, 95% CI: 450820 days,P = 0.0034).
However, when using recurrence free survival (RFS) as
an endpoint, there was no sigodint prognostic
difference among HCC classifications (Figure 1D and
Supplementary Table 2).

The characteristics of 401 MDGs were then investigated.
Metabolism and immune relevant gene lists were obtained
from previous studied 6, 17]. Through intersecting these
gene lists with 401 MDGs, we identified metabolism and
immune associated MDGs (100 MDGs for metabolism
and 51 for immunity). Besides, considering that DNA
methylation alterations in tumor suppressor genes (TSGs)
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Figurel. Identification of HCC subclasses based on integrated transcriptome and methylation data of MBGxnsensus
matrix for k = 2 to k = 5BJ Silhouette values under corresponding k valuEsT{SNE analysis of mRNA expression data from tumor samples
included in the cluster analysiB)(OS and RFS of 4 HCC subclasses. Statistical significance of differences was determimaedibiesodp)
Heatmaps show the expression and methylation level of 401 MDGs in HCC subclasses. 401 MDGs were divigexujstoircluding
metabolism associated MDGs, immune associated MDGs, putative methylation driven TSGs and other MDGs. HCC: hepatdauethdar carc
MDG: methylation driven gene;SNE: distributed stochastic neighbor embedding; OS: overall surviv8l; REurrence free survival; TSG:
tumor suppressor genes.
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were involved in carcinogenesis, we intersected 401
MDGs with putative TSGs to obtain putative methylation
driven TSGs. The expression and methylation levels of
these MDGs we both visualized in Figure 1E and

detailed information was listed in Supplementary Table 3.

Correlation of the HCC subclasses with clinical
characteristics and classical classification

The relationships between HCC classifications and
clinical charactastics were then investigated (Figure 2
and Supplementary Table 4). Results revealed that HS2
was associated with histologic grade G3/G4 (46/99 vs
82/259,P = 0. 0089) a n dfetoprategnh
(AFP) level (37/75 vs 58/201R = 0.0014). HS3 was
associadd with lower proportion of virus infection
(44/87 vs 58/166, P = 0.0160), histologic grade G1/G2
(93/120 vs 137/238, P = 0.0002), and low serum AFP
level (77/90 vs 105/186 in the rest, P < 0.0001).

Then, our classification was also compared with
previously reported HCC molecular subclasses,
including Boyau[2]t(Bls to &6),as s

Chiangds cl[4daé$685i fdlcaasd eon) ,
classification[3] (S1, S2, and S3), and The Cancer
Genome Atlas (TCGA) classificatiofl8] (iClusterl,
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iCluster2, and iCluster3). Results suggested that HS1
was significantly associated with Chiang's Proliferation
class (31/85 vs 52/278 in the reBt: 0.0006). HS2 was
significantly associated
53/263 in the rest? < 0.0001). HS3 ws significantly

Wi

associated with Boyaultés G
the rest,P < 0.0001), Chiang'€TNNB1class (45/122
vs 44/241 intheresP= 0. 0001) , and Hc
(112/122 vs 114/241 in the re$t,< 0.0001). HS4 was
significantly associated wi
97/307 intheresP< 0. 0001) , Hos hi dab

10/307 in the restP < 0.0001), and TCGA iClusterl
(20/33 vs 41/145 in the reR,= 0.0004).
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Correlation between HCC subclases and CIMP

Considering that MDGs based classification may result
in different methylation status among subclasses, we
then exploredhe methylation characteristics of 4 HCC
subclasses. First, according to previously mentioned
amproach to find CIMP in HCC[7], we clustered
samples into distinct groups using-rieans method
balsed o the methylation level of 674 most variable
CpGs.sAmond #hése groups, C2 was defined as non
CIMP group with the lowest methylation level of 674
CpGs. C7was defined as CIMP group with the
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Figure 2. Correlation of our classification (HS1, HS2, HS3 and HS4) with distinct clinical characteristics and previously
published HCC subclassé&sediction of previously published HEl&ssifications was perford with NTP analyses. Statistical significance

of differences was determined by @&wguare test (ns represents no significance, * represent®P5; ** represent P < 0.01, *** represent P

< 0.001, **** represent P < 0.0001). HCC: hepatocellular carcinbfR: Nearest Template Prediction.
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highest methylation level of 674 CpGs. The remaining
groups with moderate methylation level of 674 CpGs
were defined as CIMR group (Supplementary Figure
2A). Although no significant prognostidgffitrence was
observed among groups, CIMP (C7) group still
showed a trend towards poorer prognosis
(Supplementary Figure 2B and 2C). The relationship
between our classification and CIMP was visualized in
Supplementary Figure 2D, and results of statiktica
analysis revealed that samples in 1@&iMP were more

Glucose

Amino acid metabolism Metabolism

Lipid metabolism

enriched in HS3 and HS4 than HS1 and HS2 (63/180 vs
44/189,P = 0.0131).

Correlation of HCC subclasses with metabolism and
immune associated signatures

The outcome that 100f the 401 MDGs were involved

in metabolism and 51 were involved in immunity drove
us to investigate the characteristics of metabolism and
immunity in HCC subclasses iffare 3). First,

Immune related genes

by MCP-counter

signatures

Immune relevant  Immune cells predicted

e

FHgure 3. Heatmaps show difference in metabolism signatures (glucose metabolism, amino acid metabolism, and lipid
metabolism), immune related genes expression, immuassociated signatures and other signatures, immune and stromal
cell populations predictecby MCPcounter among 4 HCC subclasses (see detailed information in Supplementary Figure 2).
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metabolism and immune associated processes were repair signature, angiogenesis signature, cell cycle
guantified using Gene Set Variation Analysis (GSVA) signature, differentiation signature, mTOR pathway
and microenvironment cell populatieosunter (MCPR signature, stem signature, and WNT activation signature
counter) methods. Then, statistical analyses were (Figure 4A and 4B). Results showed that HS4
conducted, and results suggested that metabolic and demonstrated a higher enrichment of stromal relevant
immune processes in distinct classifications differed  signature (ECM signature and T®F si gnat ur e) ,
greatly (detailed statistical analyses were shown in repair relevant signature, cell cycle signature, mTOR
Supplementary Figure 3A). Particdla HS3 had signature and lower enrichment of differentiation
higher signature scores for metabolism thather signature compared with other 3 subclasses. HS3
subclasses, except several lipid metabolic processes, exhibited lower enrichment of stem signature thdmeiot
including glycerophospholipid metabolism, ether lipid subclasses, and higher enrichment of differentiation
metabolism, shingolipid metabolism, arachidonic acid signature than HS2. In addition, no significant
met abol i sm, a noil matdbplitna H34i n odifferénce oaBWNT activation signature was observed
exhibited lower enrichment in these metabolic processes between HS2 and HS3, and both of them showed a
than other subclasses. HS1 and HS2 had moderate higher enrichment of WNT activation signature than
signature scores, and there was also no significant HS1 and HS4. HS1 and HS2 showed no significant

difference between HS1 and HS2. difference in enrichment of ECM signature, TGF
signature DNA repair relevant signature, cell cycle
For immune associated processes, we first tigated signature, and mTOR signature. HS2 showed higher

the association between subclasses and the expression enrichment of stem signature compared with HS4. HS1
of 20 potentially targetable immune related genes, and showed higher level of angiogenesis signature and
resultsindicated that HS4 exhibited higher expression  differentiation signature compared with HS3.

for multiple immune related gene€D276, TGFB1,

CXCR4, CTLA4, ICOS, TNFRSF9, CCLZ, 1A, Considering the limited evidence provided by
HAVCR2, IL10, CD274and PDCD1LG2 and lower transcriptome data, we further analyzed proteomic data
expression for ADORA2A than other subclasses to validate the conclusiofReverse Phase Protein Array
(Supplementary Figure 3B). HS3 exhibited lower (RPPA) basé proteomic data was download from The
expression foCD276, TGFB1, CTLA4, ICOS, PDCD1, Cancer Proteome Atlas (TCPA) database. All proteins
TNFRSF4, CD274andLAG3than other subclasses. No were annotated according to their corresponding genes.
significant dfference for immune related gene Because of the limited proteins detected by protein
expression was detected between HS1 and HS2. We array, we only chose to investigate the difference of

then explored immunefiltration of 4 subclasses. The protein levels in PIBK/mTOR pathway, p53/Cell cycle
abundance of 10 immune and stromal relatedtgpés pathway and TGH#®/Smad pathway among 4 HCC
was calculated using MCgbunter algorithm. subclasses. In PISK/mTOR pathway, HS4 exhibited
Significant differene was observed between HS4 and  higher expression of S6_pS240/S244, X4EBP1 and
other 3 subclasses, with highabundance of 4 cell X4EBP1_pT70 than other 3 groups. HS3 had higher

populations (T cells, myeloid dendritic cells, monocytic ~ expression of AKT_pS4¥ Tuberin_pT1462 and
lineage, andribroblasts) for HS4 compared with other 3 P70S6K_pT389 than other groupsiglire 5A and
subclasses. In addition, HS3 exhibited lower enrichment  Supplementary Figure 4Aln P53/Cell cycle pathway,

of B lineage, CD8 T cells, T cells, and myeloid HS4 had higher expression of ATM and CHK1_pS296,
dendritic cells. There was no significant difference of while HS3 had higher expression of CHK1,
cell abundance in most cell populations between HS1 CHK1 pS345, P53, CDK1 and CDK1 pY15id&re

and HS2 (Supplementary Figure 3C). For immune 5B and Supplementary Figure 4BIn TGFb/ Sma d
associated signatures, HS4 exhibited higher enrichment pathway, HS3 had lower expression of Smad3 and
for interferon (IFN) signature than HS1 and HS2 higher expression of Snail than other 3 grougguife

(Supplementary Figure 3D). 5C and Supplementary Figure 4C Significance was
detected between HS1 and HS2 for the expression of
The difference of other critical signatures among AKT and AKT_pT308.

HCC subclasses

Mutations and copy number alterations associated
The associations between our HCC classification and with HCC subclasses
several critical signatures involved in oncogenesis and
progresion of HCC were also investigated, including To investigate differences in mutations and copy
extracellular matrix (ECM) signature, epithelial number alterations among HCC subclasses, we
mesenchymal transition (EMT)signature TGFDb analyzed the somatic mutation and copy number data.
signature mismatch repair signature, DNA damage  Themutation status of genes in p53/Cell cycle pathway,
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Whnt/betacatenin pathway, hepatidifferentiation, and
DNA methylation was visualized in Supplementary
Figure 5A. Results of statistical analysis revealed that
HS1 was associalavith a low percentage of alterations
in CTNNB1(13/84 vs 70/265 in the redp, = 0.0402)
and a high percentage of alterationsAKIN1 (11/84 vs
17/265 in the restP = 0.0495). HS2 was associated
with a high percentage of alterationsAKIN1(13/99 vs
15/250 in the restP = 0.0271). HS3 was associated
with a low percentage of alterationsTi53(19/112 vs
81/237 in the restP = 0.0009),MUC16 (10/112 vs
44/237 in the restP = 0.0201) andAXIN1 (2/112 vs
26/237 in the res = 0.0032), and a high percentage of

alterations inCTNNB1(35/112 vs 48/237 in the re®R,

= 0.0243). HS4 was associated with a low percentage of
alterations iNCTNNB1(5/54 vs 77/295 in the red®, =
0.0174). Detailed results of the above statistical
andyses were shown in Supplementary Table 5.
Subsequently, mutation signatures in subclasses were
investigated. First, we explored the proportion of 6
singlenucleotide substitutions (C>A/G>T, C>G/G>C,
C>TIG>A, T>A/A>T, T>C/A>G, and T>G/A>C) in
each HCC subass (Supplementary Figure 5B). Then
we computed sampleise signature profiles, and
fitlered out mutation signatures with no prognostic
significance P > 0.15 in Cox regression). 4 mutation

Hgure 4. Difference of progressierelevant signatures amog HCC subclass€8) Heatmap of progressierelevant signatures in 4
HCC subclasse®) Box plotgfrom 25th percentile to the 75th percentile with a line at the median) show the abundance of progression
associated signatures. Statistical significance\arall differences was determined by Kruskal Wallis test (ns represensgynificance,

* represents P < 0.05, ** represent P < 0.01, *** represent P < 0.001, refsresent P < 0.0001).
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