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INTRODUCTION  
 

Hepatocellular carcinoma (HCC) is the sixth most 

common cancer and the third leading cause of cancer-

related death worldwide [1]. It is estimated that by 2020 

the number of HCC cases will reach 78,000 in Europe 

and 27,000 in the United States [1]. A better 

understanding of the underlying mechanisms of HCC 

diversity will increase the chances for effective 

treatment and improvement in survival rate. 

Genome-wide analyses of mRNA expression profiles 

have contributed to developing HCC targeted therapies 

over the past two decades. Boyault et al. performed 

transcriptome analyses on 57 HCCs and 3 

hepatocellular adenomas. Six robust subgroups of HCC 

(G1-G6) associated with clinical and genetic 

characteristics were identified [2]. Hoshida et al. 

classified a total of 603 patients into 3 robust HCC 

subclasses (S1, S2, and S3) based on gene expression 

profiles. Each subclass was correlated with clinical 
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ABSTRACT 
 

We aimed to develop an HCC classification model based on the integrated gene expression and methylation 
data of methylation-driven genes. Genome, methylome, transcriptome, proteomics and clinical data of 369 HCC 
patients from The Cancer Genome Atlas Network were retrieved and analyzed. Consensus clustering of the 
integrated gene expression and methylation data from methylation-driven genes identified 4 HCC subclasses 
with significant prognosis difference. HS1 was well differentiated with a favorable prognosis. HS2 had high 
serum -hfetoprotein level that was correlated with its poor outcome. High percentage of CTNNB1 mutations 
corresponded with its activation in WNT signaling pathway. HS3 was well differentiated with low serum -h
fetoprotein level and enriched in metabolism signatures, but was barely involved in immune signatures. HS3 
also had high percentage of CTNNB1 mutations and therefore enriched in WNT activation signature. HS4 was 
poorly differentiated with the worst prognosis and enriched in immune-related signatures, but was barely 
involved in metabolism signatures. Subsequently, a prediction model was developed. The prediction model had 
high sensitivity and specificity in distributing potential HCC samples into groups identical with the training 
cohort. In conclusion, this work sheds light on HCC patient prognostication and prediction of response to 
targeted therapy. 
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parameters such as tumor size and extent of cellular 

differentiation [3]. Chiang et al. divided 91 HCC 

samples into 5 subclasses based on gene expression 

profiles [4]. Lee et al. analyzed global gene expression 

patterns of 91 HCCs. The samples were classified into 

two distinctive subclasses that were highly associated 

with patient survival [5]. The existing classifications are 

mainly based on gene expression profiles, and few of 

them are based on DNA methylation profiles. However, 

HCC is a complex disease arising from accumulation of 

both genetic and epigenetic alterations [6]. 

Transcriptome data alone is insufficient for revealing 

the heterogeneity of HCC. It has been demonstrated that 

classification of HCC with DNA methylation data is 

clinically significant [7]. 

 

As one of the core elements in epigenetic modifications, 

DNA methylation participates in a diverse range of 

cellular and biological processes such as cell 

differentiation, aging, tissue-specific gene expression, 

genome stability and genomic imprinting [8]. In 

addition to the implication during normal development, 

DNA methylation involves in pathologies such as 

carcinogenesis [9]. Hypermethylation of CpG islands in 

promoter sequences can cause epigenetic inactivation of 

tumor suppressor genes followed by mRNA transcript 

repression [9]. Unlike DNA aberrations, epigenetic 

changes are reversible, which makes them potential 

therapeutic targets [9]. 

 

Aberrant methylation of several tumor suppressor genes 

and tumor-related genes such as RASSF1A, hMLH1 and 

SOCS1 is constantly identified in HCC [10]. TMS1 is a 

proapoptotic gene with promoter methylation observed 

in 80% HCC patients [11]. Aberrant methylation of 

SEMA3B is reported in 80% HCCs [11]. SEMA3B 
induces apoptosis and is detected in lung cancers and 

gliomas [11]. A number of studies on these DNA 

methylation-driven genes have already been published 

[12, 13].  

 

To obtain a better understanding of HCC heterogeneity, 

we established an HCC classification based on 

integrated gene expression and methylation data of 

methylation-driven genes (MDGs). Consensus 

clustering identified 4 HCC subclasses significantly 

associated with prognosis value. The 4 subclasses 

showed distinct clinical features and enrichment in 

different signatures. Somatic mutations and copy 

number mutations data were analyzed and visualized. 

Besides, HCC patients were clustered into distinct CpG 

island methylator phenotype (CIMP) based on the 

methylation level of 674 most variable CpGs. The 

accuracy of the transcriptome-based prediction model 

constructed by machine learning algorithms was 

favorable. 

RESULTS 
 

Identification of 4 HCC subclasses 

 

Messenger RNA expression data and methylation data 

were integrated under the same sample with the 

MethylMix R package [14] to identify MDGs. 401 

MDGs with |logFC| > 0, P < 0.05 and |Cor| > 0.3 were 

reserved for subsequent analyses (Supplementary Table 

1). Then, 369 HCC patients were clustered based on the 

integrated mRNA expression and methylation data of 

401 MDGs by ñExecuteCNMFò function in 

CancerSubtypes package [15]. Optimal number of 

clusters was determined according to comprehensive 

consideration of Silhouette width value and clinical 

significance (Figure 1A, 1B and Supplementary Figure 

1). When the samples were classified into 2, 3 and 4 

subtypes, average silhouette widths were 0.93, 0.97 and 

0.94, respectively. If Silhouette width is close to 1, it 

means the samples are well classified. Silhouette widths 

for 2, 3 and 4 clusters were all close to 1. Besides, when 

the samples were classified into 3 groups, no 

significance in survival was identified (p=0.0692). We 

considered it more appropriate to divide the samples 

into 4 subclasses to provide more information for 

diagnosis based on their different molecular features. 

The 4 HCC subclasses identified were named HCC 

Subclass 1 (HS1), HCC Subclass 2 (HS2), HCC 

Subclass 3 (HS3) and HCC Subclass 4 (HS4). To 

validate subclassesô assignments, we performed t-

distributed stochastic neighbor embedding (t-SNE) to 

decrease the dimension of features and found that 

subtype designations were largely concordant with two-

dimensional t-SNE distribution patterns (Figure 1C).  

 

Survival analysis was conducted, and significant 

prognostic difference was observed when using overall 

survival (OS) as an endpoint (log-rank test P = 0.0057, 

Figure 1D). A longer median survival time (MST) was 

detected for HS1 (MST=2839 days, 95% CI: 1749-3929 

days) compared with HS2 (MST= 1622 days, 95% CI: 

929-2315 days, P = 0.0609), HS3 (MST=1818 days, 

95% CI: 1213-2423 days, P = 0.5308) and HS4 (MST= 

1135 days, 95% CI: 450-1820 days, P = 0.0034). 

However, when using recurrence free survival (RFS) as 

an endpoint, there was no significant prognostic 

difference among HCC classifications (Figure 1D and 

Supplementary Table 2). 

 

The characteristics of 401 MDGs were then investigated. 

Metabolism and immune relevant gene lists were obtained 

from previous studies [16, 17]. Through intersecting these 

gene lists with 401 MDGs, we identified metabolism and 

immune associated MDGs (100 MDGs for metabolism 

and 51 for immunity). Besides, considering that DNA 

methylation alterations in tumor suppressor genes (TSGs) 
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Figure 1. Identification of HCC subclasses based on integrated transcriptome and methylation data of MDGs. (A) Consensus 
matrix for k = 2 to k = 5. (B) Silhouette values under corresponding k values. (C) T-SNE analysis of mRNA expression data from tumor samples 
included in the cluster analysis (D) OS and RFS of 4 HCC subclasses. Statistical significance of differences was determined by Log-rank test. (E) 
Heatmaps show the expression and methylation level of 401 MDGs in HCC subclasses. 401 MDGs were divided into 4 groups, including 
metabolism associated MDGs, immune associated MDGs, putative methylation driven TSGs and other MDGs. HCC: hepatocellular carcinoma; 
MDG: methylation driven gene; t-SNE: t-distributed stochastic neighbor embedding; OS: overall survival; RFS: recurrence free survival; TSG: 
tumor suppressor genes. 
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were involved in carcinogenesis, we intersected 401 

MDGs with putative TSGs to obtain putative methylation 

driven TSGs. The expression and methylation levels of 

these MDGs were both visualized in Figure 1E and 

detailed information was listed in Supplementary Table 3. 

 

Correlation of the HCC subclasses with clinical 

characteristics and classical classification 
 

The relationships between HCC classifications and 

clinical characteristics were then investigated (Figure 2 

and Supplementary Table 4). Results revealed that HS2 

was associated with histologic grade G3/G4 (46/99 vs 

82/259, P = 0.0089) and high serum Ŭ-fetoprotein 

(AFP) level (37/75 vs 58/201, P = 0.0014). HS3 was 

associated with lower proportion of virus infection 

(44/87 vs 58/166, P = 0.0160), histologic grade G1/G2 

(93/120 vs 137/238, P = 0.0002), and low serum AFP 

level (77/90 vs 105/186 in the rest, P < 0.0001). 

 

Then, our classification was also compared with 

previously reported HCC molecular subclasses, 

including Boyaultôs classification [2] (G1 to G6), 

Chiangôs classification [4] (5 classes), Hoshidaôs 

classification [3] (S1, S2, and S3), and The Cancer 

Genome Atlas (TCGA) classification [18] (iCluster1, 

iCluster2, and iCluster3). Results suggested that HS1 

was significantly associated with Chiang's Proliferation 

class (31/85 vs 52/278 in the rest, P = 0.0006). HS2 was 

significantly associated with Hoshidaôs S2 (47/100 vs 

53/263 in the rest, P < 0.0001). HS3 was significantly 

associated with Boyaultôs G5/G6 (66/122 vs 65/241 in 

the rest, P < 0.0001), Chiang's CTNNB1 class (45/122 

vs 44/241 in the rest, P = 0.0001), and Hoshidaôs S3 

(111/122 vs 114/241 in the rest, P < 0.0001). HS4 was 

significantly associated with Boyaultôs G3 (45/56 vs 

97/307 in the rest, P < 0.0001), Hoshidaôs S1 (28/56 vs 

10/307 in the rest, P < 0.0001), and TCGA iCluster1 

(20/33 vs 41/145 in the rest, P = 0.0004). 

 

Correlation between HCC subclasses and CIMP 

 

Considering that MDGs based classification may result 

in different methylation status among subclasses, we 

then explored the methylation characteristics of 4 HCC 

subclasses. First, according to previously mentioned 

approach to find CIMP in HCC [7], we clustered 

samples into distinct groups using K-means method 

based on the methylation level of 674 most variable 

CpGs. Among these groups, C2 was defined as non-

CIMP group with the lowest methylation level of 674 

CpGs. C7 was defined as CIMP-H group with the 

 

 
 

Figure 2. Correlation of our classification (HS1, HS2, HS3 and HS4) with distinct clinical characteristics and previously 
published HCC subclasses. Prediction of previously published HCC classifications was performed with NTP analyses. Statistical significance 
of differences was determined by Chi-square test (ns represents no significance, * represents P < 0.05, ** represent P < 0.01, *** represent P 
< 0.001, **** represent P < 0.0001). HCC: hepatocellular carcinoma; NTP: Nearest Template Prediction. 
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highest methylation level of 674 CpGs. The remaining 

groups with moderate methylation level of 674 CpGs 

were defined as CIMP-L group (Supplementary Figure 

2A). Although no significant prognostic difference was 

observed among groups, CIMP-H (C7) group still 

showed a trend towards poorer prognosis 

(Supplementary Figure 2B and 2C). The relationship 

between our classification and CIMP was visualized in 

Supplementary Figure 2D, and results of statistical 

analysis revealed that samples in non-CIMP were more 

enriched in HS3 and HS4 than HS1 and HS2 (63/180 vs 

44/189, P = 0.0131). 

 

Correlation of HCC subclasses with metabolism and 

immune associated signatures 

 

The outcome that 100 of the 401 MDGs were involved 

in metabolism and 51 were involved in immunity drove 

us to investigate the characteristics of metabolism and 

immunity in HCC subclasses (Figure 3). First, 

 

 
 

Figure 3. Heatmaps show difference in metabolism signatures (glucose metabolism, amino acid metabolism, and lipid 
metabolism), immune related genes expression, immune-associated signatures and other signatures, immune and stromal 
cell populations predicted by MCP-counter among 4 HCC subclasses (see detailed information in Supplementary Figure 2).  
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metabolism and immune associated processes were 

quantified using Gene Set Variation Analysis (GSVA) 

and microenvironment cell populations-counter (MCP-

counter) methods. Then, statistical analyses were 

conducted, and results suggested that metabolic and 

immune processes in distinct classifications differed 

greatly (detailed statistical analyses were shown in 

Supplementary Figure 3A). Particularly, HS3 had 

higher signature scores for metabolism than other 

subclasses, except several lipid metabolic processes, 

including glycerophospholipid metabolism, ether lipid 

metabolism, shingolipid metabolism, arachidonic acid 

metabolism, and alphaīlinoleic acid metabolism. HS4 

exhibited lower enrichment in these metabolic processes 

than other subclasses. HS1 and HS2 had moderate 

signature scores, and there was also no significant 

difference between HS1 and HS2. 

 

For immune associated processes, we first investigated 

the association between subclasses and the expression 

of 20 potentially targetable immune related genes, and 

results indicated that HS4 exhibited higher expression 

for multiple immune related genes (CD276, TGFB1, 
CXCR4, CTLA4, ICOS, TNFRSF9, CCL2, IL1A, 
HAVCR2, IL10, CD274, and PDCD1LG2) and lower 

expression for ADORA2A than other subclasses 

(Supplementary Figure 3B). HS3 exhibited lower 

expression for CD276, TGFB1, CTLA4, ICOS, PDCD1, 

TNFRSF4, CD274, and LAG3 than other subclasses. No 

significant difference for immune related gene 

expression was detected between HS1 and HS2. We 

then explored immune infiltration of 4 subclasses. The 

abundance of 10 immune and stromal related cell types 

was calculated using MCP-counter algorithm. 

Significant difference was observed between HS4 and 

other 3 subclasses, with higher abundance of 4 cell 

populations (T cells, myeloid dendritic cells, monocytic 

lineage, and Fibroblasts) for HS4 compared with other 3 

subclasses. In addition, HS3 exhibited lower enrichment 

of B lineage, CD8 T cells, T cells, and myeloid 

dendritic cells. There was no significant difference of 

cell abundance in most cell populations between HS1 

and HS2 (Supplementary Figure 3C). For immune 

associated signatures, HS4 exhibited higher enrichment 

for interferon (IFN) signature than HS1 and HS2 

(Supplementary Figure 3D).  

 

The difference of other critical signatures among 

HCC subclasses 
 

The associations between our HCC classification and 

several critical signatures involved in oncogenesis and 

progression of HCC were also investigated, including 

extracellular matrix (ECM) signature, epithelial 

mesenchymal transition (EMT) signature, TGF-ɓ 

signature, mismatch repair signature, DNA damage 

repair signature, angiogenesis signature, cell cycle 

signature, differentiation signature, mTOR pathway 

signature, stem signature, and WNT activation signature 

(Figure 4A and 4B). Results showed that HS4 

demonstrated a higher enrichment of stromal relevant 

signature (ECM signature and TGF-ɓ signature), DNA 

repair relevant signature, cell cycle signature, mTOR 

signature and lower enrichment of differentiation 

signature compared with other 3 subclasses. HS3 

exhibited lower enrichment of stem signature than other 

subclasses, and higher enrichment of differentiation 

signature than HS2. In addition, no significant 

difference of WNT activation signature was observed 

between HS2 and HS3, and both of them showed a 

higher enrichment of WNT activation signature than 

HS1 and HS4. HS1 and HS2 showed no significant 

difference in enrichment of ECM signature, TGF-ɓ 

signature, DNA repair relevant signature, cell cycle 

signature, and mTOR signature. HS2 showed higher 

enrichment of stem signature compared with HS4. HS1 

showed higher level of angiogenesis signature and 

differentiation signature compared with HS3. 

 

Considering the limited evidence provided by 

transcriptome data, we further analyzed proteomic data 

to validate the conclusion. Reverse Phase Protein Array 

(RPPA) based proteomic data was download from The 

Cancer Proteome Atlas (TCPA) database. All proteins 

were annotated according to their corresponding genes. 

Because of the limited proteins detected by protein 

array, we only chose to investigate the difference of 

protein levels in PI3K/mTOR pathway, p53/Cell cycle 

pathway and TGF-ɓ/Smad pathway among 4 HCC 

subclasses. In PI3K/mTOR pathway, HS4 exhibited 

higher expression of S6_pS240/S244, X4EBP1 and 

X4EBP1_pT70 than other 3 groups. HS3 had higher 

expression of AKT_pS473, Tuberin_pT1462 and 

P70S6K_pT389 than other groups (Figure 5A and 

Supplementary Figure 4A). In P53/Cell cycle pathway, 

HS4 had higher expression of ATM and CHK1_pS296, 

while HS3 had higher expression of CHK1, 

CHK1_pS345, P53, CDK1 and CDK1_pY15 (Figure 

5B and Supplementary Figure 4B). In TGF-ɓ/Smad 

pathway, HS3 had lower expression of Smad3 and 

higher expression of Snail than other 3 groups (Figure 

5C and Supplementary Figure 4C). Significance was 

detected between HS1 and HS2 for the expression of 

AKT and AKT_pT308. 

 

Mutations and copy number alterations associated 

with HCC subclasses 

 

To investigate differences in mutations and copy 

number alterations among HCC subclasses, we 

analyzed the somatic mutation and copy number data. 

The mutation status of genes in p53/Cell cycle pathway, 
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Wnt/beta-catenin pathway, hepatic differentiation, and 

DNA methylation was visualized in Supplementary 

Figure 5A. Results of statistical analysis revealed that 

HS1 was associated with a low percentage of alterations 

in CTNNB1 (13/84 vs 70/265 in the rest, P = 0.0402) 

and a high percentage of alterations in AXIN1 (11/84 vs 

17/265 in the rest, P = 0.0495). HS2 was associated 

with a high percentage of alterations in AXIN1 (13/99 vs 

15/250 in the rest, P = 0.0271). HS3 was associated 

with a low percentage of alterations in TP53 (19/112 vs 

81/237 in the rest, P = 0.0009), MUC16 (10/112 vs 

44/237 in the rest, P = 0.0201) and AXIN1 (2/112 vs 

26/237 in the rest, P = 0.0032), and a high percentage of 

alterations in CTNNB1 (35/112 vs 48/237 in the rest, P 

= 0.0243). HS4 was associated with a low percentage of 

alterations in CTNNB1 (5/54 vs 77/295 in the rest, P = 

0.0174). Detailed results of the above statistical 

analyses were shown in Supplementary Table 5. 

Subsequently, mutation signatures in subclasses were 

investigated. First, we explored the proportion of 6 

single-nucleotide substitutions (C>A/G>T, C>G/G>C, 

C>T/G>A, T>A/A>T, T>C/A>G, and T>G/A>C) in 

each HCC subclass (Supplementary Figure 5B). Then 

we computed sample-wise signature profiles, and 

filtered out mutation signatures with no prognostic 

significance (P > 0.15 in Cox regression). 4 mutation 

 

 
 

Figure 4. Difference of progression-relevant signatures among HCC subclasses. (A) Heatmap of progression-relevant signatures in 4 
HCC subclasses. (B) Box plots (from 25th percentile to the 75th percentile with a line at the median) show the abundance of progression-
associated signatures. Statistical significance of overall differences was determined by Kruskal Wallis test (ns represents no significance,  
* represents P < 0.05, ** represent P < 0.01, *** represent P < 0.001, **** represent P < 0.0001).  


