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INTRODUCTION 
 

Liver hepatocellular carcinoma (LIHC) is the sixth most 

prevalent cancer and third leading cause of cancer-

related deaths worldwide [1]. It can be managed by 

surgical treatment and chemotherapy, but the mortality 

rate remains high [2]. For patients with advanced LIHC, 

chemotherapy fails to demonstrate a survival benefit [3, 

4]. By contrast, therapeutic regimens that counteract the 

immunosuppressive mechanisms have the potential to 

dramatically alter the clinical outcomes of LIHC, which 

lead us to further explore the relationship of the 

abnormal immune gene expression with LIHC 

development and prognosis [5]. Cancer immunotherapy 

is a primary driver of personalized medicine, which 

makes aggressive efforts to leverage the immune system 

against tumors and is thus promising for treating human 

diseases [6, 7]. As an inflammation-associated tumor, 

the immunosuppressive microenvironment of LIHC is 

well evidenced to promote immune tolerance and 

evasion through various mechanisms, rendering LIHC 

an attractive candidate for immunotherapy [8]. 

Recently, immune checkpoint inhibitors (ICIs), 

including ipilimumab (the CTLA4 inhibitor) and 

nivolumab (the PD-1 inhibitor), have demonstrated 

great survival benefits for LIHC [9, 10]. According to a 

phase I/II study on nivolumab among patients with 

advanced LIHC, a 19% response rate (including a 5% 

complete response rate) is achieved, which is expected 

to be further increased by the combined therapies with 

different ICIs or the combined treatment of small 

molecules with ICIs [10]. However, it remains largely 

unknown about the molecular features of immune 

checkpoints and their correlations with 

clinicopathological parameters and LIHC tumor 

microenvironment (TME). Moreover, the molecular 

www.aging-us.com AGING 2020, Vol. 12, No. 6 

Research Paper 

Development of an immune-related prognostic index associated with 
hepatocellular carcinoma 
 

Bo Hu1, Xiao-Bo Yang1, Xin-Ting Sang1 
 
1Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and 
Peking Union Medical College, Beijing 100010, China 
 

Correspondence to: Xin-Ting Sang; email: sangxt@pumch.cn  
Keywords: hepatocellular carcinoma, oncogenes, immune system, prognosis, precision medicine 
Received: December 13, 2019 Accepted: March 2, 2020  Published: March 19, 2020 
 

Copyright: Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 
Liver hepatocellular carcinoma (LIHC), an inflammation-associated cancer induced by a variety of etiological 
factors, is still one of the most prevalent and lethal cancers in human population. In this study, the 
expression profiles of immune‐related genes (IRGs) were integrated with the overall survival (OS) of 378 
LIHC patients based on the Cancer Genome Atlas (TCGA) dataset. Moreover, the differentially expressed and 
survival related IRGs among LIHC patients were predicted through the computational difference algorithm 
and COX regression analysis. As a result, 7 genes, including HSPA4, S100A10, FABP6, CACYBP, HDAC1, 
FCGR2B and SHC1, were retrieved to construct a predictive model associated with the overall survival (OS) 
of LIHC patients. Typically, the as-constructed model performed moderately in predicting prognosis, which 
was also correlated with tumor grade. Functional enrichment analysis revealed that the genes of high-risk 
group were actively involved in mRNA binding and the spliceosome pathway. Intriguingly, the prognostic 
index established based on IRGs reflected infiltration by multiple types of immunocytes. Our findings screen 
several IRGs with clinical significance, reveal the drivers of immune repertoire, and illustrate the importance 
of a personalized, IRG‐based immune signature in LIHC recognition, surveillance, and prognosis prediction. 
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mechanisms of immunology in LIHC, especially for the 

immunogenomic effects, are still unclear so far. With 

the establishment and completion of the large-scale 

gene expression datasets, cancer researchers are able to 

identify the responsible biomarkers for tumor 

monitoring and surveillance in a rapid and accurate way 

[11–13]. For instance, Yang et al. proposed an immune-

related classifier for the prognosis of cutaneous 

melanoma, which was derived from immune-related 

genes (IRGs) and demonstrated a powerful predictive 

ability [14]. Nevertheless, the clinical relevance and 

prognostic significance of IRGs in LIHC have to be 

explored.  

 

This study aimed to gain insight into the potential 

clinical utility of IRGs in prognosis stratification, as 

well as their implicational potential as biomarkers for 

targeted LIHC therapy. We are committed to construct a 

robust immune-related signature to improve prognostic 

prediction of LIHC via comprehensive genomic data 

analysis. Results obtained in this study can provide 

certain foundation for subsequent in-depth immune-

related studies, which show great promise for treating 

LIHC with personalized medicine. 

RESULTS 
 

Identification of the differentially expressed IRGs  

 

A total of 7667 differentially expressed genes (DEGs) 

were identified using the edgeR algorithm, including 

7273 up-regulated and 394 down-regulated ones (Figure 

1A and 1B). Then, altogether 329 differentially 

expressed IRGs were extracted from these 7667 DEGs, 

including 267 up-regulated and 62 down-regulated ones 

(Figure 1C and 1D). 

 

Identification of the survival-related IRGs and 

construction of TF regulatory network  
 

After screening, 61 IRGs were identified to show 

remarkable correlation with OS for TCGA-LIHC 

patients (P<0.01) (Supplementary Table 1). To explore 

the potential molecular mechanisms corresponding to 

the clinical significance of our survival-related IRGs, 

the regulatory mechanisms of these genes were also 

investigated. Specifically, the expression patterns of 318 

TFs were examined, which suggested that 116 of them 

were differentially expressed between TCGA-LIHC 

 

 
 

Figure 1. Differentially expressed immune-related genes and transcription factors (TFs). Heatmap (A) and volcano plot (C) 
demonstrating differentially expressed genes between hepatocellular carcinoma (LIHC) and non-tumor tissues. Differentially expressed 
immune-related genes (IRGs) are shown in heatmap (B) and volcano plot (D), red and green dots represent differentially expressed genes. 
Heatmap (E) and volcano plot (F) illustrating differentially TFs between LIHC and non-tumor tissues, red dots represent differentially up-
regulated TFs. Red dots represent differentially up-regulated expressed genes, green dots represent differentially down-regulated expressed 
genes and black dots represent no differentially expressed genes. N, normal tissue. T, tumor. 
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and non-tumor hepatic samples (Figure 1E and 1F). 

Afterwards, the associations of these differentially 

expressed TFs with the prognostic immune genes were 

also analyzed. Finally, 64 factors were screened to 

construct the regulatory networks with 58 survival-

related immune genes, as selected at the correlation 

score of > 0.4 and the P-value of <0.001. Notably, the 

TF-based regulatory schematic acutely illustrated the 

regulatory relationships among these IRGs (Figure 2). 

Development and validation of the immune-related 

prognostic signature in TCGA  

 

The prognostic signature was established based on the 

LASSO-penalized Cox regression analysis results 

(Figure 3A and 3B), so as to stratify TCGA-LIHC 

patients as two groups, namely, the low-risk group and 

the high-risk group, with discrete clinical outcomes with 

regard to OS. To be specific, the following formula was 

 

 
 

Figure 2. Transcription factors (TFs)- mediated regulatory network. Regulatory network constructed based on survival relevant TFs 
and IRGs. The red circle represents high-risk genes, the blue circle represents low-risk genes. The green triangle represents transcription 
factors, and the thickness and brightness of lines between nodes represent the level of relevance (low Cor values to small sizes and dark 
colors). 
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adopted for calculation: [Expression level of HSPA4* 

(0.0361)] + [Expression level of S100A10* (-0.0043)] + 

[Expression level of CACYBP* (0.0416)] + 

[Expression level of FABP6 * (0.0797)] + [Expression 

level of HDAC1* (0.0247)] + [Expression level of 

FCGR2B* (0.1551) + [Expression level of SHC1* 

(0.0091)] (Table 1). Figure 3C shows the comparisons 

of survival differences between the two groups in 

training set (P < 0.001). Moreover, such findings were 

further verified in the testing set and the entire set (P < 

0.01) (Figure 3D and 3E). Additionally, the AUC for 1-

year OS were 0.821, 0.833 and 0.828 in the training set, 

the testing set and the entire set, separately, which 

indicated moderate potentials for the metabolic gene 

signature to monitor survival (Figure 3F–3H). Our 

model achieved the greatest AUC value compared with 

those of other clinicopathological characteristics, which 

also reflected its excellent predicting ability. In the 

entire set, the low-risk group showed markedly superior 

prognosis to the high-risk group among all (≤65/>65; 

Figure 4A and 4B), sex (female/male; Figure 4C and 

4D), stage (I+II/III+IV; Figure 4E and 4F), grade 

(G1+G2/G3+G4; Figure 4G and 4H) and T stage 

(T1+T2/T3+T4; Figure 4I and 4J) subgroups. Similar 

results were also observed in patients without distant 

metastasis (Figure 4K) and lymph node metastasis 

(Figure 4L). Additionally, the multivariate analysis 

revealed that the as-constructed immune gene signature 

could become an independent predictor after other 

clinicopathological parameters were adjusted (Figure 5). 

Figure 6 depicts the risk score distribution (A, D, G), 

survival status (B, E, H) and expression of the 

metabolic gene signature (C, F, I) in the training set (A–

C), the testing set (D–F) and the entire set (G–I). 

Clearly, their distributions were similar, thus supporting 

the robust predictive capacity of our immune related 

gene-based risk score assessment model. Owing to the 

significant clinical value of the signature genes, we 

embarked on a comprehensive investigation of their 

molecular characteristics. Genetic alternations of these 

genes in LIHC (TCGA-PanCancer Altas) were explored 

via cBioPortal, and amplification was found to be the 

most commonly occurring type of mutation 

(Supplementary Figure 1). Besides, there were 4 genes 

(SHC1, FCGR2B, S100A10 and CACYBP) with a 

mutation rate ≥ 5%. 

 

 
 

Figure 3. LASSO coefficient profiles of the 7 immune genes are depicted in (A, B) show the selection of the tuning parameter (lambda) in the 
LASSO model by tenfold cross-validation based on minimum criteria for OS; the lower X axis shows log (lambda), and the upper X axis shows 
the average number of OS-genes. The Y axis indicates partial likelihood deviance error. Red dots represent average partial likelihood 
deviances for every model with a given lambda, and vertical bars indicate the upper and lower values of the partial likelihood deviance 
errors. The vertical black dotted lines define the optimal values of lambda, which provides the best fit. Survival curves of patients in high risk 
group and low risk group of the training set (C), the testing set (D) and the entire set (E) are shown. Patients in high-risk group suffered 
shorter overall survival. (F–H) show survival-dependent receiver operating characteristic (ROC) curves validation at 1 – year of prognostic 
value of the prognostic index in the three sets (the training set, the testing set and the entire set, respectively). 
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Table 1. Seven immune-related signature genes identified from Cox regression analysis from TCGA. 

id coef HR HR.95L HR.95H P-value 

HSPA4 0.03606573 1.03672399 1.00620270 1.06817108 0.01800376 

S100A10 0.00428466 1.00429385 1.00126694 1.00732992 0.00540109 

FABP6 0.07972664 1.08299099 1.01358048 1.15715476 0.01831907 

CACYBP 0.04157927 1.04245579 0.99974327 1.08699314 0.05142275 

HDAC1 0.02472582 1.02503404 1.00243637 1.04814112 0.02971183 

FCGR2B 0.15512764 1.16780702 1.07395448 1.26986129 0.00028443 

SHC1 0.00914823 1.00919021 1.00025144 1.01820885 0.04386807 

Coef, coefficient; HR, hazard ratio; L, low; H, high. 
 

PCA proved the model grouping capacity 
 

PCA was further conducted to examine the difference 

between low- and high-risk groups based on the 

immune-related signature (Figure 7A), immune genes 

(Figure 7B), differently expressed genes (Figure 7C) 

and the entire gene expression profiles (Figure 7D). The 

results obtained based on our model showed that low- 

and high-risk groups were generally distributed at 

different directions. Nonetheless, the distributions of 

high- and low-risk groups displayed in Figure 7B–7D 

were relatively scattered, which confirmed that our 

prognosis signature was capable of distinguishing the 

high-risk group from the low-risk group. 

 

 
 

Figure 4. The overall survival differences between the high-risk group and the low-risk group were shown under the conditions of classifying 
patients by age (A, B), sex (C, D), stage (E, F), grade (G, H) and T stage (I, J). Patients without distant metastasis (K) and lymph node metastasis 
(L) are also displayed. Detailed notes are described in the main text. 
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Correlation of the prognostic model with 

clinicopathological characteristics  

 

Two hundred and twenty-one patients with complete 

information including gender, age, tumor grade, clinical 

stage, T stage, lymph node metastasis and distant 

metastasis were included in TCGA-LIHC cohort. 

Among the signature genes we researched, HSPA4, 

FABP6, S100A10, CACYBP, SHC1 and HDAC1 were 

associated with a higher tumor grade (Figure 8A–8F), 

CACYBP was linked with a higher clinical stage as well 

as T stage (Figure 8G and 8H). Additionally, the

 

 
 

Figure 5. Univariate (A–C) and multiple (D–F) regression analysis of hepatocellular carcinoma and the relationships between the age, gender, 
grade, stage, T stage, distant metastasis, lymph node metastasis and riskScore in the training set (A and D), the testing set (B and E) and the 
entire set (C and F). Green dot means hazard ratio (HR) median value is less than 1, red dot means HR median value is greater than 1. 
 

 
 

Figure 6. Distribution of risk score, overall survival (OS), gene expression in (A–C) training set, (D–F) testing set and (G–I) entire set. 
Distribution of risk score, OS and heat map of the expression of 7 signature genes in low-risk and high-risk groups are listed in the picture 
from top to bottom.  
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Figure 7. Principal components analysis between low- and high-risk groups based on (A) immune-related signature, (B) immune-related 
genes, (C) differently expressed genes and (D) the entire gene expression profiles.  
 

 
 

Figure 8. Correlation of the prognostic immune-relate signature with clinicopathological characteristics. HSPA4, FABP6, 
S100A10, CACYBP, SHC1 and HDAC1 were associated with a higher tumor grade (A–F), CACYBP was linked with a higher clinical stage (G) as 
well as T stage (H). The expression level of HDAC1 was significantly enhanced in female patients (I) and patients younger than 65 years old (J). 
Risk score derived from our model was significantly associated with higher tumor grade (K). 
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expression level of HDAC1 was significantly enhanced 

in female patients and patients younger than 65 years 

old (Figure 8I and 8J). Afterwards, risk score derived 

from our model was significantly associated with higher 

tumor grade (Figure 8K). 

 

Functional enrichment analysis revealed different 

states between high- and low-risk groups 
 

GSEA was performed to further investigate the 

differences between the high- and low-risk groups. The 

results revealed that the GO molecular function “mRNA 

binding” (Figure 9A), biological process “Regulation of 

cell cycle phase transition” (Figure 9B) and “Nuclear 

transport” (Figure 9C) were differentially enriched in 

high-risk phenotype (P< 0.01), while biological process 

“Organic acid catabolic process” (Figure 9D), 

molecular function “Steroid hydroxylase activity” 

(Figure 9E) and biological process “Cellular amino acid 

catabolic process” (Figure 9F) were closely correlated 

with the low risk phenotype (P< 0.01). In addition, 

KEGG pathway analysis suggested that the genes in 

high-risk group were mainly enriched in the 

“Spliceosome” (Supplementary Figure 2A), “RNA 

degradation” (Supplementary Figure 2B) and “Oocyte 

meiosis” (Supplementary Figure 2C) (P< 0.01); in

 

 
 

Figure 9. Enrichment plots of Gene Ontology annotation from gene set enrichment analysis (GSEA). GSEA results showing (A) mRNA binding, 
(B) Regulation of cell cycle phase transition, (C) Nuclear transport were differentially enriched in high risk phenotype, while (D) Organic acid 
catabolic process, (E) Steroid hydroxylase activity (F) Cellular amino acid catabolic process were closely correlated with the low risk 
phenotype. (G) Summarizes the above six gene sets. 
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addition, the “Complement and coagulation cascades” 

(Supplementary Figure 2D), “Glycine serine and 

threonine metabolism” (Supplementary Figure 2E) and 

“Primary bile acid biosynthesis” (Supplementary Figure 

2F) were primarily enriched in low risk group (P< 

0.01). Moreover, the immune status between the low- 

and high- risk group was also examined via GSEA, and 

the results suggested that the differentially expressed 

genes between these two groups were enriched in the 

immunological signature gene sets (c7. All. V7.0. 

symbol). According to the normalized enrichment score 

(NES), the top six immune related gene sets are shown 

in Table 2. Furthermore, the relationship of the 

prognostic signature with immune cell infiltration in 

TCGA-LIHC patients was investigated to examine 

whether the risk score partially reflected the tumor 

immune microenvironment status (Figure 10). Our 

results suggested that, for high risk patients in the entire 

set, the levels of macrophages (Cor=0.468; 

p=7.594e−14), neutrophils (Cor=0.479; p=1.475e-14) 

and DCs (Cor=0.358; p=2.447e−08), significantly 

increased in tumor microenvironment (TME) (Figure 

10A–10C). Besides, CD8+ T cells (Cor=0.214; p=0.001) 

(Figure 10D) and B cells (Cor=0.178; p=0.007)  

(Figure 10E) were also showed association with  

high-risk group. 

 

DISCUSSION 
 

Studies on the revealing of new biomarkers for 

diagnosis and treatment of LIHC is in full swing [15, 

16], and the relationship between immunity and LIHC 

has always been a research hotspot. Recently, Moeini et 

al. identified an immune-related gene expression pattern 

in liver tissues of patients with early-stage LIHC, which 

is associated with risk of LIHC progression in patients 

with cirrhosis [17]. The researchers also revealed that 

administration of nintedanib or aspirin and clopidogrel 

to mice with chronic liver inflammation caused loss of 

the above-mentioned gene expression pattern and 

development of fewer and smaller liver tumors, which 

further demonstrated the utility and usability of the 

immune signature. Although the significance of IRGs in 

LIHC progression and immunotherapy has been 

explored, there is still an urgent need for comprehensive 

genome-wide profiling studies to explore their clinical 

significance and underlying molecular mechanisms. The 

current study investigated the value of IRGs in LIHC in 

a holistic and comprehensive way, and our results 

further revealed their clinical significance and potential 

molecular characteristics. As suggested by our results, 

the identified IRGs were tightly involved in LIHC 

initiation and progression, which might also predict the 

prognosis for LIHC patients. As a result, these genes 

might give scope to their potentials as the valuable 

clinical biomarkers. Also, a regulatory network was 

constructed in this study, which added several novel 

TFs and shed more light on the interactions between 

factors. Furthermore, an individualized immune 

prognostic model was proposed based on the selected 

differentially expressed IRGs, so as to measure 

immunocyte infiltration and to assess the potential 

clinical outcomes.  

 

As an inflammation-associated tumor, the 

immune microenvironment of LIHC is well evidenced 

to shape tumor progression, invasion and metastasis 

through establishing a symbiotic relationship with 

cancer cells [8]. Researchers have gained an insight into 

the tumor-linked infiltrated inflammatory environments, 

nonetheless, numerous aspects of LIHC immune-

associated molecular mechanisms remain unclear, and 

the biomarkers for predicting the treatment response are 

still lacking. A body of studies have uncovered the 

DEGs between LIHC and non-tumor samples [18–20], 

which contributes to the fundamental understanding 

towards the pathogenesis of LIHC at genetic level. For 

example, Carone et al. detected the expression levels of 

579 immune response-related genes in 30 frozen LIHC 

liver tissue samples and 33 normal tissues, and 

demonstrated that the longer time to LIHC recurrence 

(TTR) was associated with up-regulation of immune 

response- and inflammation-related genes in tumor 

tissues, whereas down-regulation of these genes in 

normal tissues [21]. In our study, the immunocyte 

abundances that served as a means to characterize the 

immune microenvironment of LIHC, was used in 

combination with the immuno-genomic profiles and the 

corresponding clinical significance, which helped to 

explore the immune landscape from a novel perspective. 

 

The acquisition of the invasive traits in cancer cells 

depends on a succession of genomic alterations. 

Therefore, the current investigation was started from the 

differences in the expression profiles of immune genes 

between LIHC and adjacent normal liver tissues, so as 

to uncover the relationships between these profiles and 

the immune microenvironment, and to illustrate the 

potential clinical implications. After identifying the 

prognosis-related immune genes, the TF-mediated 

network was constructed, for the sake of exposing the 

vital TFs that regulated the identified IRGs and 

revealing the underlying molecular mechanisms. 

Among them, chromobox protein homolog 3 (CBX3), 

which has the highest number of nodes related to 

survival-related immune genes, has been illustrated to 

promote tumor proliferation and predict poor survival in 

LIHC [22]. Besides, host cell factor C1 (HCFC1), a 

chromatin-associated transcriptional regulator that may 

also play an overall regulatory role in survival related 

immune genes, exerts its function in the cell division 

cycle during cell culture, embryogenesis as well as adult 
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Table 2. Immune-related gene sets that associated with high-risk group. 

NAME ES NES NOM p-val FDR q-val 

HEALTHY VS HIV AND SIV INFECTED DC UP 0.6998564 2.2639873 0 0 

CTRL VS TIV FLU VACCINE PBMC 2008 DN 0.6825686 2.2599075 0 0 

NAÏVE VS GC B CELL DN 0.6806816 2.2485397 0 0 

CTRL VS POLYIC STIM DC 3H UP 0.6934012 2.2360585 0 0 

NAÏVE CD4 TCELL VS DAY5 IL4 CONV TREG DN 0.713608 2.2357495 0 0 

ES, enrichment score; NES, normalized enrichment score; NOM, nominal; FDR, false discovery rate. 
 

tissue [23, 24]. In addition, HCFC1 is also proven to 

play a significant role in liver regeneration and show 

moderate co-expression with ARIDIA. ARIDIA 

encodes the BAF250a subunit of the SWI/SNF 

complex, and it plays an opposite and complex 

regulatory role at various stages of LIHC initiation and 

development [25]. Motallebipour et al. demonstrated 

that HCFC1 possessed the binding sites with the sterol 

response element-binding protein-1 (SREBP-1), which 

might be involved in the lipid metabolic reprogramming 

in LIHC [26]. Noteworthily, both the SWI/SNF 

chromatin remodeling complex and the aberrant lipid 

metabolism are demonstrated to be associated with the 

immune microenvironment of LIHC, implying a 

potential genetic link among these three. Previous 

studies have also shown that, the HCFC1 expression 

level in mutant β-catenin LIHC is lower than that in 

non-mutant β-catenin LIHC [27]. Additionally, 

LMNB1, another TF revealed by our regulatory 

network, is shown to be markedly up-regulated in 

LIHC, which is distributed in patient plasma [28]. On 

the other hand, LMNB1 functions in the nuclear 

envelope lamina, possesses the transcriptional 

coregulatory activity, and has an important role in DNA 

replication, cell aging, and stress responses. Besides, it 

is positively correlated with tumor stage, tumor size,

 

 
 

Figure 10. Relationships between the immune-related prognostic index and infiltration abundances of six types of immune 
cells. The correlation was performed by using Pearson correlation analysis. (A) macrophages; (B) neutrophils; (C) dendritic cells; (D) CD8+T 
cells; (E) B cells; and (F) CD4+T cells.  
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and number of nodules, therefore rendering itself a 

biomarker for early LIHC in tumor tissues and plasma 

[29]. In addition, SMARCA4 may enhance the growth 

and invasion of LIHC cells [30], while NRF1 is 

involved in stimulating the mitochondrial DNA 

(mtDNA) replication and transcription within LIHC 

[31], all of which are revealed in the network. Taken 

together, our results demonstrate a relatively 

comprehensive immune gene regulatory network 

associated with LIHC, yet further in-depth studies are 

warranted to examine the interactions between immune 

genes and the effects on liver cancer cells. 

 

In this study, an immune-based prognostic signature 

was established to develop a simple and convenient 

protocol for observing the immune status and predicting 

the clinical outcomes for LIHC patients. This prognostic 

signature was based on 7 differentially expressed 

survival related IRGs in LIHC, which had favorable 

clinical viability. For the training set, LIHC patients in 

low-risk group had longer OS than those in high-risk 

group (P=3.309e−05), and similar results were also 

obtained in the testing set (P=4.231e−03) and the entire 

set (P=8.618e−07). Furthermore, our data showed that 

the prognosis signature performed moderately in 

prognosis prediction. In terms of the clinical utility, 

there was a significant correlation between the 

prognostic signature and tumor grade (P=0.017), which 

meant that the risk score calculated by the model we 

built was significantly higher in advanced grade cases. 

Besides, the as-constructed prognosis model also 

displayed the potentials to predict the differential 

prognosis between high- and low-risk groups, when 

patients were stratified by age (≤65/>65), clinical stage 

(I and II/III and IV), grade (G1 and G2/G3 and G4) and 

T stage (T1 and T2/T3 and T4). It implies that under 

diverse clinicopathological conditions, our signature is 

efficacious for predicting the prognosis of patients. 

Further PCA confirmed that our prognosis signature had 

sound grouping capacity. Additionally, the as-

constructed signature was compared with the other two 

prognostic immune signatures previously published by 

Chew et al. to the TCGA dataset, and both of them had 

reached a lower significance level, with the P-values of 

0.0092 and 0.0067, respectively [32, 33]. The model 

structured in this study exerted its own strengths in 

initially determining the patient prognosis and rapidly 

adjusting the treatment plans based on the expression of 

immune genes and the immunocyte infiltration levels.  

 

Moreover, the GO item “mRNA binding” and the 

KEGG pathway “Spliceosome” were proved to be most 

significantly associated with the high-risk group. Some 

molecules involved in mRNA binding, such as insulin-

like growth factor II mRNA-binding protein 3 (IMP3), 

has been demonstrated to promote tumor invasion and 

predicts early recurrence and poor prognosis in LIHC 

[34]. With regard to the latter, previous literature 

elaborated that genes in spliceosome pathway, which 

were shown to be upregulated in tumor tissue compared 

with normal liver tissue, played a role in progression of 

LIHC [35, 36]. The two aspects mentioned above might 

have a bearing on the poor prognosis of high-risk group. 

GSEA also revealed different immune states in high-risk 

group compared with low-risk group. Moreover, the 

relationships between the immune-related prognostic 

index and immunocyte infiltration were deliberated to 

reflect the immune microenvironment status of LIHC. 

Of interest, our analysis indicated that the signature 

showed positive correlation with the infiltration of 5 

kinds of immune cells, especially macrophages, 

neutrophils and DCs, indicating that the higher 

infiltration levels of these cells might be observed in the 

high-risk patients. Consistently, recent studies have 

expounded that the high densities of tumor-infiltrating 

macrophages and neutrophils predict the poor prognosis 

for primary LIHC patients. Intramural neutrophil 

infiltration is elaborated to be promoted by the CXCL5 

and CXCR2-CXCL1 axis; besides, it is remarkably 

related to the shorter OS and LIHC recurrence, and is 

also taken as an independent prognostic factor [37, 38]. 

Therefore, patients with high risk scores that derived 

from our signature may be candidates for neutrophil 

targeted therapies. He et al. also illustrated that the co-

inhibitory molecule programmed cell death ligand 1 

(PD-L1) was observed to be overexpressed on 

infiltrating neutrophils from patients with LIHC, and 

further pointed out that the PD-L1+ neutrophils from 

patients with LIHC effectively suppressed the 

proliferation and activation of T cells, which could be 

partially reversed by the blockade of PD-L1 [39]. Thus, 

we speculated that the high-risk patients in our research 

may benefit from anti-PD-L1 antibodies. Furthermore, 

the increased infiltration of tumor-associated 

macrophages (TAM) (dominated by the M2 

macrophages), which may be due to the deletion of the 

Hippo signaling, has been reported to produce the Wnt/β-

catenin signaling and trigger the elevated intramural 

FoxP3+ Treg population, while this in turn accelerates 

LIHC progression [40–42]. Moreover, Li et al. have 

elaborated that therapeutic blocking of the CCL2/CCR2 

axis inhibits the recruitment of inflammatory monocytes, 

infiltration and M2-polarisation of TAMs, resulting in 

reversal of the immunosuppression status of the LIHC 

microenvironment and activation of an anti-tumorous 

CD8+ T cell response [43], which may be applicable to 

high-risk patients in our study. In line with this, Chen et 

al. demonstrated that upregulation of B7-H1 expression is 

associated with macrophage in LIHC, and anti-

inflammatory therapies targeting on TAM or signaling 

pathways like NF-kB and STAT3 may downregulate the 

B7-H1 expression on malignant cells and enhance the 
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efficacy of immunotherapy based on tumor-specific 

CD8+ T cells [44]. In addition, accumulating evidence 

reveals a role of DCs as an adverse prognostic factor for 

LIHC. For instance, Zhou et al. set forth that, the intra-

tumoral infiltration by plasmacytoid DCs was a novel 

indicator of the poor prognosis for LIHC patients, which 

might be achieved through inducing the immune 

tolerogenic and inflammatory TME comprising 

regulatory T and IL-17-producing cells [45]. Such results 

have underscored the importance of tumor-associated DC 

cells in predicting the prognosis for LIHC patients. Our 

results confirmed that immunocytes were essential for 

LIHC progression, and suggested that the signature we 

constructed might potentially serve as the predictor for 

elevated immunocyte infiltration, which coincided with 

previous reports. Additionally, the immune related 

signature may potentially provide an instruction for 

treatment of LIHC. Nevertheless, the immune 

microenvironment of LIHC is intricate, and the role of 

immunocytes in LIHC has not been fully illustrated yet, 

which requires more efforts.  

 

Nonetheless, some limitations should be noted in this 

study, which should be taken into consideration when 

interpreting our results. Firstly, it remained unclear about 

whether pretreatment in LIHC patients, like hepatic 

resection or transarterial chemoembolization, affected the 

immune contexture composition, due to the insufficient 

detailed clinical information. Secondly, transcriptomic 

analysis only reflected some aspects of the immune 

status, rather than the global alterations. Thirdly, the 

immunocyte-specific gene sets applied in this study were 

limited to 6 major immunocyte types, so the differences 

in more specialized immunocyte subtypes (like the 

differently polarized macrophages or myeloid-derived 

suppressor cells) might not be recognized in this study, 

while they were known to be mechanistically linked to 

LIHC progression and stage [46, 47]. Finally, our results 

were not validated via another independent cohort, which 

was also a limitation of this study, and the reliability of 

our molecular results was still challenged by the lack of 

experiments in vitro or in vivo.  

 

CONCLUSIONS 
 

To sum up, this study projects the relevance of immune 

microenvironment for LIHC outcomes and proposes a 

concise signature for the relationship between immune 

status and LIHC patient prognosis. The prognostic 

signature established in this study may be of great 

clinical significance, and this study can provide new 

insights in developing new immunotherapies for LIHC. 

The bioinformatic approach exposed in this study also 

embodies a straightforward methodology to construct 

other human malignancies, which will make a crucial 

difference to guide future clinical studies. 

MATERIALS AND METHODS 
 

Clinical samples and data acquisition  

 

The transcriptomic RNA-sequencing data of LIHC 

samples were downloaded from the TCGA data  

portal (https://cancergenome.nih.gov/). Meanwhile, the 

clinical data of these patients were also downloaded and 

extracted. Furthermore, the missing follow-up 

information was filtered out, and 329 unique LIHC 

samples, which were randomized as the training group 

(n=165) and the testing group (n=164) using the R 

package “caret” [48], were incorporated into subsequent 

analysis. Of them, the training set was adopted to 

establish a prognostic immune gene signature, whereas 

the testing set and the entire set were employed to 

validate the predictive power of the as-established 

signature. 

 

A list of IRGs was obtained from the Immunology 

Database and the Analysis Portal (ImmPort) database 

[49]. Typically, ImmPort is a database that accurately 

and timely updates the immunology data, and data 

shared through ImmPort lay down a powerful 

foundation for immunologic research. More 

importantly, this database provides a list of IRGs for 

cancer research, and these genes are identified to 

actively participate in the process of immune activity.  

 

Analysis of differentially expressed genes (DEGs)  
 

To select IRGs that were associated with LIHC, the 

differentially expressed IRGs between LIHC and adjacent 

non-tumor samples were screened using the limma 

package of R software (http://bioconductor.org 

/packages/limma/). Afterwards, differential gene analysis 

was conducted among all transcriptional data, with the 

false discovery rate (FDR) of < 0.05 and the log2 |fold 

change| of > 1 as the cutoff values. Then, the differentially 

expressed IRGs were extracted from all DEGs. 

Subsequently, the Gene Ontology (GO) annotation and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway functional enrichment analysis were carried out 

to probe into the potential molecular mechanisms of the 

differentially expressed IRGs.  

 

TFs extraction and regulatory network construction 
 

Clinical data downloaded from the TCGA data portal 

were collected to extract the overall survival time. Later, 

the survival related IRGs were selected upon univariate 

COX analysis carried out using the survival package of 

R software. To explore the interactions between these 

genes, a regulatory network was constructed. TFs are the 

important molecules that directly control the gene 

expression level. The Cistrome Cancer is a data source 

https://cancergenome.nih.gov/
http://bioconductor.org/packages/limma/
http://bioconductor.org/packages/limma/
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that integrates the cancer genomic data from TCGA with 

over twenty-three thousand ChIP-seq and chromatin 

accessibility profiles, which can provide the regulatory 

links between TFs and transcriptomes [50]. Generally, 

TFs are compared with differential genes of all 

transcriptional data, so as to identify the differentially 

expressed TFs and to draw the heatmap and volcano 

map. Besides, the differential TFs are also connected 

with the survival-related immune genes and the mapping 

regulatory network using the Cytoscape software version 

3.7.2 [51].  

 

Development and verification of the IRG-based 

prognostic signature  
 

Through univariate Cox regression analysis and least 

absolute shrinkage and selection operator (LASSO)- 

penalized Cox regression analysis [52], we develop the 

IRG-based prognostic signature. Notably, LASSO is the 

penalized regression, which employs an L1 penalty to 

shrink the regression coefficients toward zero, thereby 

eliminating numerous variables based on the principle 

that fewer predictors are selected in the presence of a 

larger penalty. Thereafter, an IRG-related prognostic 

signature was built to predict patient overall survival 

(OS). The R package “survival” and “survminer” was 

used to explore the optimal cut-off of risk score and 

drawn the Kaplan–Meier survival curve. The R package 

“survivalROC” [53] was used to investigate the time-

dependent prognostic value of the gene signature [54]. 

A two-sided log-rank P < 0.05 were considered 

significant for survival analysis. Afterwards, both 

univariate and multivariate Cox regression analyses 

were performed to ascertain whether the signature 

predicted prognosis independently from the 

conventional clinical factors (such as age, sex, grade, 

clinical stage and TNM stage). Besides, the correlation 

of the signature with the clinicopathological 

characteristics was also analyzed through the R package 

“ggpubr” [55]. Also, principal components analysis 

(PCA) was also conducted as the dimension-reducing 

procedure to identify a small set of synthetic variables, 

so as to explore the model grouping capacity. Notably, 

PCA is a statistical technique to determine the key 

variables in a multidimensional data set, which explains 

the observational differences and is utilized to simplify 

the analysis and visualization of the multidimensional 

data sets [56]. PCA was implemented through the 

limma [57] and scatterplot3d [58] packages. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA is a computational approach to determine whether 

a priori defined gene set shows statistically significant 

and concordant differences between two biological states 

[59]. To reveal potential underlying Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways of the gene 

signature, GESA was performed in this study using the 

JAVA program (https://www.broadinstitute.org/gsea), so 

as to identify enriched terms in TCGA-LIHC cohort. P < 

0.05 and a false discovery rate q < 0.25 were considered 

statistically significant. Following 1000 permutations, 

the top 3 pathways in terms of the normalized 

enrichment score (NES) in each group were employed in 

multiple GSEA, so as to demonstrate a whole picture of 

the signaling pathways involved in the metabolic 

signature in LIHC. 

 

Relationships of immune-related prognostic index 

with immune cell infiltration 
 

The TIMER online database, which is a web resource 

to systemically evaluate the clinical impact of various 

immune cells on diverse cancer types, analyzes and 

visualizes the abundances of tumor-infiltrating 

immune cells [60]. It covers 10,009 samples across 23 

cancer types from TCGA to estimate the abundance of 

six tumor-infiltrating immune cell subtypes, including 

B cells, CD4 T cells, CD8 T cells, macrophages, 

neutrophils, and dendritic cells (DCs). Therefore, it 

can be easily used to determine the relationship of 

immune cells infiltration with other parameters. In this 

study, the immune infiltrate levels of TCGA-LIHC 

patients were downloaded, and the associations of the 

prognostic signature with immune cells infiltration 

were calculated. 

 

Statistical analysis  
 

The R (v.3.6.1) software was employed for all statistical 

analyses. Pearson χ2 test or Fisher’s exact test were used 

to explore qualitative variables as appropriate. If not 

specified above, P < 0.05 was considered statistically 

significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 

 

 

 

 

Supplementary Figure 1. Genetic alternations of signature genes in TCGA-LIHC. SHC1 is the gene with highest mutation frequency. 
There are 4 genes with a mutation rate ≥5%. 
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Supplementary Figure 2. Enrichment plots of Kyoto Encyclopedia of Genes and Genomes analysis from gene set enrichment 
analysis (GSEA). GSEA results showing (A) Spliceosome, (B) RNA degradation, (C) Oocyte meiosis were differentially enriched in high risk 
group, while (D) Complement and coagulation cascades, (E) Glycine serine and threonine metabolism, (F) Primary bile acid biosynthesis were 
primarily enriched in low risk group. (G) Summarizes the above six gene sets. 
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Supplementary Table 
 

 

Supplementary Table 1. General characteristics of LIHC-specific survival-related immune genes. 

id HR HR.95L HR.95H P-value 

CACYBP 1.0917619 1.05795119 1.12665315 4.51E-08 

HDAC1 1.05022551 1.03097483 1.06983565 2.08E-07 

PSMD14 1.10778447 1.06262069 1.15486781 1.44E-06 

HSPA4 1.05964018 1.03404643 1.08586739 3.42E-06 

NRAS 1.08973904 1.05091756 1.12999461 3.43E-06 

ISG20L2 1.16874 1.09328287 1.24940509 4.67E-06 

TNFRSF11A 2.07200697 1.51253076 2.83843013 5.71E-06 

IFI30 3.17933487 1.90457983 5.30729671 9.68E-06 

S100A10 1.00566657 1.00308672 1.00825306 1.62E-05 

PPIA 1.01599581 1.00862786 1.02341759 1.93E-05 

FABP6 1.12300205 1.06476789 1.18442114 1.96E-05 

FABP5 1.07739142 1.04069686 1.11537981 2.48E-05 

SHC1 1.01663274 1.00869591 1.02463202 3.70E-05 

IL2RG 1.02199182 1.01147917 1.03261373 3.73E-05 

IKBKE 1.27102829 1.12666386 1.43389077 9.67E-05 

HGF 1.1241683 1.05920587 1.19311495 0.00011624 

PSMD10 1.0656461 1.0311687 1.10127627 0.00015121 

BIRC5 1.0404312 1.01860922 1.06272068 0.0002475 

CCL8 1.19891453 1.08519549 1.32455034 0.00035977 

GBP2 1.03201284 1.01428214 1.0500535 0.00036553 

PDGFRL 1.21816123 1.0896081 1.36188119 0.00052404 

IL17D 1.09463878 1.03846349 1.15385284 0.00076792 

SPP1 1.00060692 1.00024964 1.00096432 0.00086893 

BRD8 1.20845349 1.08066447 1.35135362 0.00089898 

TAP2 1.08531931 1.03409177 1.13908459 0.00090377 

TAP1 1.01069017 1.00430185 1.01711913 0.00101324 

S100A11 1.00167522 1.00067095 1.00268051 0.00107363 

PSME3 1.05152035 1.02029916 1.08369692 0.00108801 

DCK 1.18182999 1.06736158 1.30857448 0.0013083 

ZYX 1.01343573 1.0050076 1.02193455 0.00173453 

CCL20 1.00559114 1.00206949 1.00912517 0.00183976 

NDRG1 1.00647063 1.00237442 1.01058359 0.00193684 

SEMA5B 1.26004029 1.08844097 1.45869329 0.00197114 

EED 1.52350585 1.16595225 1.99070766 0.00203529 

PSMD2 1.02110969 1.00726704 1.03514258 0.00270242 

RFX5 1.07783148 1.0263163 1.13193243 0.00270413 

PLXNA2 1.33484634 1.10350362 1.61468864 0.00293744 

NFKBIE 1.04940072 1.01632056 1.08355761 0.0031719 
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CDK4 1.03302289 1.01084017 1.0556924 0.00335215 

LCNL1 2.06794791 1.26218984 3.38808668 0.00392231 

IL27RA 1.15188728 1.04616157 1.2682977 0.00399336 

FGF13 2.65086219 1.36077852 5.16400742 0.00416462 

PML 1.18079808 1.05286741 1.32427322 0.00450452 

PLXNA1 1.18084436 1.0519579 1.32552205 0.00481816 

FCGR2B 1.11560295 1.03356267 1.20415528 0.00500003 

IRF5 1.18229283 1.05148895 1.32936854 0.00512223 

PPARG 1.10740754 1.03047593 1.19008259 0.00548345 

FPR1 1.12723089 1.03554744 1.22703165 0.00565789 

CCL14 0.35186891 0.16776124 0.73802346 0.00571367 

S100A6 1.00164935 1.00047594 1.00282414 0.00585868 

KITLG 1.27115114 1.07133671 1.50823286 0.00596518 

HLA-DOB 1.06529841 1.01805969 1.11472904 0.00626831 

MAPK3 1.08276978 1.02220825 1.14691934 0.00677033 

IDO1 1.07592028 1.0200119 1.13489308 0.00719388 

CSPG5 1.67901922 1.14889605 2.45375164 0.00742866 

NR6A1 1.37807871 1.08943246 1.74320208 0.00748934 

WNT5A 1.19136252 1.04748929 1.35499683 0.00766411 

TRAF3 1.28965446 1.06884011 1.55608741 0.0079365 

PLAU 1.04381479 1.01096212 1.07773506 0.00858497 

MICB 1.15494195 1.03698719 1.28631376 0.00877407 

LPA 0.84675749 0.74669709 0.96022638 0.00952743 

 
 


