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INTRODUCTION 
 

Arteriosclerosis obliterans (ASO) is a major cause of 

death and disability, particularly in patients with 

diabetes mellitus (DM) [1, 2]. This is because the 

inflammation underlying atherosclerosis exacerbated by 

hyperglycemic states [3]. High-mobility group box 1 

(HMGB1), is a crucial inflammatory factor in athero-

sclerosis [4–6], and a danger signal for vascular disease 

[7]. Abundant HMGB1 within carotid and coronary 

atherosclerotic plaques [8] contributes to the abnormal 

proliferation and migration of vascular smooth muscle 

cells (VSMCs) [9, 10]. This makes HMGB1  

 

inhibition potentially effective theraputic approach to 

atherosclerosis. 

 

MicroRNAs affect gene expression, and their 

dysregulation increases inflammation and leads to 

atherosclerosis [11–13]. Studies have shown that many 

microRNAs, including miR- 504, -200, -138 and -210, 

regulate the proliferation and migration of VSMCs [3]. 

Furthermore, studies have determined that some 

microRNAs inhibit the expression of HMGB1 [14–16]. 

Thus inhibiting HMGB1 expression via microRNAs in 

VSMCs may be a therapeutic approach to reduce 

atherothrombotic events.  
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ABSTRACT 
 

We investigated the protective effects and mechanism of action of metformin on high glucose-induced smooth 
muscle cell proliferation and migration. Vascular smooth muscle cells (VSMCs) were subjected to a series of 
concentrations (0-10 mM) of metformin. CCK-8, wound healing, and transwell assays were performed. 
Correlations between metformin concentration and high-mobility group box 1 (HMGB1) and miR-142-3p levels 
were assessed. In addition, miR-142-3p mimic and siRNA were used to investigate VSMC migration in the 
presence or absence of metformin. In the high-glucose condition, metformin decreased cell growth and 
inhibited cell migration. HMGB1 gene expression correlated negatively with metformin concentration, whereas 
miR-142-3p expression correlated positively with metformin concentration. In addition, mimic-induced miR-
142-3p elevation resulted in decreased HMGB1 and LC3II levels and elevated p62 levels in the high-glucose 
condition, whereas miR-142-3p knockdown had the reverse effects, and metformin abolished those effects. 
Metformin inhibits high glucose–induced VSMC hyperproliferation and increased migration by inducing miR-
142-3p-mediated inhibition of HMGB1 expression via the HMGB1-autophagy related pathway. 
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Metformin, which is used to treat type 2 DM, may 

suppress diabetes-accelerated atherosclerosis [17, 18] via 

AMPK-mediated inhibition of VSMC proliferation and 

migration [19]. Metformin’s promotion of microRNA 

expression and anti-inflammatory effects also contribute 

to this process [19–21]. In prior studies, metformin was 

found to inhibit the expression and release of HMGB1 

[22, 23]. We therefore speculated that metformin may 

inhibit high glucose–induced VSMC proliferation and 

migration via microRNA–mediated inhibition of 

HMGB1 expression. To test that idea, VSMCs were 

isolated from the rat aorta and characterized by 

fluorescence microscopy and subjected to a high-glucose 

environment and a series metformin concentrations (0-10 

mM). Our findings suggest metformin inhibits glucose-

induced VSMC hyperproliferation and migration by 

inhibiting HMGB1 expression via the HMGB1-

autophagy related pathway 

 

RESULTS 
 

Metformin inhibited high glucose–induced VSMC 

hyperplasia in a dose-dependent manner 

 

To evaluate the effects of metformin on VSMCs in a 

high-glucose condition, we first isolated and 

characterized the VSMC and confirmed the presence  

of the VSMC marker α-SMA in these cells (Figure 1A). 

We then subjected the cells to a high-glucose 

environment and examined the cell proliferation. 

Finally, metformin was added, and the results showed 

that metformin at concentrations of 1, 5, and 10 mM 

significantly inhibited high glucose–induced VSMC 

hyperproliferation (Figure 1B).  

 

Metformin inhibited high glucose-induced VSMC 

migration via the HMGB1-autophagy related pathway 

 

To further evaluate the effects of metformin on high 

glucose–induced VSMC behavior, a two dimensional 

scratch assay and three dimensional transwell assay were 

performed. The results showed significant inhibition of 

high glucose–induced cell migration when metformin 

was added to the assays. Metformin also resulted in 

decreased cell migration under normal glucose condition 

(Figure 2A, 2B). In addition, we also evaluated the 

expression of HMGB1-autophagy related pathway 

molecules and found that metformin treatment resulted in 

inhibition of the elevated HMGB1 and LC3II levels and 

the decreased p62 level found in the high-glucose 

condition. Similarly, the addition of metformin resulted 

in decreased HMGB1 and LC3II levels and increased 

p62 level in the normal glucose condition (Figure 2C). 

These results indicate that metformin rectifies high 

glucose–induced VSMC migration enhancement via the 

HMGB1-autophagy related pathway. 

 

Metformin inhibited HMGB1 expression by 

increasing miR-142-3p expression in VSMC 

 

To further clarify the regulatory network involved in the 

effects of metformin on high glucose–induced VSMC

 

 
 

Figure 1. Metformin inhibited high glucose–induced vascular smooth muscle cell (VSMC) hyperplasia in a dose-dependent 
manner. (A) VSMC characterization by fluorescence microscopy. Expression of smooth muscle cell marker α-SMA was confirmed by red 

fluorescence. (B) CCK-8 evaluation of the effects of metformin on VSMC proliferation. Significant inhibition of high glucose–induced cell 
proliferation was found at metformin concentrations of 1, 5, and 10 mM. **p < 0.01 and ***p < 0.001 for between-group comparisons.  
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proliferation and migration, we performed gene 

expression analysis and correlation analysis between 

HMGB1, and miR-142-3p expression and metformin 

concentration. A negative correlation was found 

between HMGB1 gene level and metformin con-

centration (Figure 3A, 3B), and a positive correlation 

was found between miR-142-3p level and metformin 

concentration (Figure 3C, 3D).  

To confirm that HMGB1 is regulated by miR-142-3p, 

reporter assays were performed. Results showed that 

miR-142-3p mimics significantly reduced the 

expression of HMGB1 (Figure 3E). miR-142-3p was 

also shown to inhibit HMGB1 expression by directly 

binding to its 3′-UTR segment. To confirm the ability 

of miR-142-3p to suppress HMGB1 expression, 

VSMCs were transfected with miR-142-3p mimics 

 

 
 

Figure 2. Metformin inhibited high glucose–induced vascular smooth muscle cell (VSMC) migration via HMGB1-autophagy 
related pathway. (A) Metformin inhibited high glucose–induced VSMC migration in a two dimensional scratch assay. Significant inhibition 

of cell migration was found when metformin was added in the high-glucose condition; in addition, metformin resulted in decreased cell 
migration in the normal glucose condition. (B) Metformin inhibited high glucose–induced VSMC migration in a three dimensional transwell 
assay. Significant inhibition of cell migration was found when metformin was added in the high-glucose condition; in addition, metformin 
resulted in decreased cell migration in the normal glucose condition. (C) The HMGB1-autophagy related pathway was involved in the effects 
of metformin on high glucose–induced cell migration. Metformin resulted in decreased HMGB1 and LC3II levels and increased the p62 level 
in the high-glucose condition. In addition, metformin resulted in decreased HMGB1 and p62 levels and increased LC3II level in the normal 
glucose condition. *p < 0.05, **p < 0.01 and ***p < 0.001 for between-group comparison.  
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and inhibitor (Figure 3F). The group containing miR-

142-3p mimics displayed a robustly decreased 

HMGB1 protein level, whereas VSMCs in the group 

with miR-142-3p inhibitor demonstrated an increased 

HMGB1 protein level (Figure 3G, 3H). These results 

indicate that metformin decreases HMGB1 expression 

by promoting miR-142-3p in VSMCs. 

miR-142-3p overexpression by mimic and inhibition by 

siRNA result in inhibition and promotion, respectively 

of high glucose–induced VSMCs migration via the 

Akt/PI3K/autophagy related pathway 

 

To further verify the role of miR-142-3p in high 

glucose–induced VSMC migration, miR-142-3p 

 

 
 

Figure 3. Metformin exerts effects on HMGB1 via affecting miR-142-3p in vascular smooth muscle cells (VSMCs). (A) 

Decreased HMGB1 gene expression in a metformin dose-dependent manner by quantitative real-time PCR. (B) Correlation analysis revealed 
that negative correlation was found between metformin concentration and HMGB1 gene expression. (C) Increased miR-142-3p expression in 
a metformin dose-dependent manner by quantitative real-time PCR. (D) Correlation analysis revealed that positive correlation was found 
between metformin concentration and miR-142-3p gene expression. (E) Decreased HMGB1 level was found in HMGB1-WT-3’’UTR + miR-142-
3p transfected VSMCs compared to HMGB1-WT-3’'UTR + control vector transfected VSMCs, whereas HMGB1 level was similar between 
HMGB1-MUT-3’’UTR + miR-142-3p transfected VSMCs and HMGB1- MUT -3’’UTR + control vector transfected VSMCs. (F) miR-142-3p 
overexpression and inhibition by mimics and siRNA resulted in decreased and increased HMGB1 gene expression in VSMCs, respectively. (G) 
miR-142-3p overexpression and inhibition by mimics and siRNA resulted in decreased and increased HMGB1 protein expression in VSMCs, 
respectively. (H) Relative quantification of HMGB1 level. **p < 0.01 and ***p < 0.001 for between group comparison. 
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overexpression and inhibition were induced by mimic 

and siRNA transfection, respectively. We found that 

miR-142-3p overexpression by mimic and inhibition by 

siRNA resulted in inhibition and promotion, 

respectively, of high glucose–induced VSMC migration 

via the HMGB1-autophagy related pathway. However, 

metformin abolished the effects of miR-142-3p siRNA 

(Figure 4A, 4B). Further analysis revealed that miR-

142-3p overexpression by mimic resulted in inhibition 

of HMGB1 and LC3II levels and elevated p62 level in 

high glucose–induced VSMC migration enhancement. 

However, miR-142-3p siRNA generated the reverse 

effects, and metformin abolished the effects of miR-

142-3p siRNA (Figure 4C). These results confirm the 

effects of miR-142-3p on the migration behavior of 

VSMCs in the high-glucose condition.  

 

 
 

Figure 4. miR-142-3p overexpression by mimic and miR-142-3p inhibition by siRNA resulted in inhibition and promotion, 
respectively, of high glucose–induced vascular smooth muscle cell (VSMC) migration enhancement via the HMGB1-autophagy 
related pathway, whereas metformin abolished the effects of miR-142-3p siRNA. (A) Scratch assay for the effects of miR-142-3p 

overexpression and inhibition. (B) Transwell assay for the effects of miR-142-3p overexpression and inhibition. (C) miR-142-3p overexpression by 
mimic results in decreased HMGB1 and LC3II and elevated p62 level in high glucose–induced VSMC migration enhancement, whereas miR-142-
3p siRNA caused the opposite effects and metformin abolished the effects of miR-142-3p siRNA. (D) Schematic of the role of metformin in the 
regulation of VSMC proliferation and migration. *p < 0.05, **p < 0.01 and ***p < 0.001 for between-group comparison. 
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DISCUSSION 
 

Abnormal proliferation and migration of VSMC, which  

is enhanced by inflammation in hyperglycemic states, 

contribute to the formation of atherosclerotic lesions [24]. 

According to previous studies, metformin attenuates 

early-stage atherosclerosis in mildly hyperglycemic 

Oikawa-Nagao mice [17]. This may be due to the 

inhibition of the inflammatory response and vascular 

calcification in VSMC by metformin [24, 25]. Metformin 

also inhibits proliferation of tumor and endothelial cells 

[26, 27]. In our study, metformin decreased VSMC 

proliferation in the high-glucose condition. In addition, 

VSMC migration was also inhibited by metformin. 

Finally, increased miR-142-3p expression was shown to 

inhibit VSMC proliferation and migration via the 

HMGB1-autophagy related pathway (Figure 4D). 

 

HMGB1 is an inflammatory factor that increase VSMC 

proliferation and high glucose–induced calcification in 

VSMC and subsequent vascular inflammation and 

atherosclerosis [4, 28, 29]. In addition, HMGB1 has 

been identified as an autophagy sensor in oxidative 

stress [30], and autophagy may regulate the expression 

and release of HMGB1 [31]. However, increasing 

evidences indicates that HMGB1 is downregulated by 

metformin [23]. In our previous studies, we found that 

metformin induced autophagy by activating AMPK, 

resulting in decreased proliferation and migration of 

endothelial progenitor cells [32, 33]. In the present 

study, we also found that metformin inhibits the 

proliferation and migration of VSMC induced by 

elevated glucose. This might be related to the autophagy 

pathway promoted by metformin. 

 

It has been well demonstrated that many microRNAs 

affect atherosclerosis by inhibiting cardiovascular 

inflammation [13, 34]. MiR-142-3p, one of the novel 

inflammation-related miRNAs [35], is significantly 

upregulated by metformin [36]. It may inhibit cell 

proliferation and migration via the WNT signaling 

pathway and autophagy [37–39]. In addition, miR-142-

3p may target HMGB1 in tumor cells [14, 40]. 

Consistently, we found that miR-142-3p inhibited 

migration enhancement in high glucose–stimulated 

VSMC. These findings validate that miR-142-3p is 

involved in the regulation of abnormal VSMC 

proliferation and migration, which contribute to ASO 

and in-stent restenosis. However, these findings 

contradict some previous studies. For example, Bao et 

al found that miR-142-3p promoted endothelial cell 

proliferation via Bcl-2–associated transcription factor 1 

[41]. In addition, Wu et al found that miR-142-3p 

promoted the neuronal cell cycle and inhibited 

apoptosis after peripheral nerve injury [42]. Thus, 

further investigation, especially the appropriate animal 

model studies, of microRNAs involved in the regulation 

of cell growth should be performed to clarify these 

issues. In conclusion, we demonstrated that metformin 

inhibits high glucose–induced VSMC hyper-

proliferation and migration enhancement by promoting 

miR-142-3p–mediated inhibition of HMGB1 expression 

via the autophagy pathway.  

 

MATERIALS AND METHODS 
 

VSMC isolation and characterization 

 

All research involving experimental animals was 

approved by the Institutional Review Board of the 

Drum Tower Hospital Affiliated to Medical School of 

Nanjing University, Nanjing, China, and adhere to the 

international experiment guideline. VSMCs, obtained 

from the aortic artery, were cultured with DMEM 

containing 20% FBS at 37°C. Immunofluorescence with 

α-actin was carried out to identify the cells [43]. 

 

Cell treatment 

 

VSMCs were grown to 70%-80% cell confluence and 

exposed to normal glucose (5.6 + 19.4 mmol/L mannitol) 

or High Glucose (25 mmol/L) for 24 hours. Metformin 

was added to the high glucose–treated cells. In the cell 

proliferation assay, metformin was used at a serial 

concentration of 1, 5, and 10 mM. The concentration of 

metformin in the cell migration assay was 5 mM.  

 

CCK-8 assay for cell growth 

 

Trypsinized VSMCs (2 × 105 cells) were resuspended in 

complete VSMC medium and seeded in a 12-well plate 

and incubated with 0, 1, 5 and 10 mM of metformin in 

the previously mentioned normal and high-glucose 

conditions under 37°C, 5% CO2. One day later, cell 

proliferation was evaluated by CCK-8 assay following 

the manufacturer’s instructions. At least triplicate 

repeats were completed in all the experiments.  

 

Wound healing assay 

 

VSMCs were allowed to be grown to 80%-90% cell 

confluence and treated with normal glucose or high 

glucose in the absence or presence of metformin. A 

scratch was made by a 200 µL pipette tip at 0 h and 

incubated at 37°C, 5% CO2. Pictures were taken using 

microscopy at 0 and 24 h for migration evaluation.  

 

Transwell assay 

 

A modified transwell assay in 24-well plates was used for 

cell migration evaluation (BD Biosciences, San Jose, CA, 

USA). After cell transfection for 24 h, cells were 
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Table 1. Primer sequence. 

Gene name Forward Reverse  

HMGB1 5′-AGCAATCTGAACGTCTGTCC-3′ 5′-GTTCTTGTGATAGCCTTCGC-3′ 

GAPDH 5′-GCGCTGAGTACGTCG-3′ 5′-CAGTTGGTGGTGCAG-3′ 

MiR-142-3p TGTAGTGTTTCCTACTTTATGGA  

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT 

suspended with serum-free DMEM at a concentration of 

3 × 105 cells and added to the upper chamber, while the 

lower chamber was filled with DMEM supplemented 

with 20% FBS as a chemoattractant. Then the transwell 

plate was incubated at 37°C for 24 h, and a cotton swab 

was used to remove upper chamber residue cells. The 

transwell membrane close to the lower chamber was cut 

by scissors, stained with crystal violet and photographed 

by a microscope. The cells were then counted according 

to the pictures.  
 

Cell transfection 
 

miR-142-3p mimic, siRNA, and their negative controls 

were purchased from Thermo. miR-142-3p mimic (50 

nM), siRNA (150 nM), and their negative controls were 

transfected, into VSMCs at 80% confluence using 

Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s instructions. After 48 h 

of transfection, cells were harvested for subsequent 

experiments, and the expression of microRNA was 

confirmed by real-time reverse transcriptase quantitative 

polymerase chain reaction (RT-qPCR), described later.  
 

Luciferase assay  
 

Luciferase reporter assay was performed, as previously 

described [44], to explore the potential regulation 

mechanisms of miR-142-3p. For the measurement of 

luciferase activity, cells were cotransfected in 24-well 

plates with 100 ng of luciferase plasmid and 50 ng of 

Renilla plasmid (Ambion) as a control, as well as with 

400 ng of miR-142-3p mimics or negative control 

microRNA. The luciferase and Renilla plasmid 

activities were measured 48 h later using the Dual 

Luciferase Reporter 1000 Assay System (Promega, 

Madison, WI, USA).  
 

RT-qPCR 
 

RT-qPCR was performed as previously reported  

[44, 45]. Briefly, total RNA was isolated from the 

VSMCs treated with the series of metformin 

concentration. Real-time PCR detection was performed 

when generation of cDNA for RT-qPCR was done. 

GAPDH expression and U6 expression were used as 

controls for HMGB1 and microRNA gene, respectively. 

Relative microRNA expression was normalized to the 

reference microRNA expression using the ΔΔCt 

method. All primer sequences arelisted in Table 1. 

 

Western blot analysis 

 

Cellar protein was extracted from VSMCs (1 × 105 

cells), as previously reported [44]. Briefly, the proteins 

were separated and then transferred. After blocking, 

membranes were incubated with HMGB1(Cell 

Signaling Technology [CST], Danvers, MA, USA), 

LC3II/I(CST), p62(CST), and Actin (Sigma, St. Louis, 

MO, USA). Appropriate secondary antibodies were 

used. The protein bands were detected using an Infrared 

Imaging System (LI-COR). 

 

Statistical analysis 

 

All statistical analyses were performed using SPSS v21. 

Data are presented as mean ± SD. Student’s t test or 

one-way ANOVA was used to examine the differences 

between the groups. Correlations between HMGB-1 and 

miR-142-3p levels and metformin concentration were 

analyzed using the Pearson correlation method. P < 0.05 

was considered as statistically significant. 
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