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INTRODUCTION 

Colorectal cancer is a heterogeneous disease that results 

from accumulation of mutations over many years under 

the influence environmental and genetic factors [1]. 

CRC is ranked in the top three most fatal cancers in the 

United States, resulting in high rate cancer-related 

deaths [2]. Currently, the most effective therapies for 

CRC include laparoscopic surgery for primary tumors 

(although highly aggressive surgeries are required in 

advanced cases), combined with radiation therapy and 

palliative chemotherapy. However, the therapeutic 

effect of these drugs for advanced and metastatic tumors 

remains suboptimal [3]. Over the past decade, 

immunotherapy-based drugs have been extensively 

explored for development of cancer treatments.  

Immunotherapy has, therefore, become an effective 

therapy for several cancers, such as CRC [4, 5] 

revolutionizing its treatment to a great extent. Some 

limitations of immunotherapy can be circumvented by 

combining immune checkpoint inhibition using 

epigenetic therapy. Drugs that target programmed cell 

death, including protein 1(PD1) and Cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4), have been 
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ABSTRACT 

Background: Colorectal cancer (CRC) accounts for the highest fatality rate among all malignant tumors. 
Immunotherapy has shown great promise in management of many malignant tumors, necessitating the need to 
explore its role in CRC.  
Results: Our analysis revealed a total of 71 differentially expressed IRGs, that were associated with prognosis of 
CRC patients. Ten IRGs (FABP4, IGKV1-33, IGKV2D-40, IGLV6-57, NGF, RETNLB, UCN, VIP, NGFR, and OXTR) 
showed high prognostic performance in predicting CRC outcomes, and were further associated with tumor 
burden, metastasis, tumor TNM stage, gender, age, and pathological stage. Interestingly, the IRG-based 
prognostic index (IRGPI) reflected infiltration of multiple immune cell types. 
Conclusions: This model provides an effective approach for stratification and characterization of patients using 
IRG-based immunolabeling tools to monitor prognosis of CRC. 
Methods: We performed a comprehensive analysis of expression profiles for immune-related genes (IRGs) and 
overall survival time in 437 CRC patients from the TCGA database. We employed computational algorithms and 
Cox regression analysis to estimate the relationship between differentially expressed IRGs and survival rates in 
CRC patients. Furthermore, we investigated the mechanisms of action of the IRGs involved in CRC, and 
established a novel prognostic index based on multivariate Cox models.  
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effective in treatment of not only melanoma, but also 

other forms of lung cancers and Hodgkin lymphoma. 

For instance, nivolumab and pembrolizumab are 

marketed as effective drugs for CRC patients. Based on 

this, it is evident that immunotherapeutic approaches 

that can control development of CRC have shown 

potential for long-term and durable remission of the 

disease [6–12]. 

In this study, we sought to determine the clinical role of 

immunity genes as tools for classifying prognosis of 

CRC patients and the possibility of such genes to serve 

as CRC treatments. We performed bioinformatics 

analysis to reveal expression profiles of these genes in 

CRC across various clinical traits. We employed 

multiple computational methods to systematically 

assess the relationship between IRG and survival time 

of CRC patients and analyzed the relationship between 

our constructed prognostic model with various immune 

cells. Taken together, the findings herein are expected 

to advance application of the knowledge on immuno-

therapy and personalized CRC treatment. 

RESULTS 

Summary of the results 

Differential gene expression analysis revealed 6524 

differentially expressed genes (DEGs), 484 

differentially expressed IRGs and 70 differentially 

expressed transcription factors (TFs). After gene 

enrichment of the DEGs and differentially expressed 

IRGs, we constructed a TF-immune gene regulatory 

network. We divided CRC patients into two groups 

according to the results of multivariate Cox regression 

analysis, constructed IRGPI, then identified multiple 

clinically independent predictors and risk immune 

genes in CRC patients. Finally, we evaluated the 

relationship between immune cell infiltration and 

IRGPI. 

Identification of IRGs and survival-associated IRGs 

After normalization and analysis with the limma package 

[13] in R software (V3.6.1 https://www.r-project.org), a

total of 6524 DEGs were identified (Figure 1A), with the

list of immune genes indicating 484 differentially

expressed IRGs (Figure 1B). Among these DEGs, 4501

were upregulated while 2023 were downregulated

(Figure 1C). Among these differentially expressed IRGs,

173 and 311 were upregulated and downregulated,

respectively (Figure 1D). As expected, functional

enrichment analysis of these IRGs showed that the most

relevant pathways were related to immune, cancer and

inflammatory responses. “Immune response,”

“extracellular space,” and “receptor binding” were the

most frequent biological terms among biological 

processes, cellular components, and molecular functions, 

respectively (Figure 1E). The KEGG pathway analysis 

identified the cytokine-cytokine receptor interaction as 

the most enriched pathway (Figure 1F). To extract IRGs 

involved in CRC progression, we chose differentially 

expressed IRGs that were significantly correlated with 

clinical outcomes (P<0.05), with a total of 71 survival-

related IRGs selected as hub genes (Table 1). Forest plot 

of hazard ratios for prognostically relevant immune genes 

indicating the prognostic value of these immune genes in 

CRC patients is shown in Figure 2. The results of the 

forest plot indicated that most of the immunity factors 

were high-risk genes for cancer. A protein-protein 

interaction (PPI) analysis performed on the immune 

genes with prognostic value (Figure 3A, 3B), generated a 

network that revealed that genes, such as C-X-C Motif 

Chemokine Ligand 12 (CXCL12), Peptide YY (PYY), 

and Nerve Growth Factor (NGF) were the most highly 

connected among all genes. A gene ontology (GO) 

network of these genes was also analyzed using plugins 

in Cytoscape (Figure 3C). Analysis of mutations 

performed in the cBioportal database, revealed that many 

immune genes had inframe, missense, and truncating 

mutations (Figure 4). In addition, a co-expression 

network of these genes was constructed (Figure 5A). 

Functional enrichment analysis of these hub immune 

genes revealed that biological process was most enriched 

in positive regulation of response to stimulus, which was 

consistent with the enrichment results of all differentially 

expressed immune genes. With regards to cellular 

component, the extracellular space was the most enriched 

while receptor binding was the most enriched for 

molecular function (Figure 5B, 5C). 

Gene set enrichment analysis (GSEA) 

The results of the GSEA enrichment analysis on the 

selected differential genes were relatively similar to 

those from Kyoto encyclopedia of genes and genomes 

(KEGG) enrichment analysis of differentially immune 

genes in the DAVID database. A significant number of 

genes were enriched in pathways related to immunity, 

cancer, among others. KEGG results showed that a 

majority of the genes were enriched in PATHWAYS-

IN-CANCER and T-CELL-RECEPTOR-SIGNALING-

PATHWAY, while the Hallmark background showed 

enrichment mainly for INFLAMMATORY-

RESPONSE, EPITHELIAL-MESENCHYMAL-

TRANSITION, and KRAS-SIGNALING-UP (Figure 

6). Results were screened for a subset of significant 

differences revealing that the immunity genes were 

largely linked to CRC through the aforementioned, 

well-defined pathways (Tables 2, 3). This lays a 

foundation for the subsequent application of CRC 

immunotherapy.

http://www.r-project.org/
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Figure 1. (A) Differentially expressed genes, with red representing high expression and green representing low expression. (B) Differentially 
expressed immune-related genes, with red representing high expression and green representing low expression. (C) Volcano plot of 6524 
differentially expressed genes, with red representing up-regulated and green representing down-regulated. (D) Volcano plot of 484 
differentially expressed immune-related genes, with red representing up-regulated and green representing down-regulated. (E) Gene 
ontology analysis of differentially immune-related genes, circle presentations biological process, triangle presentations cellular component, 
square presentations molecular function. (F) KEGG pathway analysis of differentially immune-related genes. 
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Table 1. General characteristics of CRC‐specific immune‐related genes. 

Gene symbol logFC FDR HR P-value 

NGF -1.07762 1.11E-07 3.614874 1.12E-05 

FABP4 -1.69607 2.65E-17 1.013513 4.75E-05 

NGFR -1.7335 2.53E-16 1.200272 0.000161 

ADIPOQ -1.99025 9.61E-18 1.101961 0.000222 

OXTR 2.970949 1.70E-20 1.426463 0.000285 

SEMA3G -1.98005 7.35E-19 1.294111 0.000355 

INHBA 5.410219 6.03E-22 1.052935 0.000678 

IGHG1 2.242033 0.000217 1.000558 0.000825 

PTH1R -1.97323 3.73E-19 1.628333 0.000936 

VIP -3.35624 2.99E-21 1.057744 0.001913 

IGKV1-33 -2.0014 3.50E-15 1.030337 0.001979 

IGHV5-51 -2.04671 3.90E-15 1.001624 0.002062 

IGKV1-8 -1.96614 2.74E-15 1.044039 0.002316 

RETNLB -1.11809 4.48E-13 1.003827 0.002823 

UCN 2.370658 2.94E-17 1.383005 0.002826 

PLCG2 -1.81429 6.39E-19 1.67407 0.002941 

IGKV2D-40 -1.04607 1.15E-10 1.015759 0.003079 

IGLV6-57 -1.60553 4.76E-12 1.001968 0.003346 

NPR1 -1.70244 3.59E-16 1.50082 0.00463 

NOX4 3.263304 5.66E-18 1.643741 0.00513 

CCL19 -2.15933 9.35E-15 1.029576 0.005852 

F2RL1 -1.11351 1.65E-17 0.966769 0.006461 

STC1 2.269389 2.56E-16 1.078088 0.0072 

CXCL3 3.047496 4.68E-18 0.976418 0.007315 

CD1B 1.090892 0.012274 0.057461 0.007658 

SLC10A2 -7.37303 2.19E-25 1.832561 0.007661 

IGHV4-31 -1.69851 9.17E-11 1.008218 0.007668 

IGHG4 1.769556 0.02942 1.000463 0.008256 

TRDC -1.85546 1.40E-15 1.14881 0.008409 

FGF2 -1.37298 1.56E-11 1.340343 0.009 

NR3C2 -2.59095 7.31E-22 0.8063 0.011706 

SCG2 -2.14034 2.39E-19 1.118764 0.012272 

CCL28 -1.9804 6.46E-18 0.923295 0.012702 

TNFSF12 -1.14925 1.37E-12 1.101101 0.015819 

SLIT2 -1.69869 2.77E-14 1.407394 0.016025 

CXCL12 -2.54566 4.83E-21 1.062678 0.01692 

IGHV2-70 -1.45759 9.83E-11 1.014614 0.017613 

PTGDS -1.35298 7.22E-12 1.035543 0.01783 

CLCF1 1.016493 3.25E-10 1.118713 0.018123 

BID 1.147326 2.83E-18 0.937667 0.018657 

CXCL1 2.94518 3.55E-17 0.993112 0.019735 

XCL1 -1.02275 1.65E-09 1.652723 0.019766 

PROCR 1.21046 4.01E-11 0.981309 0.020768 

FGFR2 -2.15905 2.28E-20 1.101962 0.021634 

CD79B -2.05831 1.30E-16 1.112374 0.023507 

CD19 -1.8624 2.94E-11 1.263127 0.025436 

S100P 2.517715 3.23E-16 0.997402 0.028846 

IL1RAP 1.053287 5.06E-13 1.71503 0.030956 

GUCA2A -5.04559 7.70E-22 0.988757 0.031143 

BIRC5 1.625605 2.98E-19 0.96511 0.031986 

IGLV1-36 -1.61723 5.61E-15 1.006035 0.033026 

IGLC3 -1.8978 5.95E-13 1.000929 0.033267 
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CHP2 -3.81304 1.80E-21 0.971156 0.033524 

IGHV3-64 -1.38936 7.61E-14 1.00211 0.034568 

IL13RA2 1.365327 0.000112 0.516776 0.034577 

IGHV3-38 -1.95173 1.53E-14 1.050918 0.03483 

IGHV4-4 -2.60452 1.40E-15 1.043988 0.035024 

S1PR1 -1.03942 2.45E-13 1.105949 0.035328 

COLEC12 -1.7569 5.08E-18 1.230376 0.035387 

KL -1.1424 5.26E-16 1.191899 0.035919 

GCG -4.9816 5.83E-22 1.017926 0.03803 

JAG2 2.065779 1.29E-17 1.033744 0.038079 

TLR7 -1.74294 1.68E-17 2.178313 0.038773 

TNFRSF13C -1.60074 1.90E-08 1.35185 0.03901 

IGHV1-24 -1.00006 3.78E-08 1.003218 0.040381 

PYY -5.71 6.50E-22 0.766028 0.042196 

GRP 2.434638 9.19E-09 1.093047 0.042615 

ACVRL1 -1.50426 2.54E-18 0.957411 0.044483 

IGLV5-48 -2.84863 1.67E-15 1.144904 0.046039 

A2M -1.26394 7.65E-17 1.008646 0.047604 

CMKLR1 -1.43947 1.61E-16 1.200541 0.049798 

FC: fold change; FDR: false discovery rate; HR: hazard ratio.  
 

Identification of transcription factors and immune 

gene regulatory networks 
 

A total of 70 differentially expressed transcription 

factors were selected from the tumor-associated 

transcription factors downloaded in the Cistrome 

Cancer Database. Among them, 46 and 24 were 

upregulated and downregulated, respectively (Figure 

7A and 7B). Subsequently, we developed a 

transcription factor-immune gene regulatory network 

and generated a map (Figure 7C), which showed a 

strong correlation module based on MCODE plugin 

(Figure 7D). The results revealed 3 high-risk immune 

genes, namely Prostaglandin D2 Synthase (PTGDS), 

Alpha-2-Macroglobulin (A2M), and Sphingosine-1-

Phosphate Receptor 1 (S1PR1), as well as 2 TFs, 

Forkhead Box P3 (FOXP3) and Endothelial PAS 

Domain Protein 1(EPAS1), with strong association to 

prognosis of CRC. Literature search showed that A2M 

expression is downregulated in tumors compared to 

normal adjacent samples [14], which was consistent 

with our findings. We, therefore, hypothesized that 

A2M and other immune genes are inhibited by 

transcription factors, resulting in decreased expression, 

and rendering the low expression of immune genes a 

high-risk factor in tumor development. This also 

illustrates, to some extent, the accuracy of our 

constructed network. However, further analysis is 

required to explore the implication of these immune 

genes and the corresponding transcription factors in 

CRC to guide designing and development of 

immunotherapy of CRC. 

Construction of a clinical prognostic model 
 

Based on the results of multivariate Cox regression 

analysis, we developed a prognostic index to group 

CRC patients into two: high and low risk, and 

constructed a risk curve (Figure 8A–8C). A higher risk 

score indicated a shorter survival time for patients. This 

immune-based prognostic index could be an important 

tool for distinguishing among CRC patients based on 

potential discrete clinical outcomes (Figure 8D). The 

following formula was used: [Expression level of 

FABP4 * (0.0169)] + [Expression level of IGKV1-33 * 

(0.0288)] + [Expression level of IGKV2D-40 * 

(0.01050)] + [Expression level of IGLV6-57 * (0.0021)] 

+ [Expression level of NGF * 1.1134] + [Expression 

level of RETNLB * (0.0045)] + [Expression level of 

UCN * (0.3985)] + [Expression level of VIP * (0.0617)] 

+ [Expression level of NGFR * (-0.2621)] + 

[Expression level of OXTR * (0.2656)].Thus, we show 

that this prognostic index can effectively and accurately 

stratify CRC patients. The area under the curve (AUC) 

of the receiver operating characteristic (ROC) was 

0.858 (Figure 8E), indicating a high prognostic 

performance of the IRGs in survival surveillance. 

Results from Cox regression analysis of univariate and 

multivariate factors are outlined in Figure 8F, 8G. For 

univariate risk analysis, lymph node and, vascular 

metastases, tumor status, CRC pathological stage, TNM 

stage and IRGPI were found to be independent 

predictors. However, after computational analysis of all 

related clinical factors, we found that IRGPI were an 

independent predictor. 
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Figure 2. Forest plot of hazard ratios of prognostically relevant immune genes, revealing prognostic value in CRC. 
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Figure 3. Protein-protein interaction network and GO network of prognosis-related immune genes. (A) Protein-protein 
interaction network of prognosis-related immune genes, revealing their intrinsic connections. (B) The constructed PPIs in Cytoscape, with the 
size of the nodes showing the degree of connectivity of the immune genes, reveal the hub genes in the network. (C) Gene ontology network 
of prognosis-related immune genes. The color shade of the node represents the p-value, darker colors indicate smaller P values. P < 0.05 
indicates statistically significant difference. 



 

www.aging-us.com 5839 AGING 

 
 

Figure 4. Mutation landscape of prognosis-related IRGs. PROCR is the gene with the highest mutation frequency. And there 
were 37 genes with a mutation rate ≥ 5%. 
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Figure 5. Co-expression network and gene enrichment analysis of prognostically relevant IRGs. (A) Network of prognostic IRGs 
and their co-expressed genes, with black-boxed nodes indicating prognostic IRGs and the remaining nodes indicating genes co-expressed 
with prognostic IRGs. (B) Gene ontology analysis and (C) KEGG pathway analysis of prognostic IRGs. 
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Clinical correlation analysis 
 

We constructed models to analyze the relationship 

between immunity genes with clinical and demographic 

characteristics, including age, sex, pathological tumor 

stage, TNM stage of the International Union Against 

Cancer, lymphatic, vascular invasion, and tumor 

burden. A summary of results from the computational 

analysis is shown in Table 4, while genes with 

significant statistical differences are shown in Figure 9. 

Thereafter, we assessed the association between 

individual gene expression and the corresponding 

clinical traits. For example, NGF was correlated with 

lymphatic metastasis, tumor stage, and N stage. We also 

assessed the relationship between immune cell 

infiltration and the IRGPI, to determine whether 

immune genes accurately reflected the state of tumor 

immune environment. We found a positive correlation

 between IRGPI with CD4+T, CD8+T, and dendritic 

cells, as well as macrophages and neutrophils, while this 

factor was negatively correlated with B cells, although 

no significant differences (P > 0.05) were observed 

(Figure 10). 

 

DISCUSSION 
 

The role of IRGs in cancer development, especially 

CRC, has not been fully studied. In this study, we 

performed a comprehensive integrated analyzed of 

IRGs involved in CRC and interpreted their clinical 

value. Our findings reveal the underlying molecular 

features and unearth the potential impact of IRGs in 

immunotherapy against CRC. We used a large number 

of clinical and expression profiling samples, identified  

and normalized multiple clinical traits, analyzed 

transcription factor information, and performed a

 

 
 

Figure 6. Gene Set Enrichment Analysis. (A) 10 significantly enriched pathways. (B) Cluster heatmap of top 50 high and low expressed 
genes in all samples. (C) Comparative analysis of the top 10 significantly enriched pathways. 
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Table 2. GSEA results showing pathways enriched in the top or bottom of the ranked list (part 1). 

gsea_report_for_h_1569243707744 

PATHWAY SIZE ES NES NOM p-val FDR q-val FWER p-val 

KEGG_REGULATION_OF_ACTIN_CY

TOSKELETON 
213 0.66964203 2.5797722 0 0 0 

KEGG_FOCAL_ADHESION 199 0.75337255 2.5684252 0 0 0 

KEGG_GAP_JUNCTION 90 0.67211634 2.565771 0 0 0 

KEGG_PATHWAYS_IN_CANCER 325 0.6266958 2.541297 0 0 0 

KEGG_VASCULAR_SMOOTH_MUSC

LE_CONTRACTION 
115 0.68861216 2.5375874 0 0 0 

KEGG_CHEMOKINE_SIGNALING_PA

THWAY 
188 0.7085286 2.5059814 0 0 0 

KEGG_BASAL_CELL_CARCINOMA 55 0.6802519 2.3073714 0 4.55E-05 0.001 

KEGG_RENAL_CELL_CARCINOMA 70 0.65006334 2.3362064 0 4.73E-05 0.001 

KEGG_ADHERENS_JUNCTION 73 0.6770658 2.3461874 0 4.91E-05 0.001 

KEGG_MELANOGENESIS 101 0.615403 2.3612275 0 5.12E-05 0.001 

KEGG_FC_EPSILON_RI_SIGNALING

_PATHWAY 
79 0.63750756 2.3671906 0 5.34E-05 0.001 

KEGG_CELL_ADHESION_MOLECUL

ES_CAMS 
131 0.76282525 2.3726993 0 5.58E-05 0.001 

KEGG_LEUKOCYTE_TRANSENDOT

HELIAL_MIGRATION 
116 0.6907626 2.3731625 0 5.85E-05 0.001 

KEGG_T_CELL_RECEPTOR_SIGNALI

NG_PATHWAY 
108 0.6633691 2.383714 0 6.14E-05 0.001 

KEGG_PANCREATIC_CANCER 70 0.63705605 2.2872703 0 6.39E-05 0.002 

KEGG_ECM_RECEPTOR_INTERACTI

ON 
84 0.8301615 2.3839304 0 6.47E-05 0.001 

KEGG_NEUROACTIVE_LIGAND_RE

CEPTOR_INTERACTION 
271 0.62170815 2.2894022 0 6.60E-05 0.002 

KEGG_ADIPOCYTOKINE_SIGNALIN

G_PATHWAY 
67 0.6279159 2.2899668 0 6.82E-05 0.002 

KEGG_JAK_STAT_SIGNALING_PAT

HWAY 
155 0.61718726 2.3874989 0 6.83E-05 0.001 

KEGG_HEMATOPOIETIC_CELL_LIN

EAGE 
85 0.7675451 2.2916093 0 7.05E-05 0.002 

KEGG_PROSTATE_CANCER 89 0.6342127 2.3921416 0 7.23E-05 0.001 

KEGG_HYPERTROPHIC_CARDIOMY

OPATHY_HCM 
83 0.6716272 2.2937078 0 7.30E-05 0.002 

KEGG_DILATED_CARDIOMYOPATH

Y 
90 0.7019853 2.3925047 0 7.68E-05 0.001 

KEGG_DORSO_VENTRAL_AXIS_FO

RMATION 
24 0.7876579 2.3928838 0 8.19E-05 0.001 

KEGG_AXON_GUIDANCE 129 0.6520283 2.4046438 0 8.78E-05 0.001 

KEGG_MAPK_SIGNALING_PATHWA

Y 
267 0.5887808 2.4121554 0 9.45E-05 0.001 

KEGG_CYTOKINE_CYTOKINE_REC

EPTOR_INTERACTION 
264 0.67623246 2.4139163 0 1.02E-04 0.001 

KEGG_CALCIUM_SIGNALING_PATH

WAY 
177 0.63363373 2.4335191 0 1.12E-04 0.001 

KEGG_MELANOMA 71 0.6444286 2.4477468 0 1.23E-04 0.001 

KEGG_FC_GAMMA_R_MEDIATED_P

HAGOCYTOSIS 
96 0.64547414 2.2792652 0 1.27E-04 0.003 
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gsea_report_for_l_1569243707744 

PATHWAY SIZE ES NES NOM p-val FDR q-val FWER p-val 

KEGG_PARKINSONS_DISEASE 128 -0.7638063 -2.1532152 0 0.003386 0.014 

KEGG_OXIDATIVE_PHOSPHORYLA

TION 
131 -0.7945146 -2.181362 0 0.00531 0.011 

KEGG_RIBOSOME 87 -0.9401583 -2.0572634 0 0.006679 0.041 

KEGG_HUNTINGTONS_DISEASE 180 -0.62558216 -2.0771437 0 0.006703 0.032 

 

Table 3. GSEA results showing pathways enriched in the top or bottom of the ranked list (part 2). 

gsea_report_for_h_1569251519150 

PATHWAY SIZE ES NES NOM p-val FDR q-val FWER p-val 

HALLMARK_KRAS_S

IGNALING_UP 
200 0.68496144 2.5519905 0 0 0 

HALLMARK_MYOGE

NESIS 
200 0.7163382 2.4803855 0 0 0 

HALLMARK_INFLA

MMATORY_RESPON

SE 

200 0.74277735 2.4324496 0 0 0 

HALLMARK_IL2_ST

AT5_SIGNALING 
200 0.64027786 2.404173 0 0 0 

HALLMARK_APICAL

_JUNCTION 
200 0.66379976 2.2760096 0 0 0 

HALLMARK_COMPL

EMENT 
200 0.64504373 2.269838 0 0 0 

HALLMARK_EPITHE

LIAL_MESENCHYMA

L_TRANSITION 

198 0.84459037 2.4160647 0 0 0 

HALLMARK_UV_RES

PONSE_DN 
142 0.7505294 2.5657384 0 0 0 

HALLMARK_COAGU

LATION 
138 0.6745744 2.3511252 0 0 0 

HALLMARK_TGF_BE

TA_SIGNALING 
54 0.7044607 2.3415003 0 0 0 

HALLMARK_ANGIO

GENESIS 
36 0.78319705 2.304125 0 0 0 

HALLMARK_IL6_JAK

_STAT3_SIGNALING 
87 0.7255876 2.219405 0 2.10E-04 0.003 

HALLMARK_HEDGE

HOG_SIGNALING 
36 0.70793414 2.135469 0 8.37E-04 0.008 

HALLMARK_ALLOG

RAFT_REJECTION 
200 0.6927329 2.1372313 0.0020243 9.02E-04 0.008 

HALLMARK_NOTCH

_SIGNALING 
32 0.64948887 2.1142936 0 0.001424 0.016 

HALLMARK_APOPT

OSIS 
161 0.5897472 2.1039493 0 0.0015353 0.018 

HALLMARK_HYPOXI

A 
197 0.5773829 2.0876963 0 0.0018728 0.024 

HALLMARK_APICAL

_SURFACE 
44 0.6299601 2.0555112 0.0019011 0.0022883 0.031 

gsea_report_for_l_1569251519150 

PATHWAY SIZE ES NES NOM p-val FDR q-val FWER p-val 

HALLMARK_OXIDA

TIVE_PHOSPHORYL
200 -0.81177884 -2.1761758 0 0.0027603 0.007 
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ATION 

HALLMARK_MYC_T

ARGETS_V1 
199 -0.7470366 -1.9788883 0.004065 0.0174095 0.064 

HALLMARK_MYC_T

ARGETS_V2 
58 -0.79232734 -1.9486467 0.0041068 0.0176199 0.085 

 

combined analysis of immune cell infiltration, to 

generate a concrete conclusion. We identified several 

IRGs that were significantly associated with CRC 

progression and are therefore capable of being cancer 

biomarkers. We used bioinformatics tools to explore the 

regulatory network and specific molecular mechanisms 

in greater depth, and assessed immune cell infiltration 

as well as disease outcomes based on individualized 

immune prognostic indicators constructed from the 

analyzed differential IRGs. 

 

Zhang et al reported differences in immune cell 

infiltration and immunophenotype between right- and 

left-side CRC, and how these influence prognosis of 

CRC patients [15]. Conversely, our study focused on 

constructing a very practical immunolabeling tool for 

 

 
 

Figure 7. Transcription factor mediated regulatory network. Differentially expressed transcription factors (TFs) (A) hetmap and (B) 
Volcano plot. (C) Regulatory network constructed based on clinically relevant TFs and IRGs. (D) Most significant modules in regulatory 
networks. 
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immune-related genes to stratify CRC patients and 

predict prognosis, and can therefore be used to reflect 

the level of immune cell infiltration. The IRGPI 

presented in this study is simple to calculate and may be 

an ideal tool for implementation in daily clinical 

practice. In fact, clinicians can apply this tool during 

monitoring of prognosis in CRC patients in a simpler 

way. At the same time, the information herein, 

including immune cell infiltration of patients, can be 

combined and used to further improve immunotherapy 

strategies and greatly promote development of new 

therapies for CRC patients. 

 

Recent developments in medical technology have 

promoted research into the key drivers of cancer and 

revealed effective approaches to fight the disease. 

Infiltration of the tumor environment with many 

inflammatory cells often leads to cancer development. 

The hallmarks of cancer comprise six biological 

processes, activation of invasion and metastasis,

 

 
 

Figure 8. Establishment of prognostic index based on prognostic related immune genes. (A) Rank of prognostic index and 
distribution of groups. (B) Survival status of patients in different groups. (C) Heatmap of expression profiles of included genes. (D) Five-year 
survival was significantly lower in the high-risk group. (E) Survival-dependent receiver operating characteristic (ROC) curve validation of 
prognostic value of the prognostic index. (F) Univariate regression and (G) multiple regression analysis of colorectal cancer. 
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Table 4. Relationships between the expressions of the immune‐related genes and the clinicopathological factors 
incolorectal cancer. 

Gene symbol 
Age 

(≥60/<60) 

Gender 

(male/ 

female) 

T stage 

(T3–T4/ 

T1–T2) 

N stage 

(N1–3/ 

N0) 

M stage 

(M1/ M0) 

Pathological 

stage 

(IV-III/ I–II) 

VitalStatus 

(dead/alive) 

Tumor 

status 

(with 

tumor/ 

tumor 

free) 

Vascular 

invasion 

(yes/no) 

Lymphovascular 

invasion 

(yes/no) 

 
t(P) t(P) t(P) t(P) t(P) t(P) t(P) t(P) t(P) t(P) 

FABP4 
1.715 

(0.089) 

0.684 

(0.495) 

-2.456 

(0.015) 

-0.662 

(0.508) 

-1.099 

(0.280) 

-0.562 

(0.575) 

-1.2 

(0.244) 

0.842 

(0.401) 

-1.256 

(0.213) 

-0.43 

(0.668) 

IGKV1-33 
0.525 

(0.600) 

-0.995 

(0.321) 

0.606 

(0.546) 

0.557 

(0.578) 

1.319 

(0.195) 

0.676 

(0.500) 

1.638 

(0.112) 

0.558 

(0.578) 

2.747 

(0.007) 

0.79 

(0.430) 

IGKV2D-40 
1.676 

(0.097) 

1.433 

(0.155) 

-1.19 

(0.236) 

-0.812 

(0.419) 

2.456 

(0.015) 

-0.74 

(0.461) 

-0.683 

(0.502) 

0.384 

(0.702) 

-0.541 

(0.591) 

-0.348 

(0.729) 

IGLV6-57 
0.951 

(0.343) 

0.218 

(0.828) 

0.637 

(0.526) 

0.921 

(0.358) 

0.939 

(0.354) 

1.135 

(0.258) 

0.194 

(0.848) 

-1.879 

(0.062) 

0.211 

(0.834) 

-0.408 

(0.684) 

NGF 
1.348 

(0.180) 

0.726 

(0.469) 

-1.472 

(0.145) 

-2.385 

(0.018) 

-1.581 

(0.124) 

-2.251 

(0.026) 

-1.329 

(0.201) 

0.935 

(0.351) 

-1.675 

(0.099) 

-2.232 

(0.027) 

RETNLB 
0.899 

(0.370) 

0.36 

(0.719) 

1.244 

(0.219) 

1.554 

(0.122) 

3.423 

(<0.001) 

1.611 

(0.109) 

4.077 

(<0.001) 

0.964 

(0.336) 

0.944 

(0.347) 

1.073 

(0.285) 

UCN 
-1.101 

(0.272) 

-0.948 

(0.344) 

-0.864 

(0.390) 

-1.498 

(0.136) 

-0.448 

(0.657) 

-1.633 

(0.105) 

-1.443 

(0.166) 

-4.387 

(<0.001) 

-0.308 

(0.759) 

-0.616 

(0.539) 

VIP 
0.437 

(0.663) 

1.431 

(0.154) 

-1.748 

(0.084) 

-2.059 

(0.041) 

-0.401 

(0.691) 

-1.769 

(0.079) 

0.169 

(0.867) 

1.723 

(0.087) 

-1.334 

(0.187) 

-1.677 

(0.095) 

NGFR 
1.28 

(0.203) 

1.838 

(0.068) 

-1.591 

(0.115) 

-1.562 

(0.121) 

-0.625 

(0.535) 

-1.453 

(0.148) 

-0.834 

(0.412) 

1.892 

(0.060) 

-1.087 

(0.281) 

-1.325 

(0.187) 

OXTR 
0.789 

(0.431) 

-1.223 

(0.223) 

-1.055 

(0.294) 

-1.258 

(0.211) 

0.36 

(0.720) 

-1.217 

(0.226) 

-0.487 

(0.630) 

1.587 

(0.114) 

0.699 

(0.486) 

-0.374 

(0.709) 

riskScore 
1.523 

(0.130) 

0.976 

(0.331) 

-1.501 

(0.136) 

-2.124 

(0.036) 

-0.764 

(0.450) 

-2.035 

(0.044) 

-1.581 

(0.130) 

-0.402 

(0.688) 

-1.422 

(0.161) 

-1.659 

(0.100) 

Note: t: t value of student's t test; P: P‐value of student's t test. 
 

induction of angiogenesis, resistance to cell death, 

evasion of growth suppressors, and proliferative 

signals, and immortalization of replication, acquired 

during tumor formation [16]. Studies have 

demonstrated that tumor cells also exhibit functions 

such as immune evasion, while environmental and 

genetic factors have also been implicated in tumor 

progression. Gene mutations as well as the recently-

discovered large number of micro and long non-

coding RNAs, also play a large role in tumor 

development [17, 18]. Currently, CRC is mainly 

treated using surgery, radiation, and chemotherapy. 

However, these approaches are not effective for 

advanced and metastatic tumors, with nearly 50% of 

the patients subjected to these treatments succumbing 

to CRC due to recurrence or metastasis. This has 

necessitated further research aimed at developing 

novel and effective immunotherapies for CRC [19]. 

Immunotherapy has become the primary treatment 

modality for many types of solid cancers, with various 

types of this therapy reported to successfully manage 

the condition, especially in patients with metastatic 

cancer. Such therapies produce long-lasting control 

against tumors, and are therefore considered superior 

to other approaches [20]. Recently, nivolumab and 

pembrolizumab, drugs that target PD1, have been 

applied for management of metastatic CRC. 

Immunotherapeutic approaches that can control the 

development of CRC possess the potential to provide 

long-term durable remission of CRC patients [5, 21]. 

 

The origin of cancer cells, and progression of the 

disease, depends on the interaction between genetic, 

epigenetic and epitranscriptomic alterations. CRC is a 
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tumor with a strong epigenetic component, which is 

particularly important in promoting CRC progression 

[22]. Mutations in tumor cell genes have been found to 

activate cytotoxic lymphocytes, thereby inhibiting 

tumor growth. Conversely, persistent inflammatory 

responses caused by deregulated immune function, 

toxins from environment and infections promote tumor 

cell growth, their survival, invasion, and dissemination 

[23]. Most human tumors are associated with infiltration 

of different types of immune cells. In addition, the 

interaction between host immune cells with other 

components of the tumor microenvironment is a key 

determinant of various tumor processes. Therefore, 

regulating this interaction could provide an opportunity

 

 
 

Figure 9. Relationship between immune gene expression and clinicopathological factors in CRC (P < 0.05). 
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for design and development of effective therapeutic and 

preventive interventions [24]. This study, therefore, 

explored the implication of various immune features on 

CRC clinical outcomes. Particularly, gene and 

functional analyses show that many immune cells may 

be involved in CRC, and most of these genes are 

enriched in the chemokine signaling and cytokine-

cytokine receptor interaction pathways. 

 

Chemokines are key players in the innate immune 

system of the human body. They primarily control 

migration and localization of immune cells to sites of 

 

 
 

Figure 10. Relationships between the immune–related prognostic index and infiltration abundances of six types of immune 
cells. (A) CD4 T cells; (B) CD8 T cells; (C) dendritic cells; (D) macrophages; (E) neutrophils; and (F) B cells. The correlation was performed by 
using Pearson correlation analysis. P < 0.05 was considered statistically significant. 
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infection and inflammation and also initiate and control 

adaptive immune responses thereby regulating cancer 

development and metastasis [25, 26]. Chemokines, and 

their receptors, are associated with CRC metastasis. In 

fact, expression of their receptors including C-X-C 

Motif Chemokine Receptor 4 (CXCR4) and C-C Motif 

Chemokine Receptor 6 (CCR6), has been proposed as a 

potential predictor of CRC recurrence, poor survival, 

and liver metastasis [27, 28]. These factors can, 

therefore, be exploited to enable monitor the survival 

and metastasis of CRC patients. Our bioinformatics 

analyses revealed that alterations in the immunogenome 

can contribute to initiation of CRC through several 

inflammatory pathways. 

 

To better understand the relationship between IRGs and 

prognosis, we analyzed overall survival time as the 

clinical endpoint. Many pathways involved in IRGs 

have been implicated in immunity and cancer. The most 

highly correlated pathways with survival-associated 

IRGs were those related to PATHWAYS-IN-CANCER, 

MAPK, and KRAS. In fact, we observed that most of 

the prognosis-related immune genes were associated 

with tumor-related pathways. The mitogen-activated 

protein kinase (MAPK) pathway regulates multiple 

cellular processes including migration, differentiation, 

and proliferation. Several subfamilies of this pathway 

regulates gene mutations, growth factor-related 

apoptosis and induction of apoptosis in CRC by 

activating the Ras/Raf/MEK/ERK pathway. Previous 

studies have shown that the MAPK pathway modulates 

metastasis and invasion of CRC [29]. KRAS belongs to 

the Kirsten ras oncogene homolog of the RAS gene 

family, and was one of the first genes to be mutated in a 

variety of cancers. The KRAS encoded transforming 

protein has been associated with various malignancies, 

including lung adenocarcinoma, pancreatic ductal 

carcinoma, and CRC. And the specific site of mutation 

varies among cancers [30]. Understanding how these 

mutations arise could provide insights into cancer 

development, which is a prerequisite for designing 

effective preventive cancer strategies. In our study, we 

found downregulation of many genes following KRAS 

activation. This was consistent with our expectations, 

and is expected to promote further investigations into 

the specific relationship among immune genes with 

KRAS for better CRC diagnosis and treatment [31]. 

Important information concerning expression profiles, 

prognostic value and mutational status of these IRGs of 

prognostic value was also obtained and this will 

enhance further studies. 

 

The roles played by IRGs in clinical prognosis of CRC 

were further explored, based on the constructed TF-

mediated network. According to this analysis, A2M, 

CXCL12, S1PR1, among others were identified as the 

key TFs in the network. This TF-IRG regulatory 

network is expected to guide future mechanistic 

analyses in the field. Results from previous studies 

corroborate the findings herein, thereby validating their 

reliability. CXCL12, a ligand for CXCR4, encodes a 

protein that acts as a G protein-coupled receptor and is 

involved in cell processes including immune sur-

veillance, inflammatory responses, and tumor 

metastasis. Studies have demonstrated that CXCL12 

activates CXCR4, and high CXCR4 expression may be 

a potential risk for CRC recurrence or liver metastasis. 

It has also been associated with poor prognosis [28, 32]. 

Additionally, CXCR4 expression, after phospho-

rylation, has been found to have prognostic benefits in 

CRC [33]. Antonella et al found that CXCL12 could 

drive the migration of CXCR4-positive cancer cells and 

macrophages, and could facilitate the molecular 

crosstalk between them. Macrophages accelerate cancer 

growth through a CXCL12-potentiated GM-CSF/HB-

EGF paracrine loop, leading to poor prognosis and 

shorter survival time in CRC patients [34]. On the other 

hand, S1PR1 has been linked to some autoimmune 

diseases, with Qi et al reporting that aberrant co-

expression of S1PR1, as well as signal transducer and 

activator of transcription 3 (STAT3) are involved in 

metachronous liver metastasis and poor prognosis in 

CRC. Mutual activation loop between them enhances 

proliferation, liver metastasis and invasiveness of CRC 

cells in vitro and in vivo, leading to poor prognosis [35]. 

These findings provide a new perspective to interrogate 

the prognostic role of differentially expressed immunity 

genes in CRC through identification of their receptors. 

Among the 10 immune genes of prognostic value, used 

to build our model,  Fatty Acid Binding Protein 4 

(FABP4) [36, 37], NGF [38, 39], Resistin Like Beta 

(RETNLB) [40, 41], Urocortin (UCN) [42, 43], 

Vasoactive Intestinal Peptide (VIP) [44, 45], Nerve 

Growth Factor Receptor (NGFR) [46, 47] have been 

implicated in direct or indirect involvement in 

regulation of CRC development and metastasis through 

other pathways. However, IGKV1-33, IGKV2D-40, 

IGLV6-57, and OXTR have not been previously 

associated with CRC. Further analysis is, therefore, 

required to explore the links between these genes and 

pathways and CRC to guide the diagnosis and treatment 

of CRC. 

 

We used the IRGs to further design a simple protocol for 

monitoring immune status and identifying the clinical 

outcomes in CRC patients. Clinical risk stratification, 

based on overall survival time, is important for monitoring 

the survival of CRC patients. In addition, IRGPI can be 

used, not only as a prognostic indicator but also, as an 

indicator of immune status. The immune prognostic 

indicators developed in this study were based on 

differential expression of 10 IRGs in CRC, and showed 
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good clinical application. Furthermore, ROC results 

indicated that our measures were highly accurate. IRGPI 

showed a considerably high prognostic performance and 

was associated with age, pathologic tumor stage, TNM 

stage, lymphatic and vascular invasion, and tumor burden. 

This prognostic model can be implemented in treatment 

plans based on the level of immune cell infiltration. 

Previous studies have reported that CD4 + T and CD8 + T 

lymphocytes recognize cancer antigens and can be 

incorporated into immunotherapy against cancer [48–51]. 

Tumor-associated macrophages (TAM) often contribute 

to disease progression and counter therapies by providing 

trophic support to malignant cells. However, they can also 

mediate antitumor effects and are good targets for 

incorporation into anticancer therapies in humans through 

ablation or re-differentiation [52, 53]. On the other hand, 

neutrophils play a role in tumor initiation, growth, and 

proliferation, hence can be used as clinical biomarkers and 

therapeutic targets [54, 55]. Our analysis showed a 

significant positive correlation between IRGPI with the 

infiltration of CD4+ T, CD8+ T, dendritic cells, as well as 

macrophages, and neutrophil. Characterization of the 

immune permeation landscape is necessary to provide an 

understanding of tumor-immune interactions. We 

therefore explored the relationship between IRGPI  

and immune cell infiltration in CRC, and found a 

significant positive association between IRGPI and the 

five levels of immune cell infiltration mentioned above. 

This suggests a higher degree of infiltration of these 

immune cells in high-risk patients. Our results further 

confirm and expand our knowledge into the tumor-

related functions of immune cells, as they regulate 

progression of CRC. Immunotherapy, in which various 

immune cells play different roles, is the latest revolution 

in cancer treatment [56].  

 

Inflammation and composition of the tumor 

microenvironment plays important roles in cancer 

progression, with numerous studies demonstrating the 

high school granulocyte to lymphocyte ratio (NLR) as 

a poor prognostic indicator for several solid 

malignancies [57]. Neutrophils play an important role 

in immunobiology of CRC, whereas CD8 + T 

lymphocyte infiltration is associated with improved 

survival. Furthermore, neutrophils frequently 

colocalize with CD8 + T cells and neutrophils and 

enhance CD8 + T cell responsiveness to T cell receptor 

triggering. Thus, neutrophils may effectively promote 

anti-tumor immunity [58]. Tsadik et al, while using a 

constructed mouse model of human CRC, 

demonstrated that multifunctional CD4 + effector cells 

generated after treatment with CD4 + T cell-based 

adoptive immunotherapy could radically alter tumor 

metabolism, resulting in disintegration of major 

antioxidant defense systems and excessive 

accumulation of ROS in tumor cells. Neutrophils also 

act synergistically with tumor necrosis factor-α (TNF-

α) to enhance oxidative stress and tumor cell death by. 

This regimen resulted to curing mice diagnosed with 

CRC [59]. Other studies have reported that interleukin 

22 (IL-22), produced by CD4 (+) T cells in CRC 

tissues, promote activation of transcription factor 

STAT3 and the expression of DOT1 Like Histone 

Lysine Methyltransferase (DOT1L). This, in turn, 

induces expression of core stem cell genes NANOG, 

SOX2 and POU5F1, leading to increased cancer 

stemness and tumorigenic potential. In addition, high 

DOT1L expression in CRC was found to be a poor 

prognostic factor [60]. CD8 (+) T cell infiltration 

density in tumors is related to the growth, stage, and 

metastasis of CRC. Approximately 60% of patients 

with high-density CD8 (+) cytotoxic T lymphocyte 

infiltration exhibit Tis/T1 tumors, while those with low 

density show no such early conditions. In patients with 

tumor recurrences, fewer CD8 cells were detected 

regardless of the T stage. However, T stage is 

negatively related to the number of CD8 infiltration in 

those without relapse [61]. Dendritic cells (DCs) play a 

key role in recognizing tumor antigens and inducing T 

cell-elicited anticancer responses. These cells have 

been used in development of therapeutic vaccines. 

CRC cells expressing anti-inflammatory cytokines, 

such as IL-10 and TGF-β, can influence DC phenotype 

and enhance tumor escape from immune surveillance. 

Tumor-associated DCs, therefore, exhibit a number of 

defects in antigen presentation capacity and altered 

expression patterns of immune costimulatory molecules 

in response to immunomodulatory phenotypes. 

However, DCs in combination with other agents, can 

also inhibit development and metastasis of CRC [62, 

63]. Although immune cells potentially play multiple 

roles in tumor development, the specific mechanisms in 

CRC are still not well understood. Th preliminary 

investigation, presented herein, provides a perspective 

and foundational knowledge for further studies. 

 

Despite the convincing nature of our findings, some 

limitations arose and need to be appropriately addressed 

when interpreting our results. First, transcriptomic 

analysis can only reflect certain aspects of the immune 

status, not global alterations. Secondly, a lack of 

independent cohort validation could have affected the 

findings. Thirdly, we did not perform any experiments 

to validate our findings. Many questions remain to be 

answered for better application of immunotherapy in 

CRC treatment. For example, further studies are 

required to elucidate the relationship with regards to 

metabolomics, proteomics, and immunogenomics and 

their involvement in CRC. Moreover, the association 

between immunogenomic disorders and precancerous 

lesions and CRC development or metastasis needs to be 

further explored. 
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In conclusion, we systematically analyzed the role of 

IRGs in monitoring initiation and prognosis of CRC. 

Our findings provide new insights that can guide a more 

detailed phenotyping of immune cells in subsequent 

clinical trials. This is likely to employ the use of large-

scale flow cytometry, in combination with more novel 

and sensitive sequencing technologies, and will take 

into account factors the unique microenvironment as 

well as gut microorganisms. The prognostic signature 

designed herein may have important clinical 

implications in the diagnosis, design and development 

of new therapeutic approaches for CRC. It can be 

widely used in daily clinical practice.  In future, 

validation of these biomarkers will guide development 

of novel and effective immunotherapies for CRC 

patients. 

 

MATERIALS AND METHODS 
 

Method summary 

 

We downloaded TCGA data and performed differential 

analysis to obtain differentially expressed genes. The 

ImmPort tool was used to identify differentially 

expressed immune related genes (IRGs). The Database 

for Annotation, Visualization and Integrated Discovery 

(DAVID) was employed to perform GO and KEGG 

enrichment analyses for the differentially expressed 

IRGs. The STRING database was used to construct a 

protein interaction network (PPI) for the differentially 

expressed IRGs. The CBioportal tool was used to create 

co-expression networks and mutation analysis for 

differentially expressed IRGs. In addition, we 

performed gene set enrichment analysis for the 

differentially expressed IRGs. Differentially expressed 

TFs in samples from CRC patients were identified, and 

the transcription factor-immune gene regulatory 

network was constructed. Finally, independent 

prognostic analysis and immune cell correlation 

analysis were performed to construct IRGPI and 

determine the relationship between immune cell 

infiltration and IRGPI. 

 

Data collection and clinical specimen  
 

The Cancer Genome Atlas Program (TCGA: https:// 

cancergenome.nih.gov/), contains large and 

standardized clinical data for many types of cancer. It is 

therefore used for high-throughput genomic profiling 

techniques to study the mechanisms of cancers. From 

this database, we downloaded the transcriptome 

profiling data of all CRC samples (including 398 CRC 

tumor samples and 39 normal control samples) and the 

corresponding clinical information. This information 

was screened and used to analyze the survival time, 

survival status, tumor stage, metastasis status and age 

after exclusion of incomplete dat. ImmPort is a platform 

that accurately and timely provides immunological data, 

including IRGs for cancer research. From this website, 

we downloaded the IRGs that have been validated to be 

involved in immunity for further analysis [64]. 

 

Differential gene analysis 
 

The transcriptome data was initially collated and 

normalized. Next, the limma package in R software was 

used to perform differential gene analysis using the log2 | 

fold change | > 1 and the false discovery rate (FDR) < 

0.05 as the cutoff values by to obtain a list of significantly 

differentially expressed genes in the expression matrix. 

Volcano plots were created using the ggplot2 package 

[65], and differential gene expression heatmaps were 

drawn after homogenization of values using the pheatmap 

package. Finally, differentially expressed immune genes 

(IRGs) were extracted from DEGs. 

 

Differential immune gene analysis 
 

The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) v6.8 (https://david. 

ncifcrf.gov) is a comprehensive bioinformatics database 

that integrates a large amount of biological data and 

practical analysis tools for functional annotation of 

large-scale protein or genes [66, 67]. This database was 

used for GO and KEGG enrichment analyses to identity 

differentially expressed immune genes, and GO and 

KEGG bubble plots were drawn with the ggplot2 

package of R software. The clinical information in the 

expression profile file data was extracted and used to 

identify clinically relevant immune genes for correlation 

analysis with the survival package in R software. The 

most significant genes were used to draw a forest map. 

The clinically relevant immune genes were subjected to 

GO and KEGG analysis in the DAVID database as 

previously indicated. STRING (Version: 11.0 

https://string-db.org/) database integrates and scores the 

interactions among proteins using computational 

predictions. It also helps to visualize the intrinsic links 

among immune genes [68]. After construction of a PPI 

network of the differentially IRGs, the Cytoscape (v 

3.7.0) [69] software was used visualize the interactions. 

The GO pathway networks of these immune genes were 

drawn using the BiNGO plugin [70]. CBioportal is a 

novel model based on TCGA and Gene Expression 

Omnibus (GEO https://www.ncbi.nlm.nih.gov/geo/), 

and other large sample cancer genome projects, and 

provides visualization tools to study and analyze cancer 

gene data such as expression profiles and clinical 

prognostic correlations [71, 72]. Based on co-expression 

and mutation analyses of differential immune genes in 

this database, the genes with high mutation rate and 

interacting genes were screened for further analysis.  

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org/
https://www.ncbi.nlm.nih.gov/geo/
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Gene set enrichment analysis  
 

Gene expression data of CRC was imported into GSEA 

4.0.1 (http://software.broadinstitute.org/gsea/index.jsp), 

and then analyzed by omics predictions. The pathways 

and molecular mechanisms associated with them were 

then further explored. The Hallmark with KEGG gene 

sets summarizes and represents specific well-defined 

biological states or processes that, through 

computational methods, show coherent expression. 

Each analysis process was performed 1,000 times using 

the weighted enrichment statistics method. Enriched 

gene sets with family-wise error rate (FWR) < 0.05 and 

false discovery rate (FDR) < 0.25 were considered 

statistically significant.  

 

TF analysis and TF-IRGs regulatory network 
 

Cistrome Cancer (http://cistrome.org/CistromeCancer/), 

a comprehensive database of expression profiles and 

public ChIP-seq profiles from TCGA, predicts target 

genes and enhancer profiles of TF in TCGA cancer 

types [73]. Validated transcription factors were 

downloaded (318 in total, P < 0.05) with statistical 

relevance to the tumor. These data were combined and 

the differentially expressed TF were used to draw 

expression heat map and volcano map. A correlation 

test was performed based on the TF, combined with 

prognosis-related immune genes, and the cor cutoff 

criterion was set to 0.4, and the p-value screening 

criterion was set to 0.001. These data were used to 

construct a transcription factor-immune gene regulatory 

network. The data were mapped with Cytoscape, and 

the most correlated modules were selected using the 

MCODE plugin [74]. 

 

Independent prognostic analysis and evaluation 
 

We collected clinical information of 398 patients. A 

total of 60 patients who did not survive beyond 3 

months and whose clinical information was incomplete 

were excluded to reduce the interference of unrelated 

factors. A clinical correlation analysis was then 

performed on 338 patients. After analyzing the 

correlation between the clinically relevant immune 

genes and each clinical trait, univariate and 

multivariate independent prognostic forest plots were 

constructed for the immune genes and clinical traits 

using the survival package under the condition that 

only the effect of a single trait on survival and the 

effect of multiple factors on survival were considered 

comprehensively. In reference to the median 

prognostic index (PI), patients were grouped to high- 

and low-risk groups. Similarly, survival models were 

constructed with the survival package of R software 

based on the grouping files of PI values to assess the 

performance of PI on different subtypes of CRC. 

Multivariate analysis was performed based on IRG, 

and integrated IRG was used as an independent 

prognostic indicator to create IRGPI. Subsequently, 

risk curves for the high and low-risk groups were 

plotted using the pheatmap package. IRGPI was 

constructed by summing the expression of the central 

immunity genes with the multiplication Cox regression 

coefficient. To assess the validity of the model, group 

files were calculated and ROC curves were plotted 

with the survivalROC package. 
 

Immune cell correlation analysis 
 

Tumor Immune Estimation Resource (TIMER https:// 

cistrome.shinyapps.io/timer/), is a comprehensive 

database containing immune cell infiltration data for 

various tumors. The infiltration level of six immune 

cells (B cells, CD4 + T cells, CD8 + T cells, 

Neutrophils, Macrophages and Dendritic cells) was 

obtained from the TCGA and other publicly validated 

databases containing tumor information. This platform 

was used in this study [75, 76]. Data on immune cell 

infiltration in tumors was downloaded from TIMER, 

typed them jointly with central immune gene and risk 

value files. These data were used to construct 

correlation graphs for the relationship between immune 

cells and IRGPI, P < 0.05 was considered statistically 

significant. 
 

Statistical analysis 
 

The data were processed, analyzed, and presented using 

the R software and its associated software packages. 

Our research results were complemented and validated 

with practical and accurate databases. The performance 

of the prognostic index was evaluated using the area 

under curve (AUC) value of the survival ROC curve 

[77]. Clinical phenotypes were compared using 

independent t-tests. p < 0.05 was considered statistically 

significant. 
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