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INTRODUCTION 
 

Lung cancer is the leading cause of cancer deaths 

worldwide. Human lung cancers are classified into two 

major histologic types, small-cell lung cancer and non-

small-cell lung cancer (NSCLC), the latter comprising 

several subtypes. Previously, lung squamous cell 

carcinoma was the predominant form of NSCLC, but in 

the last few decades it has been replaced by lung 

adenocarcinoma (LUAD). Moreover, LUAD is the most 

common type of lung cancer in women, non-smokers, 

and young people [1]. 

 

Epigenetic changes in tumor tissue are involved in the 

pathogenesis of cancer. DNA methylation is a well-

studied epigenetic alteration in cancer, owing in part to 
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ABSTRACT 
 

KEAP1 regulates the cytoprotection induced by NRF2 and has been reported to be a candidate tumor 
suppressor. Recent evidence has shown that mutations in several driver genes cause aberrant DNA methylation 
patterns, a hallmark of cancer. However, the correlation between KEAP1 mutations and DNA methylation in 
lung cancer has still not been investigated. In this study, we systematically carried out an integrated multi-
omics analysis to explore the correlation between KEAP1 mutations and DNA methylation and its effect on 
gene expression in lung adenocarcinoma (LUAD). We found that most of the DNA aberrations associated with 
KEAP1 mutations in LAUD were hypomethylation. Surprisingly, we found several NRF2-regulated genes among 
the genes that showed differential DNA methylation. Moreover, we identified an 8-gene signature with altered 
DNA methylation pattern and elevated gene expression levels in LUAD patients with mutated KEAP1, and 
evaluated the prognostic value of this signature in various clinical datasets. These results establish that KEAP1 
mutations are associated with DNA methylation changes capable of shaping regulatory network functions. 
Combining both epigenomic and transcriptomic changes along with KEAP1 mutations may provide a better 
understanding of the molecular mechanisms associated with the progression of lung cancer and may help to 
provide better therapeutic approaches. 
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recent developments in techniques for genome-wide 

DNA methylation profiling [2, 3]. DNA methylation is 

the covalent addition of a methyl group to the 5th 

carbon of the cytosine base within the cytosine-guanine 

(CpG)-dinucleotide in DNA. This has been shown to 

change the chromatin structure and affect the binding of 

transcription factors to DNA, and may thus regulate 

gene expression [4]. Recently, a novel DNA 

modification, N-6 methylated deoxyadenosine (m6dA), 

has been discovered in eukaryotic genomes [5]. Despite 

its low abundance in eukaryotes, m6dA is implicated in 

human diseases such as cancer. In NSCLC, several 

DNA methylation changes have been reported in 

association with neoplastic transformation, and some 

have been proposed as potential biomarkers with 

clinical relevance for diagnosis, prognosis, and response 

to therapy [6]. 

 

The KEAP1–NRF2 pathway plays a critical role in 

oxidative stress responses by triggering antioxidant and 

anti-inflammatory effects [7, 8]. In healthy tissue, 

KEAP1 counteracts NRF2 by leading to its degradation 

[9, 10]. After exposure to oxidative stress, KEAP1 is 

inactivated and no longer able to bind and control NRF2, 

which is subsequently stabilized and translocated into 

the nucleus [11, 12]. There, NRF2 promotes the 

transcription of genes encoding detoxification enzymes 

and antioxidant proteins [13]. 

 

Although cytoprotection by NRF2 activation is 

important for cancer chemoprevention in normal and 

pre-malignant tissues, in fully malignant cells NRF2 

activity provides a growth advantage by increasing 

chemoresistance and enhancing tumor cell growth [14]. 

Somatic mutations in KEAP1 lead to activation of  

the NRF2 signaling pathway in various cancers. 

Constitutively abundant NRF2 protein causes the 

increased expression of genes involved in drug 

metabolism, thereby increasing the resistance to 

chemotherapeutic drugs and radiotherapy [15]. In 

addition, over-expression of NRF2 also promotes cell 

proliferation and metastasis [16]. 

 

In this study, we analyzed TCGA (The Cancer 

Genome Atlas) 450k methylation data of LUAD 

patients in order to identify alterations of DNA 

methylation pattern associated with KEAP1 mutations. 

Furthermore, we used TCGA RNA-Seq gene 

expression data of LUAD patients to investigate the 

association of these DNA methylation changes with 

gene expression. Eventually, we identified 8-gene 

biomarker for LUAD patients with mutated KEAP1 
based on aberrant DNA methylation associated with 

KEAP1 mutations, and we evaluated the prognostic 

value of the 8-gene biomarker in several clinical 

datasets. 

RESULTS 
 

The main goal of this study is to identify DNA 

methylation and gene expression changes associated 

with KEAP1 mutations in LUAD. In order to achieve 

this goal, LUAD patient samples that have gene 

mutation, DNA methylation and gene expression data 

were required. The only source that provides such data 

for the same patient simultaneously is TCGA. Therefore, 

we conducted our study using TCGA data and we 

divided the patients into two groups, discovery cohort 

and another group to validate (validation cohort) the 

findings from the discovery cohort. We checked the 

TCGA–LUAD mutation data using the UCSC Xena 

browser and found that, of 544 LUAD patients with 

mutation data, only 98 had KEAP1 mutations (18%). We 

also found that only 77 of 98 KEAP1-mutant patients 

had both DNA methylation and gene expression data. 

TCGA published the mutation and gene expression data 

of 230 LUAD samples in 2014 [17]. Of these 230 

LUAD samples, we found 185 samples have DNA 

methylation data (30 with KEAP1 mutations and 155 

have no KEAP1 mutation) and we considered this group 

of patients as our discovery cohort. Then, we randomly 

selected another 185 LUAD patients (30 have KEAP1 

mutations and 155 have no KEAP1 mutation) with both 

DNA methylation and gene expression data and we 

considered this group of patients as our validation cohort. 

In addition, the frequency of mutation of other common 

driver genes of LUAD, such as TP53 and KRAS, was 

maintained very close between the KEAP1-mutated and 

wild-type groups. Therefore, none of these driver genes 

was considered as a variable that can contribute to 

methylation changes between the two groups. Also, all 

the patients included in the two groups have smoking 

history. So, this eliminated smoking as a contributing 

factor for any methylation changes found between the 

two groups. 

 

Overview of KEAP1 mutations in LUAD 

 

In order to better understand the mutational landscape of 

KEAP1 in LUAD, we used the USCS Xena browser to 

examine the types of mutations and their positions in the 

domain structure of KEAP1 protein. We found that 18% 

(98 of 544) of the patient samples had KEAP1 mutations. 

Among these, 75.5% (74 of 98) had missense mutations, 

while 8.1% (8 of 98) were nonsense mutations, 4.1% (4 

of 98) were splice site mutations, 10.2% (10 of 98) were 

frame-shift mutations, and 2% (2 of 98) were silent 

mutations (Figure 1A). KEAP1 consists of 605 amino-

acids, and 3 main domains with 22 mutations have been 

reported in the BTB (broad-complex, tramtrack, and 

bric-a-brac) domain, 21 in the IVR (intervening region), 

and 42 in the Kelch domain (Figure 1B). Our discovery 

dataset had 30 patient samples with KEAP1 mutations: 
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26 had missense mutations while 4 had truncating 

mutations. 

 

Aberrant DNA methylation is associated with 

KEAP1 mutation in LUAD patients 

 

In order to identify the association of KEAP1 mutations 

with DNA methylation in LUAD patients, we explored 

the differentially-methylated CpG sites between the 

KEAP1-mutated (30 patient samples) and wild-type (155 

patient samples without KEAP1 mutations) LUAD 

samples. A total of 137 differentially-methylated CpG 

sites were found between KEAP1-mutated and wild-type 

tumor samples after Benjamini Hochberg-false 

discovery rate (BH-FDR) adjustment (delta β > |0.2|, P 

<0.05) (Figure 2A, a). We found that 84.67% (116 of 

137) of the CpG sites were hypomethylated, while 

15.33% (21 of 137) were hypermethylated 

(Supplementary File 3) (Figure 2A, b). These findings 

suggest that most of the DNA methylation changes 

associated with KEAP1 mutations are hypomethylation. 

To gain insight on this pattern, we divided the probes 

according to genomic localization, types of transcripts 

and chromosomal position. Genomic regions were 

divided into CpG islands which are genomic regions 

with high frequency of CpG sites; S-shores (regions up 

to 2 kb from CpG island in the south direction); N-

shores (regions up to 2 kb from CpG island in the north 

direction); S-shelves (regions from 2 to 4 kb from CpG 

island in the south direction); N-shelves (regions from 2 

to 4 kb from CpG island in the north direction) and open 

sea, in other words, the rest of the genome. Of these 116 

hypomethylated CpG sites we were able to annotate 105 

to the reference genome and found that 47 (44.7%) were 

in open sea, 20 (19.04%) in island, 19 (18.09 %) in S-

shore,12 (11.4%) in N-shore, 5 (4.7%) in S-shelf, and 2 

(1.9%) in N-shelf; in addition, 100 (95.2%) were in 

coding RNA-transcribed regions, while only five 

(4.76%) were in non-coding RNA transcribed-regions. 

The hypomethylated CpGs were functionally distributed 

as follow: 29 CpG (32.2%) were in promoter region, 19 

(21.1%) were in 5′ untranslated region (UTR)/1st exon, 

while 41 (46.6%) were in gene body. Among the 21 

hypermethylated CpG sites, 14 CpG (70%) were in 

promoter region, 2 (10%) were in 5′ UTR)/1st exon, 

while 4 (20%) were in gene body. In addition, 9 (42.8%) 

were in open sea, 8 (38.1%) in island, and 4 (19%) in N-

shore. Besides, 18 of these hypermethylated CpG sites 

were in coding RNA-transcribed regions (Figure 2A, c).  

 

The chromosomal distribution of both hypo and hyper 

methylated CpG sites were listed in Supplementary 

Table 1. Our data showed that DNA methylation in the 

KEAP1-mutated lung adenocarcinoma compared to their 

wild-type counterparts followed a distinct pattern along 

the gene coding sequence, with lower methylation levels 

 

 
 

Figure 1. Overview of genetic changes in KEAP1 in TCGA–LUAD patients. (A) Bar chart showing the types and numbers of mutations 
of KEAP1. (B) OnkoKB-predicted mutation maps (lollipop plots) showing the locations of mutations in the functional domains of KEAP1 
proteins. The lollipops show the locations of the mutations as identified by whole-exon sequencing. 
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Figure 2. Differential methylation analysis of KEAP1-mutated vs wild-type LUAD patients. (A) Graphic showing 450k DNA 
methylation analysis. (a) Differentially-methylated CpG sites in KEAP1-mutated vs wild-type patient samples. (b) Percentages of 
hypomethylation and hypermethylation. (c) Distribution of hypermethylated CpG sites in KEAP1-mutated patient samples according to 
functional genomic distribution, neighborhood context, associated RNA transcripts, and chromosomal location. (d) Distribution of 
hypomethylated CpG sites in KEAP1-mutated patient samples according to functional genomic distribution, neighborhood context, associated 
RNA transcripts, and chromosomal location. (B) Heatmap showing the differentially-methylated CpG sites in KEAP1-mutated LUAD patients 
compared to their wild type counterparts (delta β  >|0.2|, p<0.05 with BH-FDR adjustment). Methylation Beta-values are represented as row 
Z-score. The blue color indicates decreased methylation of CpG while the pink color indicates increased methylation of CpG. The heatmap 
was generated using the ClustVis webtool. 
 

near the transcription start site and gene body while 

higher methylation levels were mostly detected near the 

transcription start site. In addition, majority of 

hypomethylated CpGs were in open sea while majority 

of hypermethylated CpGs were in open sea and island. 

Moreover, the differentially-methylated CpG sites were 

embedded into 96 genes. Gene ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analyses showed that the differentially-

methylated genes were enriched in biological processes 

and pathways related to cellular response to oxidative 

stress such as glutathione metabolism. The methylation 

profiles of 30 KEAP1-mutated and 155 wild-type LUAD 

patient samples were visualized on a heatmap produced 

by unsupervised hierarchical clustering. Major 

differences between the DNA methylation patterns 

enabled cluster analysis to discriminate between sample 

types. Significant differences or trends between KEAP1-

mutated and non-KEAP1-mutated LUAD patient 

samples were detectable at 137 loci (Figure 2B). In 

addition, the overall methylation difference between 

KEAP1-mutated and non-KEAP1-mutated LUAD 

patient samples was highly significant. 

 

To validate the association of KEAP1 mutation with the 

methylation of these CpG sites, we subjected the 

KEAP1-mutated versus normal samples to differential 

methylation analysis. In this data set, a total of 24,412 

CpG sites were found to be differentially methylated 

after FDR adjustment (delta β >|0.2|, P <0.05) (Figure 

3A, a). Of these sites, 10,273 were hypermethylated and 

14,139 were hypomethylated (Figure 3A, b) 

(Supplementary File 4). Among the hypermethylated 

CpG sites, we found that 1,461 (14.2%) were in open 

sea, 5,857 (57%) in island, 1,248 (12.1%) in S-shore, 

1,345 (13.1%) in N-shore, 182 (1.7%) in S-shelf, and 

158 (1.5%) in N-shelf; in addition, 6,708 (65.2%) were 

in coding RNA-transcribed regions, while 639 (6.2%) 

were in non-coding RNA-transcribed regions (Figure 

3A, c). The hypermethylated CpGs were functionally 

distributed as follow: 2,274 CpG (27.3%) were in 

promoter region, 587 (7.05%) were in 5′UTR)/1st exon, 

while 5,464 (65.6%) were in gene body. Among the 

hypomethylated sites, 4,661 CpG (44.7%) were in 

promoter region, 2,561 (24.6%) were in 5′UTR)/1st 

exon, while 3,190 (30.6%) were in gene body. In 

addition, 8,773 (62.7%) were in open sea, 960 (6.8%) in 

island, 1,266 (9%) in S-shore, 1,449 (10.6%) in N-shore, 

848 (6%) in S-shelf, and 788 (5.6%) in N-shelf; in 

addition, 8,205 (58.6%) were in coding RNA-transcribed 

regions, while 1,130 (13.7%) were in non-coding RNA-

transcribed regions (Figure 3A, d). The chromosomal 

distribution of both hypo and hyper methylated  

CpG sites were listed in Supplementary Table 2.  

Overall, DNA methylation in KEAP1-mutated lung 

adenocarcinoma compared to normal tissues followed a 

distinct pattern along the gene coding sequence, with 

lower methylation levels mostly near the transcription 

start site and higher methylation levels mostly at gene 

body. In agreement with various cancers, majority of 

hypermethylated CpGs were in island while majority of 

hypomethylated CpGs were in open sea [18, 19]. 

 

Altogether, the data obtained from the KEAP1-mutated 

lung adenocarcinoma followed the previous reports of 

Genome-wide DNA methylation patterns in lung 

cancer [19, 20]. In addition, KEAP1-mutated lung 

adenocarcinoma showed distinctive DNA methylation 

pattern which make it distinguishable from their wild-

type counterparts. 

 

Also, we used unsupervised hierarchical clustering to 

visualize the major differences between the DNA 

methylation patterns of 30 KEAP1-mutated LUAD 

patient samples and 32 from normal individuals. The 

heatmap showed clustering of the top 521 differentially-

methylated loci (Figure 3B). 

 

Then, integration analysis was performed between the 

differentially-methylated CpG sites found in the 

mutated KEAP1 versus the wild-type and mutated 

KEAP1 versus normal datasets in order to identify 

overlapping differentially-methylated CpG sites. We 

found 109 common differentially-methylated CpG sites 

(representing 80 genes) (Figure 4). Interestingly, 94 of 

these sites were hypomethylated and 15 were 

hypermethylated. Surprisingly, we found several 

differentially-methylated CpG sites that belonged to 

several bonafide NRF2 target genes such as GPX2, 

TXNRD1, GCLC, PGD, SRXN1, AKR1C1, AKR1C2, 

ABCC1, ABCC2, MAFG, and SQSTM1 (Table 1). 

KEAP1 dysfunction and increased NRF2 accumulation 
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Figure 3. Differential methylation analysis of samples from KEAP1-mutated LUAD patients vs normal samples. (A) Graphic 
showing 450k DNA methylation analysis. (a) Graphic showing percentage of differentially-methylated CpG sites in KEAP1-mutated LUAD 
patients compared to normal samples. (b) Percentages of hypomethylation and hypermethylation. (c) Distribution of hypermethylated CpG 
sites in KEAP1-mutated patient samples according to functional genomic distribution, neighborhood context, associated RNA transcripts, and 
chromosomal location. (d) Distribution of hypomethylated CpG sites in KEAP1-mutated patient samples according to functional genomic 
distribution, neighborhood context, associated RNA transcripts, and chromosomal location. (B) Heatmap showing the differentially-
methylated CpG sites in KEAP1-mutated LUAD patients compared to normal individuals (delta β >|0.4|, p <0.05 with BH-FDR adjustment). 
Methylation Beta-values are represented as row Z-score. The blue color indicates decreased CpG methylation while the pink color indicates 
increased CpG methylation. The heatmap was generated using the ClustVis webtool. 

 

in the nucleus have been frequently reported in lung 

cancer. Moreover, changes in the KEAP1–NRF2 

pathway and their association with tumor progression, 

resistance to chemotherapeutic drugs, and poor 

prognosis have been well documented [21]. In addition, 

we found cg10880599, cg04909257, cg04806177, 

cg23230478, cg00926657, cg03331715, cg02731193, 

and cg19648686 that belonged to the GPX2, PGD, 
MSRB1, ACOT7, MAFG, TXNRD1, GCLC, and 

AKR1C1 genes, respectively, in the top list of 

hypomethylated CpG sites. On the other hand, we found 

Cg25693302 and Cg15733882 of the NEDD4L gene as 

well as Cg02370667 and Cg22167353 of the NECAB2 

gene, besides Cg06632214 and Cg00474080 that 

belonged to the IFITM1 and HCG21 genes, respectively, 

in the top list of hypermethylated CpG sites. 

 

In silico analysis identifies the known and putative 

NRF2 binding sites in the promoter regions of 

differentially-methylated genes 

 

As KEAP1 mutations lead to enhanced NRF2 activity, 

we investigated whether the differentially-methylated 

genes are potential NRF2 targets. To this end, we used a 

transcription factor perturbation-related gene expression 

database – enrichr (http://amp.pharm.mssm.edu/Enrichr/) 

– to determine whether 80 of these differentially-

methylated genes were downregulated when NRF2 was 

 

 
 

Figure 4. Integrative analysis to cross-check the differentially-methylated CpG sites in KEAP1-mutated LUAD. Venny diagram 
showing the differentially-methylated CpG sites overlapping between KEAP1-mutated versus wild-type and KEAP1-mutated versus normal 
datasets. 

http://amp.pharm.mssm.edu/Enrichr/
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Table 1. The top listed differentially-methylated CpG sites between KEAP1-mutated and wild-type LUAD patient 
samples. 

Hypomethylated CpG sites Hypermethylated CpG sites 

CpG name Gene symbol Delta Beta P value CpG name Gene symbol Delta Beta P value 

cg10880599 GPX2 -0.38 1.60E-10 Cg25693302 NEDD4L 0.275 3.2488E-11 

cg04909257 PGD -0.36 3.11E-09 Cg06632214 IFITM1 0.259 2.0889E-05 

cg04806177 MSRB1 -0.35 1.94E-07 Cg02370667 NECAB2 0.241 2.7964E-07 

cg23230478 ACOT7 -0.348 7.81E-08 Cg15733882 NEDD4L 0.231 2.1958E-10 

cg00926657 MAFG -0.343 2.79E-09 Cg22167353 NECAB2 0.229 3.7118E-07 

cg03331715 TXNRD1 -0.3437 5.91E-09 Cg00474080 HCG21 0.222 3.5719E-05 

cg02731193 GCLC -0.340 7.64E-08 Cg15245625 NEDD4L 0.220 3.6348E-12 

cg19648686 AKR1C1 -0.333 5.60E-09 Cg00225623 SPATA13 0.214 2.6977E-06 

cg19648686 AKR1C2 -0.333 5.60E-09 Cg04579966 SPATA13 0.213 4.7484E-05 

cg09643186 GPX2 -0.330 1.78E-09 Cg14186816 NEDD4L 0.212 2.8999E-11 

cg26155983 GPX2 -0.321 5.74E-08 Cg13656752 STK10 0.210 1.6346E-06 

cg09489844 MAFG -0.320 2.31E-09 Cg03030717 TBC1D30 0.203 0.00037491 

cg18484212 SRXN1 -0.310 1.30E-06 Cg08781140 MYO15B 0.202 0.00014414 

cg23012192 SQSTM1 -0.305 1.07E-06 cg19378330 ABCC2 0.201 9.8216E-05 

cg20372666 HK1 -0.285 8.62E-10     

cg04020792 ATP2A2 -0.277 2.02E-05     

cg19509829 ATP2A2 -0.268 4.97E-06     

cg14420550 RP11-146I2.1 -0.262 2.11E-07     

cg18496841 DLGAP2 -0.254 6.94E-07     

cg01189072 CDK11B -0.250 4.45E-05     

cg05116443 DNAJC5 -0.249 2.58E-06     

 

knocked out, knocked down, or mutated in different cell 

lines and mouse models (Figure 5A, 5B). Intriguingly, 

22 of the 80 differentially-methylated genes were 

downregulated. Further, we found that 11 of them were 

known NRF2 target genes. To identify the putative and 

known antioxidant responsive elements (AREs) (Figure 

5C) in the other 11 genes, we used the LASAGNA-

Search 2.0 web tool [22]. Interestingly, as Figure 5D 

showed positions of NRF2 binding sites (AREs) in the 

promoter regions of human ACOT7, LNOP2, SCNN1A, 
and BRF2 genes, in silico analysis identified putative 

ARE sequences within the –5 kb upstream promoter 

regions of all 11 genes (Supplementary File 5). 

 

Differentially-expressed genes (DEGs) associated 

with KEAP1 mutation in LUAD patients 
 

In order to investigate the effect of changes in DNA 

methylation associated with KEAP1 mutations on  

gene expression, we subjected the discovery data set  

(30 KEAP1-mutated versus 155 wild-type tumor samples) 

to DEG analysis. A total of 6,026 differentially-expressed 

genes (P <0.05) were identified (Supplementary File 6). 

Of these, we found that 2,404 genes were upregulated 

while 3,622 were downregulated (Figure 6A, 6B). Then, 

unsupervised hierarchical clustering was applied using 

the ‘ClustVis’ tool. The major differences between the 

gene expression patterns of KEAP1-mutated and wild-

type LUAD patient samples enabled cluster analysis 

(Figure 6C). The heatmap showed clustering of the top 

DEGs with log Fc> |2|. Then, we integrated the 

differentially-methylated genes (β>|0.2|, P <0.05) with 

the DEGs (P <0.05), and found 36 overlapping genes 

with 50 differentially-methylated CpG sites. In addition, 

30 (38 CpG sites) of these 36 genes were 

hypomethylated, while the remaining 6 (12 CpG sites) 

were hypermethylated (Supplementary File 7). 

 

It has been reported that KEAP1 mutations lead to the 

overexpression of NRF2 and its downstream genes in 

lung cancer. Thus, it was not surprising that we found 

many NRF2 target genes among the top list of 

upregulated genes in KEAP1-mutated LUAD patients 

with log Fc >1.5, including NQO1, GCLM, GCLC, 

AKR1C3, AKR1C2, AKR1C1, GPX2, TXNRD1, ABCC2, 

G6PD, UGDH, TRIM16, TRIM16L, PGD, CY924A1, 

and OSGIN1. Surprisingly, we found that several of the 

NRF2-regulated genes in this list were differentially- 
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methylated (GCLC, GPX2, TXNRD1, AKR1C, AKR1C2, 

SRXN1, PGD, and ABCC2). Most of these had 

hypomethylated CpG sites, except for ABCC2 that was 

hypermethylated at a CpG site within the gene body. 

These findings suggest that DNA methylation 

alterations associated with KEAP1 mutations may 

synergize with NRF2 in regulating gene expression. 

However, we found 9 known NRF2 target genes 

(NQO1, GCLM, AKR1C3, G6PD, UGDH, TRIM16, 

TRIM16L, OSGIN1, and CY924A1) that did not show 

any DNA methylation changes in KEAP1-mutated 

tumor samples. This suggested that these genes are 

primarily regulated by NRF2. Interestingly, OPN3 

showed hypomethylation and overexpression with a 

fold-change of 1.48. OPN3 has not been reported as an 

NRF2 target gene and in silico analysis showed that it 

was not a putative NRF2 target gene. The molecular 

mechanism of OPN3 overexpression remains unclear. 

 

Identification of gene signatures associated with 

KEAP1 mutation in LUAD 
 

In order to identify a DNA methylation and gene 

expression signature for KEAP1-mutated LUAD, we 

first subjected the 36 genes that had differentially-

methylated CpG sites to functional annotation analysis 

using DAVID (Database for Annotation, Visualization 

and Integrated Discovery) and enrichr. Functional 

annotation analysis from GO (Gene Ontology) and 

KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathway prediction using DAVID and enrichr, 

respectively, revealed that the 36 genes were enriched 

(P <0.01) in the following biological processes: 

Response to oxidative stress, Oxidation-reduction 

process, Cellular response to oxidative stress, Cellular 

response to jasmonic acid, and Cellular oxidant 

detoxification (Figure 7A, 7B). In the KEGG pathway 

analysis, we found enrichment (P <0.05) in pathways 

such as Glutathione metabolism, Aldosterone-regulated 

sodium reabsorption, ABC transporters, 

Selenocompound metabolism, Steroid hormone 

biosynthesis metabolism, Vitamin digestion and 

absorption, Thyroid hormone synthesis, and Taste 

transduction. Next, we selected the genes from the top 

three significant GO biological processes (Oxidative 

stress, Oxidation-reduction process, and Cellular 

response to oxidative stress). The selected genes were 

GPX2, GCLC, TXNRD1, AKR1C1, AKR1C2, PGD, 

 

 
 

Figure 5. In silico analysis of NRF2 binding sites. (A) Bar graph showing the top 10 enriched transcription factor perturbation followed 
by expression datasets (highest p value) after the input of the 80 differentially methylated genes using enrichr database. 5 data sets where 
NRF2 was Perturbed among the top 10 enriched terms (highest p value). (B) Heatmap showing the differentially-methylated genes (20 genes) 
that were enriched in any of the top 10 enriched terms. The heatmap shows 15 out of these 20 genes enriched in 5 datasets where NRF2 was 
Perturbed. (C) The NRF2 binding motif as provided by JASPER. (D) Schematic representation of the locations of in silico-predicted NRF2 
binding sites (AREs) in the promoter regions of the human ACOT7, LNOP2, SCNN1A, and BRF2 genes. 
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Figure 6. Differential gene expression analysis. (A) Volcano plot showing the distribution of DEGs between KEAP1-mutated and wild-type 
LUAD patient samples based on significance and fold change. (B) Pie chart showing the percentages of overexpressed and underexpressed 
genes. (C) Heatmap showing the top DEGs between KEAP1-mutated and wild-type LUAD patient samples with Log Fc>|2| and p <0.05. 

 

 
 

Figure 7. Identification of the gene signature for KEAP1-mutated LUAD. (A) Bar chart showing the top significant biological 
processes identified by GO analysis of 36 differentially-methylated genes using the DAVID webtool. (B) Bar chart showing the pathways with 
the top scores identified by KEGG pathway analysis of 36 differentially-methylated genes using the enrichr webtool. (C) Protein-protein 
interaction network analysis of the potential 9-gene signature predicting the functional correlation of the KEAP1–NRF2 axis with genes 
involved in drug metabolism and glutathione metabolic pathways in LUAD. 
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SRXN1, MSRB1, BRF2, ABCC2, and ATP2A2. Then, 

we excluded BRF2 and ATP2A2 as they had an 

expression fold-change < 1. Eventually, 9 oxidative 

stress-related genes with 11 differentially-methylated 

CpG sites were obtained. Three of these sites belonged 

to GPX2 (cg10880599, cg09643186, and cg26155983 

were located in the gene body, 5′ untranslated region 

(UTR)/1st exon, and within 1,500 bp upstream the 

transcriptional start site, respectively, and all were open 

sea), while GCLC, TXNRD1, AKR1C1, AKR1C2, PGD, 

SRXN1, ABCC2, and MSRB1each had only one 

differentially-methylated CpG site: cg02731193, 

cg03331715, cg19648686, cg19648686, cg04909257, 

cg18484212, cg19378330, and cg04806177, 

respectively. Most of these were located in the gene 

body, except for cg03331715 of TXNRD1 that was in 

the 5′UTR. Moreover, GCLC and MSRB1 had N-shore 

differentially-methylated CpG sites, while those 

belonging to TXNRD1, ABCC2, AKR1C1, and AKR1C2 
were open sea sites. Furthermore, SRXN1 had an N-

shelf differentially-methylated CpG, while that 

belonging to PGD was S-Shelf. 

 

In addition to the GO and KEGG analyses, we used the 

STRING v10 database to construct a protein-protein 

interaction (PPI) network of the 9-gene potential 

signature along with the KEAP1 and NRF2 genes to 

reveal the complex associations between these genes. 

The enrichment results, based on the functional 

association between these genes, revealed that the 

majority were closely associated with each other 

through a coordinated interactive network (Figure 7C). 

Thus, PPI network analysis suggested that cross-talk of 
KEAP1 and NRF2 with the 9-gene potential signature 

coordinately drives tumor progression and therapeutic 

resistance in LUAD. 

 

The 11 CpG sites and their corresponding 9 genes 

showed significant differential methylation and gene 

expression between KEAP1-mutated and wild-type 

tumor samples (Figure 8A, 8B). In order to investigate 

the effect of methylation changes of these 11 CpG sites 

on the expression of their corresponding genes and 

examine the validity of these CpG sites as a basis for a 

gene expression signature specific for KEAP1-mutated 

LUAD, we applied Spearman’s correlation to the 

methylation beta values of these 11CpG sites and 

expression values of their corresponding genes across 

185 LUAD patient samples. Interestingly, we found a 

strong negative correlation between methylation of the 

CpG sites cg10880599, cg09643186, and cg26155983 

and the expression of GPX2 as well as cg02731193, 

cg03331715, cg19648686, cg19648686, cg04909257, 

cg18484212, and cg04806177 and the expression of 

GCLC, TXNRD1, AKR1C1, AKR1C2, PGD, SRXN1, 

and MSRB1, respectively. However, we found a strong 

positive correlation between the methylation of 

cg19378330 and the expression of ABCC2 (Figure 8C). 

 

Validation of DNA methylation and gene expression 

changes associated with KEAP1 mutation in LUAD 

 

To validate the DNA methylation alterations associated 

with KEAP1 mutations in LUAD, we subjected the 

validation data set to differential methylation analysis 

(β>|0.2|, p <0.05) with BH-FDR adjustment. 

Interestingly, we found 626 differentially-methylated 

CpG sites with 582 hypomethylated and 44 

hypermethylated (Supplementary File 8). This finding 

confirmed our result from the discovery data set that 

KEAP1 mutation in LUAD was associated with DNA 

hypomethylation. Then, we specifically looked into the 

DNA methylation changes of these 11 candidates CpG 

sites. Consistent with our finding in the discovery data 

set, cg10880599, cg09643186, and cg26155983 that 

belonged to GPX2, as well as cg02731193, 

cg03331715, cg19648686, cg19648686, cg04909257, 

cg18484212, and cg04806177 that belonged to GCLC, 

TXNRD1, AKR1C1, AKR1C2, PGD, SRXN1, and 

MSRB1, respectively, showed hypomethylation (Table 

2). Also, only cg19378330 of the ABCC2 gene showed 

hypermethylation. Next, we used the LinkedOmics 

database to validate the overexpression of these 9 

candidate genes in KEAP1-mutated LUAD. We applied 

differential gene expression analysis to 83 KEAP1-

mutated and 478 wild-type LUAD patient samples 

using the LinkedOmics database (Supplementary File 

9). Of these 9 candidate genes, 8 were significantly 

overexpressed with log Fc>1.5 (GPX2, GCLC, 

TXNRD1, AKR1C1, AKR1C2, PGD, SRXN1, and 

ABCC2). MSRB1 was excluded from the KEAP1 

mutation-based gene signature as we could not find 

expression values for MSRB1 in the LinkedOmics 

database. Therefore, the 8-gene represents a KEAP1 

mutation-based DNA methylation and gene expression 

signature for LUAD. 

 

The 8-gene signature is significantly associated with 

poor survival in LUAD patients 
 

To evaluate the prognostic power of the 8-gene signature 

in patient survival, we first analyzed overall survival  

in the TCGA–LUAD cohort using the SurvExpress 

database. A total of 475 patient samples were divided 

into high-risk (n = 152) and low-risk groups (n = 323) 

based on their expression patterns (Figure 9A). The 

separation of risk groups was optimized using the 

‘maximize risk group’ option provided in the 

SurvExpress database. The survival probability estimates 

in the two risk groups were visualized as Kaplan-Meier 

plots. Strikingly, overall survival analysis revealed that 

the patients in the high-risk group had poorer survival 
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Figure 8. Effect of DNA methylation changes at the 11 CpG sites on the expression of their corresponding genes. (A) Box plots 
showing the differential methylation of 11 CpG sites between KEAP1-mutated and wild-type tumor samples. These 11 sites belong to the  
9 genes included in the top 3 oxidative stress-related GO biological processes obtained by functional annotation analysis of the differentially-
methylated genes (WT, wild-type; KEAP1.Mut, KEAP1-mutated). (B) Box plots showing the differential expression of the 9 differentially 
methylated genes between KEAP1-mutated and wild-type LUAD patient samples. Center lines show the medians; box limits indicate the 25th 
and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; 
outliers are represented by dots (n =100, 76, 16, 76, and 41 sample points). Boxplots were generated using BoxBlot R webtool.  
(C) Scatterplots showing the Spearman’s correlation between the methylation of the 11 CpG sites and the expression of their corresponding 
genes. A strong negative correlation can be seen between the methylation of all the CpG sites and the expression of their corresponding 
genes except for cg19378330 of the ABCC2 gene, which shows a strong positive correlation. 
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Table 2. The differential methylation of 11 CpG sites and the differential gene expression of their corresponding 9 
genes in both discovery and validation data sets. 

CpG Name Gene symbol 
Delta beta values in 

discovery group 

Delta beta value in 

validation group 

Log FC in 

discovery group 

Log FC in 

validation group 

cg10880599 GPX2 -0.379498 -0.34886 5.51 5.189 

cg09643186 GPX2 -0.330261 -0.28731 5.51 5.189 

cg26155983 GPX2 -0.321305 -0.2569 5.51 5.189 

cg04909257 PGD -0.359443 -0.22641 1.68 1.72 

cg04806177 MSRB1 -0.348812 -0.24681 1 - 

cg03331715 TXNRD1 -0.343764 -0.32573 2.9 2.15 

cg02731193 GCLC -0.340017 -0.23975 1.81 2.02 

cg19648686 AKR1C2 -0.333994 -0.20816 6.45 6.22 

cg19648686 AKR1C1 -0.333994 -0.20816 5.31 5.27 

cg18484212 SRXN1 -0.310776 -0.23541 2.37 2.35 

cg19378330 ABCC2 0.201648 0.234805 3.94 3.46 

 

(HR = 2.25; CI = 60.38; p = 1.378×10-7) than the low-risk 

group (Figure 9B). Moreover, optimizing risk group 

separation of the Rousseaux (GSE30219) cohort (85 

LUAD patient samples out of 264 lung cancer patient 

samples) showed that LUAD patients in the high-risk 

group (n=54) with increased expression of the 8-gene 

signature had poorer survival (HR = 2.15; CI = 53.48; 

p = 0.03426) than the low-risk group (n=31) (Figure 9C). 

 

 
 

Figure 9. Eight-gene signature predicts poor survival in three independent cohorts. (A) Box plots showing the expression 
differences of the 8-gene signature in low (green) and high (red) risk groups of TCGA–LUAD patients (y-axis, gene expression value of each 
gene). (B) Kaplan-Meier survival plots showing that high expression of the 8-gene signature was associated with poor survival in TCGA–LUAD 
patients. (C) Rousseaux (GSE30219) cohort. (D) Bild Nevins Lung (GSE3141) cohort. Red, high-risk group; green, low-risk group; top right 
corner inset, numbers of high- and low-risk samples (+, numbers of censored samples) and concordance index (CI) of each risk group (x-axis, 
time (months); y-axis, overall survival probability; HR, hazard ratio; Conf.Int. confidence interval). 
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In addition, we analyzed the overall survival in the Bild 

Nevins Lung (GSE3141) cohort available in the 

SurvExpress database. After optimized risk group 

separation, a total of 57 LUAD patient samples out of 

255 lung cancer patient samples included in the cohort 

were divided into high-risk (n = 11) and low-risk groups 

(n = 46) based on their expression patterns (Figure 9D). 

The survival probability estimates in the two risk groups 

were represented as Kaplan-Meier plots. Similarly, 

overall survival analysis showed that the patients in the 

high-risk group had poorer survival (HR = 3.44; 

CI = 55.23; p = 0.002362) than the low-risk group. 

 

DISCUSSION 
 

To the best of our knowledge, this is the first study to 

demonstrate the DNA methylation changes associated 

with KEAP1 mutations and their effect on gene 

expression in LUAD patients. Mutations in the 

KEAP1_NRF2 pathway are known to be involved in 

malignant transformation in various cancer types [23]. It 

has been shown that KEAP1 gene mutations occur in 

~20% of NSCLCs [23]. KEAP1 mutations lead to 

constitutively active NRF2, enhanced transcriptional 

induction of antioxidants, xenobiotic metabolism 

enzymes, drug efflux pumps, and the subsequent 

protection of cancer cells against chemotherapeutic drugs 

[24]. Here, we showed that 18% of the TCGA–LUAD 

patient samples had KEAP1 mutations. However, a recent 

study on tumor tissue from 1,391 NSCLC patients using 

next-generation sequencing, reported KEAP1 mutations 

in 157 patients (11.3%) and identified up to 134 different 

mutations [25]. Our analysis demonstrated that KEAP1 

mutations affected the DNA methylation pattern in 

LUAD, most of which were hypomethylation (84.67%), 

and 44.7% of the hypomethylation events occurred at 

open sea CpG sites. Consistent with our results, Chen  

et al., reported that KEAP1 mutations in LUAD play a 

role in genome-wide open sea hypomethylation [26]. 

Somatic mutations of TP53, one of the well-studied 

tumor suppressors, are associated with DNA methylation 

changes. It has been reported that polymorphism at codon 

72 rs1042522 of TP53, a polymorphism known to affect 

the somatic mutation rate in human carcinomas, is 

associated with higher DNA methylation [27]. Moreover, 

the DNA methylation landscape can be affected by 

mutations in epigenetic modifying enzymes such as 

SETD2, the H3K36me3 writer [28]. Furthermore, 

mutations in driver genes may perturb the transcriptional 

circuitry. Such perturbation can aberrantly activate or 

inactivate DNA-binding proteins causing DNA 

methylation changes near their binding sites [29, 30]. 

 

 
 

Figure 10. Schematic diagram summarizing the findings of this study. DNA methylation alterations associated with KEAP1 mutations 
may synergize with NRF2 in regulating gene expression. NRF2-targets, the 8-gene signature, showed low CpG methylation but elevated gene 
expression levels in LAUD patients with mutated KEAP1. 
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The locations of the differentially-methylated CpG sites 

between KEAP1-mutated and wild-type LUAD tumor 

samples varied among promoter, 5′UTR, 1st exon, and 

gene body. In agreement with the findings of Varley et. 

al., we found that the correlation between CpG 

methylation and gene expression depends on the 

genomic context [31] 

 

This is evidenced by the recent finding that BRAF 

V600E and KRAS G13D mutations in colon 

adenocarcinoma upregulate the transcription factors 

MAFG and ZNF304, respectively, resulting in targeted 

promoter CGI hypermethylation near the MAFG and 

ZNF304 binding sites [32, 33]. Finally, several 

biological processes that alter DNA methylation at 

specific sites have been documented recently, and driver 

gene mutations that promote these DNA methylation-

altering processes may change DNA methylation at 

affected sites. For example, cellular oxidative stress 

produces hypermethylation at the promoters of low-

expression genes [34]; hypoxia reduces 5-methyl-

cytosine hydroxylase activity, leading to 

hypermethylation at targeted sites [35]; hypoxia reduces 

TET activity, leading to hypermethylation at targeted 

sites [35]; and cell proliferation causes aberrant DNA 

methylation to accumulate in the promoters of polycomb 

group target CpG. In addition, O′Hagan et al. 

demonstrated that induced cellular oxidative stress 

recruits DNA methyltransferase 1 (DNMT1) to damaged 

chromatin. DNMT1 becomes part of a complex(es) 

containing DNMT3B and members of polycomb 

repressive complex 4 [34]. Promoters enriched in this 

complex have histone mark changes and DNA 

hypermethylation which lead eventually to 

transcriptional silencing. Paradoxically, this finding by 

O′Hagan et al. could give an explanation for the noted 

DNA hypomethylation associated with KEAP1 mutation 

in LUAD. As we noted earlier, KEAP1 mutations in 

LUAD result in higher activity of NRF2 and the 

consequent overexpression of its downstream genes that 

play a major role in reducing cellular oxidative stress, 

which ultimately may result in hypomethylation of the 

reported CpG sites. GO and KEGG pathway analysis of 

the differentially-methylated genes in KEAP1-mutated 

LUAD patient samples identified biological processes 

and pathways involved in reducing oxidative stress. 

Also, this may suggest the presence of a positive 

feedback loop between cellular oxidative status and 

methylation of these CpG sites as well as the expression 

of their corresponding genes. 

 

Also, we identified a 8-gene expression signature based 

on DNA methylation alterations associated with KEAP1 

mutations in LUAD patients. The 8 genes (GPX2, 

GCLC, TXNRD1, AKR1C1, AKR1C2, PGD, SRXN1, 

and ABCC2) showed methylation changes across one or 

more CpG sites. Further, we tested this signature in  

3 independent clinical cohorts, including the TCGA–

LUAD cohort. Kaplan-Meier survival plots generated 

for all 3 cohorts showed that higher expression of this 

gene signature is significantly correlated with poor 

survival outcomes. 

 

Recently, it has been suggested that GPX2 might be an 

important predictor for the prognosis of esophageal 

squamous cell carcinoma and a potential target for the 

intervention and treatment of this disease [36]. In 

addition, it has been shown that a high GCLC level in 

tumor tissue is associated with a poor prognosis of 

hepatocellular carcinoma after curative resection [37]. 

Also, high mRNA expression of GCLC in cancer tissue 

has been suggested as a potential predictor of cisplatin 

resistance in lung adenocarcinoma patients [38]. 

Moreover, TXNRD1 overexpression has been reported in 

many human malignancies and functions as a prognostic 

factor for many tumors, such as oral squamous cell 

carcinomas, lung cancer, breast cancer, astrocytomas, 

and hepatocellular carcinoma [39]. Furthermore, Tian  

et al. indicated that AKR1C1 plays an important role in 

the development and progression of small-cell lung 

cancer and may represent an independent biomarker for 

assessment of the primary prognosis and therapy of 

small-cell lung cancer [40]. In addition, it has been 

suggested that AKR1C1 was related to drug resistance 

and targeting AKR1C1 might be an alternative therapy 

method for SCLC patients [41]. Moreover, it has been 

stated that lowering the expression of AKR1C1 may 

inhibit proliferation and migration leading to reduction 

of drug resistance; in particular, Silencing AKR1C1 

could suppress tumor growth and invasion, and also 

decrease the resistance to regular chemotherapy and 

radiotherapy [40]. Additionally, AKR1C2 may be 

considered as one of the biomarkers that indicates 

cisplatin resistance and may be act as one of the 

effective molecular targets for rescuing cisplatin 

sensitivity [42]. In agreement with our finding, Namani 

et al, have identified a gene expression signature that 

includes TXNRD1, AKR1C1, AKR1C2, and SRXN1 
along with other genes in head and neck squamous cell 

cancer and non small cell lung cancer [43, 44]. 

Interestingly, they found that higher expression of this 

gene signature is associated with poor survival and drug 

resistance. Moreover, it has been reported that SRXN1 

promotes cell invasion, migration in cervical cancer via 

activating the Wnt/β-catenin signaling pathway, and 

could be a promising tool for the development of better 

therapeutic strategies for cancer prevention and 

treatment [45]. Recent work suggested that 6-

phosphogluconate dehydrogenase (6PGD), the key 

enzyme of oxidative pentose phosphate pathway (PPP), 

could act as a potential therapeutic target to enhance 

chemosensitivity in cervical cancer [46]. In addition, 
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Becard et al. identified PGD as a potentially important 

pro-metastatic driver gene in pancreatic ductal 

adenocarcinoma [47]. Several studies showed that single 

nucleotide polymorphisms (SNPs) of the ABCC2 gene 

are associated with altered distribution, metabolism and 

elimination of a plethora of drugs in several types of 

cancer [48–50]. Furthermore, Tumor characterized by 

overexpressing ABCC2 protein has shown regression in 

size upon antisense ABCC2 expression in combination 

with chemotherapy due to chemosensitization; for 

instance, Tumor size decreased when adenovirus 

expressing antisense ABCC2 has been directly injected 

into HepG2 tumors in nude mice [51]. Here, we 

identified for the first time a gene expression signature 

based on the DNA methylation alterations associated 

with KEAP1 mutations in LUAD. 

 

CONCLUSIONS 
 

In conclusion, we have described the changes in DNA 

methylation associated with KEAP1 mutation in LUAD. 

In addition, we have illustrated a potential synergistic 

role between DNA methylation alterations associated 

with KEAP1 mutations and the transcription factor 

NRF2 which eventually lead to the overexpression of 

some NRF2 target genes. This finding may provide a 

better understanding of the molecular mechanisms 

associated with lung cancer progression and drug 

resistance. Also, we have identified a signature based on 

DNA methylation aberration and gene expression for 

KEAP1-mutated LUAD (Figure 10). This signature may 

be used in the future as potential biomarker with clinical 

relevance for the diagnosis, prognosis, and response to 

therapy of LUAD. 

 

MATERIALS AND METHODS 
 

Overall database selection 

 

The Cancer Genome Atlas (TCGA) human genome-

wide DNA methylation Level 3 data (Illumina Infinium 

Human Methylation 450 K BeadChips Platform)  

for 460 LUAD along with 32 normal lung tissues  

as well as TCGA RNA-Seq gene expression version2 

level 3 data (Illumina HiSeq platform) for 515 LUAD 

tissues were downloaded from the Broad GDAC 

(Global Data Assembly Centers) Firehose website 

(http://gdac.broadinstitute.org/). All the mutation data 

for KEAP1 used in the present study was obtained from 

the UCSC Xena Browser (https://xenabrowser.net/) 

[52]. We checked the TCGA–LUAD mutation data 

using the UCSC Xena browser and found that, out of 

544 LUAD patients with mutation data, only 98 had 

KEAP1 mutations (18%). We also found that only 77 of 

these 98 KEAP1-mutant patients had both methylation 

and gene expression data (Supplementary File 1). Then, 

we segregated these patients into 3 datasets, the first had 

185 LUAD patients [30 with KEAP1 mutations (16.2%) 

and 155 without KEAP1 mutations (wild-type)] and 

considered them to be the discovery dataset. The second 

dataset had 185 LUAD patients (30 with KEAP1 

mutations (16.2%) and 155 wild-type patients) and we 

marked this dataset as a validation cohort. The third 

dataset had 62 individuals (30 patients with KEAP1 

mutations from the discovery dataset and 32 normal 

individuals) (Supplementary File 2). The comparisons 

of either DNA methylation or gene expression were 

specifically held between KEAP1-mutated and wild-

type (factors other than KEAP1 mutations) tumor 

samples. 

 

DNA methylation analysis 
 

We used TCGA–LUAD genome-wide methylation data 

(level 3) that were generated using the Illumina 

Infinium Human DNA Methylation 450 K array 

platform, which interrogates the methylation status of 

480,000 CpG sites. DNA methylation levels were 

reported as β-values which represent the ratio of 

intensities between locus-specific methylated and 

unmethylated bead-bound probes. The β-value is a 

continuous variable, ranging from 0 (unmethylated) to 1 

(fully methylated). The three data sets were analyzed in 

order to identify the differentially-methylated CpG sites 

between the different groups in each dataset. First, we 

filtered out probes containing single-nucleotide 

polymorphisms, repeat sequencing, and probes in the 

sex-chromosomes from all samples. Then we calculated 

the delta β-value for all the probes between the different 

groups. In order to identify differentially-methylated 

CpG sites, we applied Student’s t test with a p-value 

cutoff of < 0.05 and BH-FDR adjustment, and we also 

used a delta β-value cutoff of > |0.2|. Finally, in order to 

minimize false-positive results and crosscheck the DNA 

methylation changes associated with KEAP1 mutation, 

we integrated the differentially-methylated CpG sites 

between both KEAP1-mutated versus wild-type and 

KEAP1-mutated versus normal datasets using Venny 2.1 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). 

 

RNA-Seq data analysis 
 

TCGA RNA-Seq gene expression version 2 level  

3 data (Illumina Hiseq platform) for 515 LUAD  

tissues were used to subject the discovery dataset to 

differential gene expression analysis. Briefly, Level 3 

transcriptomic data of the discovery dataset were 

normalized by the RSEM method [53]. All gene 

expression values were log-transformed to approximate 

the data to a normal distribution. The DEGs were 

identified by applying Student’s t-test with P < 0.05 

(BH-FDR adjustment). 

http://gdac.broadinstitute.org/
https://xenabrowser.net/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Integrative analysis of DNA methylation and gene 

expression 

 

In order to identify the effect of DNA methylation 

alterations associated with KEAP1 mutations on gene 

expression, we performed an integrative analysis 

between genes that showed differential methylation 

owing to KEAP1 mutation with a delta β-value > |0.2| 

and P value < 0.05 with BH-FDR adjustment, as well as 

genes that showed differential expression between 

KEAP1-mutated and wild-type patient samples with P < 

0.05 (BH-FDR adjustment). The integrative analysis 

was performed using the Venny 2.1 web-based tool  

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). 

 

Functional annotation and protein-protein interaction 

(PPI) network analysis 
 

Functional annotation by GO and KEGG analyses of 

genes that shows differential methylation and differential 

expression simultaneously was performed using the 

updated version of the DAVID v6.8 web tool 

(https://david.ncifcrf.gov/) [54] and the enrichr database 

(http://amp.pharm.mssm.edu/Enrichr/) [55], respectively. 

In addition, PPI network analysis was performed using 

the STRING v10 database (https://string-db.org/) [56]. 

 

Methylation and gene expression correlation 

analysis 
 

All data were quantile normalized before correlation 

testing. Overall, 185 patient samples (30 KEAP1-

mutated and 155 wild-type) were used to detect 

significant correlations. The correlation test statistic was 

based on Pearson’s correlation coefficient between 

DNA methylation beta values and gene expression 

levels. 

 

LinkedOmics database analysis 
 

In order to validate the discovery dataset differential 

gene expression analysis, we carried out differential 

gene expression analysis between KEAP1-mutated and 

wild-type LUAD tumor samples using the Linkedomics 

database (http://www.linkedomics.org/login.php) [57], 

an open access web-based resource that contains multi-

omics data and clinical data for 32 types of cancer and a 

total of 11,158 patients from the TCGA project. 

 

Survival analysis 
 

Cox proportional hazard regression was performed using 

the online survival analysis and biomarker validation tool 

SurvExpress(http://bioinformatica.mty.itesm.mx:8080/Bi

omatec/SurvivaX.jsp) [58]. We considered the data from 

a total of 617 LUAD patients in 3 independent cohorts 

available in the SurvExpress database: the TCGA–LUAD 

cohort (n = 475) with another two cohorts–Rousseaux et 

al., (GSE30219) (n = 86) [59], and Bild et al., (GSE3141) 

(n = 57) [60] for survival analysis. In the case of 

microarray-based survival data, we considered the 

average values for genes whose expression was 

associated with multiple probe sets such as duplicates or 

alternatives. SurvExpress separates the patient samples 

into two groups, high- and low-risk, based on the average 

expression of the 8-gene signature values, and performed 

statistical analysis of survival probability of the two 

groups using the log-rank method. SurvExpress 

implements two methods to generate risk groups. The 

first method (default) generates the risk groups splitting 

the ordered prognostic index (PI) (higher values for 

higher risk) by the number of risk groups leaving equal 

number of samples in each group. For two risk groups, 

this is equivalent to split the PI by the median. The 

second method to produce risk groups uses an 

optimization algorithm from the ordered PI. Briefly, for 

two groups, a log-rank test is performed along all values 

of the arranged PI. Then, the algorithm chooses the split 

point where the p-value is minimum. SurvExpress uses 

the log-rank test to generate Kaplan-Meir plots based on 

the ‘Survival’ package of the R platform, which is 

integrated into its website. Log-rank test P < 0.05 was 

considered to be statistically significant. 

 

Statistical analysis 
 

Details of genome-wide analysis of methylation data are 

provided in the sections above. 

 
P values for both differential CpG methylation and 

differential gene expression analyses were calculated 

using Student’s t-test. The P values were adjusted by 

the Benjamini-Hochberg procedure with an FDR< 0.05 

(q values). Correlations between CpG methylation 

levels and the corresponding gene expression levels 

were calculated using Pearson’s correlation coefficient. 

All the statistical analyses were performed using the 

Python V3.7 programming language. 

 

Abbreviations 
 

KEAP1: Kelch-like ECH-associated protein 1; NRF2: 

nuclear factor erythroid 2-related 2; LUAD: lung 

adenocarcinoma; NSCLC: non-small-cell lung cancer; 

CpG: cytosine-guanine; TCGA: The Cancer Genome 

Atlas; GO: gene ontology; KEGG: Kyoto encyclopedia 

of genes and genomes; DAVID: Database for Annotation, 

Visualization, and Integrated Discovery; PPI: protein-

protein interaction; ARE: antioxidant response element; 

DNMT: DNA methyl transferases; TET enzymes: ten-

eleven translocation methyl cytosine dioxygenase; 

DNMT1: DNA methyltransferase 1. 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://david.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/
https://string-db.org/
http://www.linkedomics.org/login.php
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
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SUPPLEMENTARY MATERIALS 
 

Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1–9. 

 

Supplementary File 1. TCGA KEAP1-mutated LUAD patient samples ID from Xena browser and ID of TCGA KEAP1-
mutated patient samples that have both DNA methylation and gene expression data. 

Supplementary File 2. Discovery dataset (30 KEAP1-mutated vs 155 WT), Validation dataset (30 KEAP1- mutated vs 
155 WT), and the third dataset (30 KEAP1- mutated vs 32 normal) patients ID. 

Supplementary File 3. Differentially-methylated CpG sites from the discovery dataset (30 KEAP1-mutated vs 155 WT) 
with p-value cutoff of < 0.05 (BH-FDR adjustment), and a delta β-value cutoff of > |0.2|. 

Supplementary File 4. Differentially-methylated CpG sites from the third dataset (KEAP1-mutated vs Normal with 
delta β-value > |0.2| and p-value < 0.05 (BH-FDR adjustment)). 

Supplementary File 5. In silico-predicted NRF2 binding sites (AREs) in the promoter regions of   11 differentially-
methylated genes using LASAGNA-Search 2.0 web tool.  

Supplementary File 6. Differentially-expressed genes from the discovery dataset (30 KEAP1-mutated vs 155 WT) with 
p-value < 0.05 (BH-FDR adjustment). 

Supplementary File 7. List of genes that shows both differential methylation and gene expression with p-value < 0.05 
between KEAP1-mutated vs WT LUAD patient samples. 

Supplementary File 8. Differentially-methylated CpG sites from the validation dataset (30 KEAP1-mutated vs 155 
WT) with p-value cutoff of < 0.05 (BH-FDR adjustment), and a delta β-value cutoff of > |0.2|. 

Supplementary File 9. List of differentially-expressed genes between KEAP1-mutated vs WT from LinkedOmics 
database.  
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Supplementary Tables 
 

Supplementary Table 1. Chromosomal distribution of differentially-methylated CpG sites between KEAP1-mutated 
and wild-type LUAD samples. 

Hypo methylated CpG sites Hyper methylated CpG sites 

Chromosome Number Number of CpG sites Chromosome Number Number of CpG sites 

1 8 1 1 

2 6 2 - 

3 1 3 - 

4 2 4 - 

5 6 5 1 

6 4 6 1 

7 3 7 - 

8 18 8 - 

9 3 9 - 

10 6 10 1 

11 2 11 3 

12 10 12 1 

13 3 13 2 

14 6 14 - 

15 1 15 - 

16 12 16 2 

17 4 17 1 

18 2 18 4 

19 1 19 - 

20 6 20 - 

21 1 21 4 

22 - 22 - 
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Supplementary Table 2. Chromosomal distribution of differentially methylated CpG sites between KEAP1-mutated 
LUAD and normal samples. 

Hypo methylated CpG sites Hyper methylated CpG sites 

Chromosome Number Number of CpG sites Chromosome Number Number of CpG sites 

1 1457 1 1063 

2 1044 2 1010 

3 341 3 473 

4 364 4 594 

5 884 5 720 

6 641 6 885 

7 1102 7 751 

8 1050 8 503 

9 208 9 127 

10 994 10 532 

11 1002 11 453 

12 697 12 478 

13 320 13 310 

14 646 14 367 

15 466 15 284 

16 767 16 274 

17 670 17 468 

18 136 18 180 

19 461 19 426 

20 373 20 216 

21 165 21 45 

22 207 22 85 

 


