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INTRODUCTION 
 

A longstanding paradigm in reproductive biology 

revolved around the belief that female mammals are 

incapable of oogenesis after the embryonic period, such 

that a finite pool of oocytes enclosed within granulosa 

cells as follicles is set forth in the ovaries at birth [1]. 

As females age, this pool of follicles is then gradually  

 

depleted throughout juvenile and adult life to the point 

of exhaustion, leading to ovarian failure [2–4]. In 

women, these events culminate in the menopause, 

which is a time in life associated with dramatic changes 

in endocrine signaling in the body due in large part to a 

loss of ovarian follicle-derived estrogen (E2) production 

[5]. As a consequence, women in post-menopausal life 

are at increased risk for developing a diverse spectrum 
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ABSTRACT 
 

Progressive loss of ovarian estrogen (E2) production is a hallmark feature of, if not a driving force behind, 
reproductive aging and the menopause. Recent genetic studies in mice have shown that female germline or 
oogonial stem cells (OSCs) contribute to maintenance of adult ovarian function and fertility under physiological 
conditions through support of de-novo oogenesis. Here we show that mouse OSCs express E2 receptor-α (ERα). In 
the presence of E2, ERα interacts with the stimulated by retinoic acid gene 8 (Stra8) promoter to drive Stra8 
expression followed by oogenesis. Treatment of mice with E2 in vivo increases Stra8 expression and oogenesis, and 
these effects are nullified by ERα (Esr1), but not ERβ (Esr2), gene disruption. Although mice lacking ERα are born 
with a normal quota of oocytes, ERα-deficient females develop premature ovarian insufficiency in adulthood due 
to impaired oogenesis. Lastly, mice treated with reversible ER antagonists show a loss of Stra8 expression and 
oocyte numbers; however, both endpoints rebound to control levels after ceasing drug treatment. These findings 
establish a key physiological role for E2-ERα signaling in promoting OSC differentiation as a potential mechanism to 
maintain adequate numbers of ovarian follicles during reproductive life. 
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of health issues, ranging from hot flushes and cognitive 

dysfunction to osteoporosis and cardiovascular disease 

[6]. In mouse models of aging, interventions that sustain 

oocyte-containing follicle numbers in the ovaries with 

age have been shown to not only extend functional 

reproductive lifespan [7–11] but to also delay the onset 

of aging-associated health problems, such that many 

quality-of-life indices are significantly improved in 

females at very advanced ages [12]. Hence, under 

traditional thinking, the only approach for increasing 

ovarian lifespan would entail slowing the rate of 

depletion of the follicle reserve that female mammals 

are provided with during the perinatal period [13, 14]. 

 

The paradigm that female mammals are incapable of 

generating new oocyte-containing follicles during 

postnatal life was challenged, however, in 2004 by a 

study with mice reporting that adult ovaries contain 

proliferative germ cells which support new oocyte 

production to partially offset a high rate of oocyte loss 

through atresia [15]. Although the conclusions of this 

study were debated [16–21], a rare population of 

mitotically-active, oocyte-generating germ cells, 

initially termed female germline stem cells (fGSCs), 

was subsequently enriched from postnatal mouse 

ovaries and established in culture [22]. Intraovarian 

transplantation-based approaches showed that these 

isolated fGSCs could differentiate into oocytes that 

become follicle-enclosed, complete maturation, and 

fertilize to produce live offspring in natural mating trials 

[22]. Importantly, the method used to test the in-vivo 

functionality of fGSCs in this study [22], and the many 

studies that have followed repeatedly verifying the 

ability of transplanted fGSCs to generate viable 

embryos and offspring [23–29], has served as the 

undisputed gold standard for functional identity testing 

of male germline stem cells for over twenty-five years 

[30–32]. Nonetheless, the generation of eggs, embryos 

and offspring by purified fGSCs following intraovarian 

transplantation was still discounted by some as being 

insufficient to prove the existence, and functional 

properties, of OSCs in mammals [33], suggesting that a 

different bar of proof must be met in studies of males 

versus females [34]. 

 

Three years later, fGSCs – now referred to as oogonial 

stem cells (OSCs) to be consistent with the 

nomenclature of their male counterparts (sperma-

togonial stem cells or SSCs), were purified from 

ovarian cortical tissue of reproductive age women [24]. 

The cells obtained were extensively characterized for 

germline identity and oocyte-forming capacity [24], 

with outcomes that have since been independently 

confirmed by at least three other labs [35–38]. 

Consequently, several OSC-based technologies for 

potentially improving reproductive health and fertility 

are currently being explored [39–43], one of which 

entered clinical study with positive early outcomes 

reported for women seeking pregnancy through assisted 

reproduction [41, 44, 45]. However, other studies 

claiming to counter this now large body of work on 

mammalian OSCs have also been published [46–49], 

which in turn have been questioned by subsequent 

experiments identifying significant issues with the 

approaches taken [27, 50–52]. For example, Zhang et al. 

[46] concluded from their studies of a transgenic 

germline reporter mouse line that OSCs do not exist in 

adult mouse ovaries. Using the same methods reported 

in this study, two independent groups subsequently 

showed that OSCs can be purified from these transgenic 

reporter mice [27, 51] and that the purified cells are 

functional in terms of offspring generation [27]. Other 

studies have raised concerns over the validity of the 

purification strategies used by numerous labs to obtain 

OSCs from adult ovaries [48, 49], and these concerns 

have also been addressed in detail [29, 38, 52, 53]. 

 

One of the most pressing questions surrounding these 

cells related to the role, if any, that OSCs play in adult 

ovaries under physiological conditions [54]. Two recent 

studies with mice have offered important insights into 

this question. Using a tamoxifen-inducible system to 

label POU domain class 5 transcription factor 1 

(Pou5f1)-expressing cells in mouse ovaries, Guo et al. 

[55] produced clear evidence of germ cell proliferation, 

meiotic progression and de-novo oogenesis during 

adulthood. However, expression of Pou5f1 in ovarian 

cells other than OSCs, such as oocytes [56] and resident 

pluripotent stem cells [57], precluded clear quantitative 

assessments of the number of new oocytes formed as 

well as fate-mapping analysis of any newly formed 

oocytes. These limitations were overcome in the second 

study, which employed two different genetic 

technologies – reversible suicide gene-based ablation 

and inducible lineage tracing [29]. To achieve this, the 

promoter of stimulated by retinoic acid gene 8 (Stra8), a 

germ cell-specific gene in mice required for meiotic 

commitment in both sexes [58–63], was used to drive 

transgene expression. In addition to showing a critical 

need for active oogenesis during adult life in 

maintaining the primordial follicle pool, oocytes 

produced during adulthood were genetically fate-

mapped in natural mating trials to the generation of 

viable offspring, which transmitted the transgene 

reporter to second-generation offspring without any 

discernible issues [29]. 

 

To expand on these findings and begin identification of 

the cues and molecular signaling pathways that regulate 

OSC differentiation in vivo in the context of ovarian 

aging, herein we tested if cyclic production of E2 and 

progesterone (P4) by the ovaries might function as a 
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regulatory mechanism for controlling the differentiation 

of OSCs into oocytes during adult life. Our reasoning 

for this was rooted in several prior observations, the 

first of which is that E2 and P4 are already known to 

coordinate many facets of ovarian follicle formation and 

development [64]. Additionally, prior studies with mice 

have shown that the number of oocytes comprising the 

primordial follicle pool fluctuates during the adult 

reproductive cycle, with the highest numbers observed 

just before transition from the E2-dominant follicular 

phase to the P4-dominant luteal phase [65, 66]. Ovarian 

expression of Stra8 is also more frequently detected in 

adult mouse ovaries during the follicular phase of the 

reproductive cycle when E2 levels are highest [67]. By 

combining several in-vitro and in-vivo approaches, in 

conjunction with a variety of genetic and pharmacologic 

tools to enable manipulation of E2-mediated signaling, 

herein we tested if E2, arguably one of the most critical 

hormones associated with adult ovarian function and 

aging-related ovarian failure, serves as a key in-vivo 

regulator of OSC differentiation and postnatal 

oogenesis. 

 

RESULTS 
 

Estrogen induces Stra8 expression and oogenesis 

 

Using reverse transcription (RT)-polymerase chain 

reaction (PCR) and western blot analyses, we identified 

the presence of estrogen receptor-α (ERα) mRNA 

(Figure 1A) and ERα protein (Figure 1B), respectively, 

in OSCs. We also detected mRNAs encoding ERβ and 

PR in OSCs, but levels of these transcripts were more 

difficult to visualize compared with ERα mRNA (Figure 

1A). By western blot analysis, we detected PR protein, 

but not ERβ protein, in OSCs (Figure 1B). Flow 

cytometric analysis of OSCs for co-expression of ERα 

and the germ cell marker, DEAD-box polypeptide 4 

(Ddx4; also referred to mouse vasa homologue or Mvh), 

showed that over 93% of the germ cells sorted and 

identified as OSCs by externalized Ddx4 expression 

[22, 24, 29, 38, 50, 52, 53] were also ERα-positive 

(Figures 1C–1H). 

 

To test for potential interactions of E2-activated ERα 

with meiotic regulatory pathways in OSCs, we next 

used chromatin immunoprecipitation (ChIP)-PCR 

assays to assess the Stra8 promoter, which is one of the 

most well-defined genes in germ cell meiotic 

commitment [58–63]. In E2-exposed OSCs, we found 

that ERα occupied a consensus ER response element 

(ERE) in the Stra8 promoter (Figure 2A). As a 

specificity control, OSCs pretreated with the pure ER 

antagonist, fulvestrant [68], failed to exhibit ERα 

interaction with the Stra8 promoter after E2 treatment 

(Figure 2B). In keeping with these findings, culture of 

OSCs with E2 significantly increased both Stra8 mRNA 

levels (Figure 2C) and in vitro-derived (IVD)–oocyte 

formation (Figure 2D), the latter serving as an 

established bioassay for oogenesis [24, 29, 37, 50]. 

While P4 treatment alone had no effect on Stra8 

expression or in-vitro oocyte formation, the stimulatory 

actions of E2 on both Stra8 expression (Figure 2C) and 

oogenesis (Figure 2D) were nullified by the presence of 

P4. Notably, proliferation of OSCs was unaffected by 

treatment with either steroid alone or with a 

combination of the two steroids together (Figure 2E). 

 

Estrogen and P4 exert opposing actions on in-vivo 

oogenesis 
 

Consistent with the in-vitro modeling data using 

cultured OSCs (Figure 2C), injection of E2 into adult 

wild type mice elevated ovarian Stra8 mRNA levels, 

and this response was abolished by co-injection of P4 

(Figure 3A). In adult transgenic female mice expressing 

green fluorescent protein (GFP) under control of the 

mouse Stra8 promoter (pStra8-GFP) [69], E2 treatment 

increased the number of GFP-positive cells obtained 

following FACS of dissociated ovaries (Figure 3B). 

Since GFP-expressing cells purified from ovaries of 

adult pStra8-GFP female mice represent a premeiotic 

germ cell population intermediate between OSCs and 

oocytes [29, 69], these findings draw a parallel between 

E2-induced transcriptional activation of the Stra8 

promoter in germ cells of adult mouse ovaries in vivo 

(Figure 3B) with outcomes observed using adult ovary-

derived OSCs cultured in vitro (Figures 2A–2D). 

 

In further keeping with in-vitro modeling data using 

cultured OSCs (Figure 2D), approximately 700 more 

oocytes were detected in the primordial follicle pool of 

adult female mice injected with E2 compared with age-

matched, vehicle-treated controls (Figure 3C). Injection 

of P4 alone had no effect on oocyte numbers, but it 

abolished the E2-induced increase in oocyte numbers 

(Figure 3C), mirroring that observed using cultured 

OSCs as a model for oogenesis (Figure 2D). The 

opposing actions of E2 and P4 on oocyte dynamics in 

adult ovaries were restricted to the primordial follicle 

pool in that steroid treatment, alone or in combination, 

did not alter the number of growing or atretic follicles 

(Figures 3D–3F). In addition, E2 remained capable of 

increasing oocyte numbers in female mice at more 

advanced reproductive ages (Figure 3G). 

 

To test if an elevation in endogenous E2 levels could 

reproduce the effects of exogenous E2 injection on 

oogenesis in vivo, we injected adult mice with pregnant 

mare serum gonadotropin (PMSG) to hyperstimulate 

ovarian follicle maturation and E2 secretion. Ovarian 

Stra8 expression and primordial follicle numbers were 
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Figure 1. Steroid receptor expression in purified OSCs. (A, B) Steroid receptor expression profile in OSCs from young adult (2-month-
old) mouse ovaries by RT-PCR (A) and western blot analysis (B). Expression of β-actin is shown as a control for equality of sample loading; +RT 
and –RT represent PCR of RNA samples with and without reverse transcription, respectively (the latter used to rule out target gene 
amplification from potential genomic DNA contamination). Adult ovarian tissue was used as a positive control, as indicated, since all three 
steroid receptors under investigation (ERα, ERβ, PR) are widely known to be expressed in this tissue. (C–G) Flow cytometric analysis of ERα 
protein expression in extracellular Ddx4-positive OSCs; (C) ERα-negative control gate; (D) population shift for ERα-positive cells; (E) population 
shift for extracellular Ddx4-positive cells (see panel G for negative control gate); (F) extracellular Ddx4/ERα dual-positive cells, as shown in the 
upper right quadrant; (G) extracellular Ddx4-negative control gate. (H) Quantification of the percent of OSCs (extracellular Ddx4-expressing 
cells) dual-positive for ERα expression (93.8 ± 0.5%; mean ± SEM, n = 3 independent sorts). 
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significantly increased 48 hours after PMSG injection 

(Figures 3H and 3I). A subsequent injection of human 

chorionic gonadotropin (hCG), which triggers ovulation 

of PMSG-ripened follicles leading to the formation of 

P4-producing corpora lutea, resulted in a reduction in 

both Stra8 expression and oocyte numbers to or below 

those levels observed prior to PMSG injection (Figure 

3H and 3I). These outcomes reinforce the data obtained 

from studies of purified OSCs cultured with steroids in 

vitro (Figures 2C and 2D), and of mice injected with 

exogenous steroids in vivo (Figures 3A and 3C), 

collectively supporting the conclusion that P4 opposes 

the stimulatory actions of E2 on adult oogenesis. 

 

Estrogen-induced Stra8 expression is functionally 

tied to in-vivo oogenesis 
 

To determine the in-vivo relationship, if any, of E2-

induced Stra8 expression to changes in oogenesis, we 

examined the impact of temporally ablating Stra8-

expressing germ cells in the absence or presence of 

exogenous E2 on oocyte numbers using a Stra8 

promoter-driven suicide gene transgenic mouse line 

(pStra8-HSVtk) [29]. This model enables targeted 

disruption of germ cells undergoing meiotic 

commitment associated with transcriptional activation 

of the Stra8 gene, without directly affecting either 

OSCs (‘pre-Stra8’) or existing oocytes (‘post-Stra8’). 

Short-term treatment with the herpes simplex virus 

thymidine kinase (HSVtk) pro-drug, ganciclovir (GCV), 

did not affect primordial follicle numbers in adult 

pStra8-HSVtk mice over a 7-day period, consistent with 

past studies [29]; however, the oogenic response to 

exogenous E2 stimulation was completely abolished in 

pStra8-HSVtk mice pretreated with GCV for 7 days 

prior to E2 injection (Figure 4A). Specificity of this 

outcome was verified using adult pStra8-GFP mice as 

negative controls, in which GCV pretreatment for 7 

 

 
 

Figure 2. Estrogen induces meiotic differentiation of OSCs in vitro. (A) CHiP-PCR analysis of ERα association with a consensus ERE in 
the Stra8 promoter in OSCs cultured without or with E2 (10 nM) for 1, 4 or 6 hours, using anti-ERα–based immunoprecipitation. (B) 
Confirmation of the specificity of the anti-ERα–based immunoprecipitation by pretreatment of OSCs with vehicle (V) or the pure ER 
antagonist, fulvestrant (Ful), prior to exposure to 10-nM E2 for 4 hours. See Figure 9A for additional data on fulvestrant. (C) Changes in Stra8 
mRNA levels in OSCs cultured with vehicle (V), E2 (10 nM), P4 (2 μM) or E2 plus P4 for 24 hours (mean ± SEM, n = 3 independent cultures; 
*P<0.05). (D) Number of IVD-oocytes formed by OSCs treated with V, E2, P4 or E2 plus P4 for 24, 48 or 72 hours (mean ± SEM, n = 3 
independent cultures; *P<0.05). (E) Numbers of OSCs, seeded at an initial density of 2 X 104 cells per well, through 72 hours of culture with V, 
E2, P4 or E2 plus P4. 
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days had no effect on E2-driven increases in primordial 

follicle numbers (Figure 4B). These data further support 

that E2 increases oocyte numbers through a pathway 

involving Stra8 activation. 

 

Estrogen requires ERα to enhance Stra8 expression 

and oogenesis 
 

Since OSCs express ERα (Figures 1A–1G), this may 

indicate an important role exists for this ER isoform in 

regulating OSC differentiation in response to E2. In 

agreement with this, we found that adult gene-mutant 

mice lacking ERα (Esr1-null, Esr1–/–), but not those 

lacking ERβ (Esr2–/–), failed to respond to exogenous 

E2 treatment with an elevation in either ovarian Stra8 

expression (Figure 5A) or oocyte numbers (Figure 5B). 

In addition, primordial follicle numbers in vehicle-

treated Esr1–/– mice were lower than those of vehicle-

treated Esr2–/– mice at the same ages (Figure 5B), 

indicating that ERα deficiency may be a critical

 

 
 

Figure 3. Estrogen enhances ovarian Stra8 expression and oogenesis in vivo. (A) Changes in Stra8 mRNA levels in ovaries of young 
adult WT mice 24 hours after injection of vehicle (V), E2 (0.5 mg/kg), P4 (100 mg/kg) or E2 plus P4 (mean ± SEM, n = 3 mice per group; 
*P<0.05). (B) Yield of GFP-positive germ cells from ovaries of young adult pStra8-GFP mice 24 hours after injection of V or E2 (0.5 mg/kg) 
(mean ± SEM, n = 3 mice per group; *P<0.05). (C–F) Numbers of primordial (C), recently growth-activated (primary; D) and early growing 
(small-preantral; E) follicles, and of degenerative oocytes (F), in ovaries of young adult WT mice 24 hours after injection of V, E2 (0.5 mg/kg), 
P4 (100 mg/kg) or E2 plus P4 (mean ± SEM, n = 8–10 mice per group; *P<0.05). (G) Primordial follicle numbers in ovaries of reproductively 
aged (8-month-old) WT mice 24 hours after injection of V or E2 (0.5 mg/kg) (mean ± SEM, n = 3 mice per group; *P<0.05). (H, I) Changes in 
Stra8 mRNA levels (H) and primordial follicle numbers (I) in ovaries of young adult WT mice 46 hours after injection of PMSG (10 IU) followed 
by hCG injection (10 IU) 16 hours later (mean ± SEM, n = 5–7 mice per group; *P<0.05). 
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regulator of oogenesis under physiological conditions. 

In agreement with this, by 2 months of age Esr1–/– mice 

had developed a premature ovarian insufficiency (POI) 

phenotype of significantly fewer oocytes when 

compared with their wild type (WT) female littermates 

(Figure 5C), along with reduced levels of ovarian Stra8 

expression (Figure 5D). No differences were detected in 

the numbers of primordial follicles or ovarian Stra8 

expression in age-matched adult WT versus Esr2–/– 

mice (Figures 5C and 5D). 

 

Female mice lacking ERα exhibit impaired postnatal 

oogenesis 
 

There are four possible explanations for the POI 

phenotype in young adult Esr1–/– mice: i) abnormalities 

in primordial germ cell (PGC) function during fetal 

development that result in fewer oocytes endowed at 

birth; ii) endowment of a normal quota of oocytes at 

birth that is then depleted more quickly through atresia; 

iii) endowment of a normal quota of oocytes at birth 

that is then depleted more quickly through primordial 

follicle growth activation; or, iv) attenuation of 

postnatal oocyte renewal caused by disruption of E2-

initiated signaling coupled to OSC differentiation. A 

developmental defect in PGC function was tested by 

two approaches. First, we found that expression levels 

of the germ cell marker, Ddx4, and the meiotic marker, 

Stra8, were comparable in ovaries of WT and Esr1–/– 

fetuses at embryonic (e) day 13.5 (e13.5), when peak 

oocyte numbers are formed in developing ovaries 

(Figures 6A and 6B). These results, which indirectly 

suggest that PGC number (Ddx4) and function (Stra8 

expression, meiotic entry) are unaltered by ERα 

deficiency during embryonic ovarian development, 

were supported by direct evidence that the number of 

oocytes endowed in the ovaries of neonatal mice were 

comparable in WT and Esr1–/– females (Figure 6C). In 

addition to being provided with a normal quota of 

oocytes at birth, Esr1–/– mice also showed no difference 

in the levels of postnatal oocyte loss through atresia 

(Figure 6D), or any change in the numbers of immature 

growing follicles as a measure of primordial follicle 

growth activation (Figures 6E and 6F), when compared 

with their WT female littermates. 

 

These outcomes left us to consider the fourth 

possibility, namely that attenuated postnatal oocyte 

renewal drives emergence of the POI phenotype in 
Esr1–/– females as the mice transition from neonatal life 

(normal oocyte endowment) to adulthood (lower oocyte 

reserve). Our observation that ovarian Stra8 expression 

was reduced in adult Esr1–/– females compared with 

age-matched WT littermates (Figure 5D) provided the 

first clue that impaired differentiation of OSCs may be 

occurring in the absence of functional ERα. To directly 

evaluate this, we introduced the pStra8-HSVtk allele 

into Esr1–/– mice, which would allow us to assess if 

Esr1–/– mice exhibit defects in oogenesis by quantifying 

the impact of targeted ablation of Stra8-expressing 

germ cells on oocyte dynamics in the absence or 

presence of ERα. Adult pStra8-HSVtk mice with 

functional ERα (pStra8-HSVtk; WT) exhibited a reduced 

primordial follicle pool after 21 days of GCV exposure 

(Figure 6G), due to a progressive impairment in new 

oocyte input that normally offsets natural oocyte loss 

 

 
 

Figure 4. Stra8 is involved in E2-induced oogenesis in vivo. (A) Primordial follicle numbers in ovaries of young adult pStra8-HSVtk 
mice, pretreated with vehicle (V) or GCV (10 mg/kg) for 7 days, 24 hours after injection of E2 (0.5 m/kg) (mean ± SEM, n = 5–7 mice per 
group; *P<0.05). (B) Effects of vehicle (V) or E2 (0.5 mg/kg) injection on numbers of primordial follicles in ovaries of young adult pStra8-GFP 
mice pretreated without or with GCV (10 mg/kg) for 7 days (mean ± SEM, n = 5–7 mice per group; *P<0.05). 
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over the 3-week treatment period [29]. In contrast, 

treatment of pStra8-HSVtk;Esr1–/– mice with GCV for 

21 days had no effect on oocyte numbers versus 

vehicle-treated pStra8-HSVtk;Esr1–/– mice (Figure 6G). 

This insensitivity of pStra8-HSVtk;Esr1–/– mice to GCV 

exposure is consistent with minimal, if any, ongoing 

Stra8-driven oocyte renewal in ERα-deficient females. 

 

Actions of ERα on Stra8 expression are specific to 

adult female gonads 
 

Given the well-established role of RA-mediated 

signaling in driving Stra8 expression and meiotic 

commitment in germ cells of both embryonic ovaries 

and adult testes [58–63], we next explored if 

disruption in Stra8 expression and gametogenesis 

resulting from an absence of ERα in adult females 

(Figure 5) also occurs in adult Esr1–/– male mice. 

Assessment of testicular Stra8 expression and 

morphology revealed no discernible differences 

between wild type and Esr1–/– males (Figure 7), 

indicating that the role of E2 signaling through ERα in 

controlling germline stem cell activity is apparently 

restricted to females. Since, however, the absence of 

functional ERα had no discernible consequences on 

the ability of embryonic ovaries to generate a normal 

quota of oocytes at birth (Figure 6C), this left us with 

the question of whether RA, which is the principal in-
vivo driver of embryonic oogenesis [58–63], can 

induce differentiation of adult ovary-derived OSCs. In 

contrast to the stimulatory effects of E2 on Stra8 

expression and IVD-oocyte formation in cultured 

OSCs, treatment of OSCs in parallel with RA failed to 

alter either endpoint (Figures 8A and 8B). As an 

assurance control for RA sensitivity and dosing, OSCs 

exposed to RA did exhibit a significant increase in 

expression of CD38 (Figure 8C), which is a widely 

known transcriptional target for RA-driven gene 

expression [70]. These latter results indicate that a 

developmental specificity apparently exists in the in-
vivo cues responsible for activating germ cell meiotic 

commitment in embryonic versus adult female gonads. 

 

 
 

Figure 5. Targeted disruption of the Esr1 gene impairs E2-driven oogenesis during adulthood. (A) Ovarian Stra8 mRNA levels in 
young adult Esr1–/– and Esr2–/– mice (versus respective WT littermates) 24 hours after injection of vehicle (V) or E2 (0.5 mg/kg) (mean ± SEM, 
n = 5–6 mice per group; *P<0.05). (B) Primordial follicle numbers in ovaries of young adult Esr1–/– and Esr2–/– mice (versus respective WT 
littermates) 24 hours after injection of V or E2 (0.5 mg/kg) (mean ± SEM, n = 4–6 mice per group; *P<0.05). (C, D) Numbers of primordial 
follicles (C) and Stra8 mRNA levels (D) in ovaries of Esr1–/– and Esr2–/– mice (versus respective WT littermates) at 2 months of age (mean ± 
SEM, n = 4–6 mice per group; *P<0.05). 
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Figure 6. Esr1-null female mice exhibit impaired postnatal oocyte renewal. (A, B) Expression of Ddx4 (A; normalized to β-actin, 
indicative of the relative numbers of germ cells in whole gonads) and Stra8 (B; normalized to Ddx4, indicative of the relative level of Stra8 
activation across the total germ cell pool) in e13.5 ovaries collected from WT and Esr1–/– female fetuses (mean ± SEM, n = 10 timed-pregnant 
female mice, with fetal ovaries of each genotype collected from each timed-pregnant dam serving as an independent replicate). (C) 
Primordial follicle numbers in ovaries of neonatal (5-day-old) Esr1–/– mice compared to WT littermates (mean ± SEM, n = 6 mice per group). 
(D) Numbers of degenerative oocytes in ovaries of young adult Esr1–/– mice compared to WT littermates (mean ± SEM, n = 4–6 mice per 
group). (E, F) Numbers of recently growth-activated (primary; E) and early growing (small-preantral; F) immature follicles in ovaries of Esr1–/– 
mice, compared to WT littermates, at 2 months of age (mean ± SEM, n = 4–6 mice per group). (G) Primordial follicle numbers in ovaries of 
young adult pStra8-HSVtk;WT and pStra8-HSVtk;Esr1–/– mice treated with vehicle (V) or GCV (10 mg/kg) for 21 days (mean ± SEM, n = 5–6 
mice per group; *P<0.05). 
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To gain initial insights into a potential mechanism 

underlying this change in the control of Stra8 

expression in female germ cells from embryonic to 

postnatal life, we directed our attention to epigenetics. 

This seemed logical given that OSCs failed to increase 

Stra8 expression when exposed to RA, but exhibited 

RA responsiveness if expression of a different RA-

target gene (CD38) was evaluated in the same cell 

population. Additionally, earlier studies have implicated 

epigenetic status as a key regulator of Stra8 expression 

and germ cell meiotic commitment in mammalian 

ovaries [67]. Through in-silico analysis, we identified a 

386-bp CpG island within the first intron of the  

Stra8 gene (Figure 8D), suggesting that DNA 

methylation may play a role in regulating sensitivity  

of Stra8 to different transcriptional activators. In 

keeping with this, pretreatment of OSCs with the DNA 

(cytosine-5)-methyltransferase 1 (Dnmt1) inhibitor, 

epigallocatechin-3-gallate (EGCG) [71], for 4 hours 

prior to the addition of RA resulted in enhanced Stra8 

expression and IVD-oocyte formation in RA-treated 

OSC cultures (Figure 8E and 8F). 

 

Pharmacologic disruption of E2 signaling causes 

reversible oogenic failure 

 

To reinforce our genetic studies on the role of E2-

initiated signaling in postnatal oogenesis, in a final set 

of experiments we tested the effects of two widely used, 

reversible ER modulators on Stra8 expression and 

oocyte numbers. While fulvestrant is considered a pure 

ER antagonist that works by promoting ER degradation 

[68], raloxifene can have either ER agonistic or 

antagonistic activity depending on the target tissue or 

cell type [72]. In cultured OSCs, fulvestrant and 

raloxifene efficiently inhibited E2-induced Stra8 
expression (Figure 9A), indicating that both drugs work 

directly on OSCs to antagonize ER-mediated signaling. 

In vivo, adult mice treated for 21 days with either 

fulvestrant or raloxifene exhibited a significantly 

diminished primordial oocyte (follicle) pool (Figure 

9B), which could not be attributed to accelerated growth 

activation to more advanced follicle stages or to 

increased loss through atresia (Figures 9C–9E). After 

ceasing drug treatment, the primordial follicle pool 

spontaneously regenerated over a subsequent 21-day 

period back to the size observed prior to the initiation of 

drug exposure (Figure 9B). Changes in oocyte numbers 

in response to ER antagonist exposure (reduced) and 

removal (regenerated) were paralleled by similar 

changes in ovarian Stra8 expression (Figure 9F). These 

data, indicative of a resumption of E2-driven oogenesis 

to replenish the depleted follicle pool once antagonism 

of ER signaling was removed (Figure 9G), mirror the 

reversible oogenic failure reported to occur in a genetic 

mouse model of targeted and reversible premeiotic 

germ cell ablation [29]. 

 

DISCUSSION 
 

Recent evidence from two different genetic studies with 

mice demonstrating that postnatal oocyte formation is a 

physiologically important aspect of adult ovarian 

function and fertility in mammals [29, 55] provides a 

strong impetus to identify the endocrine regulators and 

molecular signaling pathways responsible for 

coordination of OSC differentiation in vivo. Prior 

investigations with mice have shown that bone 

morphogenetic protein 4 (BMP4), a known regulator of 

embryonic PGC specification [73, 74], can enhance 

meiotic gene expression and oogenesis in cultured 

OSCs through SMAD1/5/8 signaling [75]. Additionally, 

more recent studies of cultured mouse and human OSCs 

indicate that extracellular matrix proteins influence the 

differentiation of these cells in vitro in a species-

specific manner [76]. However, little is known of the 

 

 
 

Figure 7. Lack of effect of Esr1 gene disruption in testes of adult male mice. (A) Quantitative analysis of Stra8 mRNA levels in testes 
of wild type (WT) and Esr1–/–mice at 3 months of age (mean ± SEM; n = 3 mice per group). (B, C) Histological appearance of the testes of WT 
(B) and Esr1–/– (C) mice at 3 months of age, after fixation and analysis by immunohistochemistry for Stra8 expression (brown immunoreaction 
product against a blue hematoxylin counterstain). 
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in-vivo cues used by OSCs to support oocyte formation 

during adult life, and if changes in these cues with age 

may contribute to a loss of oogenic support of the 

ovaries. By employing several complementary genetic 

and pharmacologic tools with in-vitro and in-vivo 

models of OSC function and oocyte formation, our 

experimental outcomes have uncovered a novel and 

functionally indispensable role for E2-ERα–initiated 

signaling in controlling OSC differentiation and de-

novo oogenesis in adult mouse ovaries. 

Prior studies of mouse fetal gonads have reported that 

PGCs express ERα, and that E2-dependent activation of 

this receptor can promote embryonic germ cell 

proliferation [77]. Additionally, this study also 

concluded that the ability of E2 to enhance PGC 

proliferation may be mediated through non-genomic 

actions of E2 in PGCs involving activation of the KIT 

receptor signaling cascade [77]. Studies of human fetal 

gonads have similarly reported expression of ER in 

PGCs around mid-gestation [78]. Additionally, both

 

 
 

Figure 8. Enhancement of OSC differentiation by RA requires repression of DNA methyltransferase activity. (A, B) Levels of 
Stra8 mRNA (A) and numbers of IVD-oocytes generated (B) in cultures of OSCs treated with vehicle (V), E2 (10 nM) or RA (2 μM) for 8 hours 
(mean ± SEM, n = 3 independent cultures; *P<0.05). (C) Levels of CD38 mRNA in OSCs cultured with vehicle (V), E2 (10 nM) or RA (2 μM) for 8 
hours (mean ± SEM, n = 3 independent cultures; *P<0.05). (D) In-silico analysis of the Stra8 genomic sequence (transcription start site 
indicated by arrowhead), identifying a CpG island spanning 386-bp (highlighted by the yellow bar). (E, F) Levels of Stra8 mRNA (E) and 
numbers of IVD-oocytes generated (F) in cultures of OSCs treated without or with 2-μM RA for 8 hours after a 4-hour pretreatment without 
or with 50-μM EGCG (–, without; +, with) (mean ± SEM, n = 6 independent cultures; **P<0.01). 
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Figure 9. Pharmacological suppression of ER signaling reversibly impairs oogenesis during adulthood. (A) Changes in Stra8 
mRNA levels in OSCs cultured with vehicle (V), E2 (10 nM), E2 plus fulvestrant (Ful, 10 nM; E2+Ful), or E2 plus raloxifene (Ral, 10 nM; E2+Ral) 
for 24 hours (mean ± SEM, n = 3 independent cultures; *P<0.05). (B) Primordial follicle numbers in ovaries of young adult WT mice treated 
with V, Ful (10 mg/kg), or Ral (20 mg/kg) for 21 days, and 21 days after ceasing Ful or Ral treatment (post-Ful or post-Ral, respectively) (mean 
± SEM, n = 7–13 mice per group; *P<0.05). (C–E) Numbers of recently growth-activated (primary; C) and early growing (small-preantral; D) 
immature follicles, and of degenerative oocytes (E), in ovaries of WT mice treated as described in panel B (mean ± SEM, n = 7–13 mice per 
group; *P<0.05). (F) Changes in ovarian Stra8 mRNA levels in WT mice treated as described in panel B (mean ± SEM, n = 7–13 mice per group; 
*P<0.05). (G) Schematic depiction of how reversible ER antagonists likely alter oocyte dynamics in adult ovaries by transiently disrupting 
endogenous E2-promoted OSC differentiation into new oocytes, yielding a net decline in total oocyte numbers due to attenuated input that 
then fully recovers after ceasing ER antagonist exposure. 
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isoforms of ER can be detected in human oocytes as 

follicles are being formed during the second half of 

gestation, suggesting that ER signaling may play a role 

in human folliculogenesis prior to birth [79]. However, 

none of these studies reported effects of E2 or ER 

signaling on the activation of embryonic germ cell 

meiosis or oogenesis. Accordingly, these data from 

studies of PGCs in embryonic gonads starkly contrast 

our observations from analysis of OSCs in adult 

ovaries, the latter of which show that E2 does not affect 

OSC proliferation but instead serves as a novel driver of 

meiotic commitment and oogenesis. 

 

These findings have important implications on several 

fronts. For example, it was previously reported that 

activity of hematopoietic stem cells in mice is also 

regulated by cyclic production of E2 from the ovaries 

during adulthood [80]. When taken with our 

observations, these findings collectively highlight the 

existence of a broad in-vivo function for ovarian-derived 

steroids in controlling the activity and differentiation of 

adult stem cell populations both inside and outside of the 

gonads. Interestingly, however, the role of E2-mediated 

signaling through ERα in the regulation of germline stem 

cell activity appears restricted to females, in that we 

found Stra8 expression and spermatogenesis in adult 

testes were unaffected by disruption of the Esr1 gene. As 

such, these data have also identified one of the first 

signaling pathways required for driving the meiotic 

differentiation of female, but not male, germ cells. The 

apparent sex-specific role of E2-ERα–initiated signaling 

in supporting gametogenesis may reflect the critical 

importance of E2 to female reproductive function and 

health, and perhaps the consequences of a loss of ovarian 

E2 production with age as women approach the 

menopause. Regarding the latter, recent studies have 

reported that OSCs persist in the ovaries of mice and 

women, even after the time of natural age-related ovarian 

failure [29, 37, 41]. Interestingly, OSCs in aged ovaries 

retain the ability to undergo differentiation into oocytes if 

provided with appropriate cues, through either in-vitro 

culture [37, 41] or in-vivo heterochronic transfer into a 

young ovarian microenvironment [81]. Thus, a 

progressive impairment in the ability of OSCs to support 

oogenesis with age, as demonstrated by suicide gene-

based technologies [29], may reflect changes in the 

availability of extrinsic factors, such as E2, needed for in-

vivo maintenance of OSC differentiation. Future studies 

of human OSCs, which show a steroid receptor 

expression pattern similar to that seen in mouse OSCs 

(D.C. Woods and J.L. Tilly, unpublished observations), 

should offer additional insights into this possibility in 

women. 

 

As mentioned earlier, it is also of interest that the ability 

of E2-ERα–initiated signaling to drive Stra8 expression 

and oogenesis appears specific for OSCs in adult 

ovaries since Esr1 gene disruption had no impact on 

fetal oogenesis, as reflected by the establishment of a 

neonatal pool of oocyte-containing follicles in Esr1-null 

females which was no different than that of WT 

siblings. Prior studies have shown that prenatal 

oogenesis, which generates the oocytes found in 

primordial follicles of neonatal ovaries, is driven by 

RA-initiated induction of Stra8 expression in PGCs of 

embryonic gonads [58–63]. Diverging from this widely 

held paradigm of germ cell meiotic commitment, our 

data indicate that the differentiation of mitotically active 

germ cells in adult mouse ovaries apparently no longer 

depends on RA, but instead has changed to the use of 

E2-ERα as a primary signaling mechanism for 

supporting oogenesis. Although the underlying basis for 

this developmental switch in cues in the female germ 

line remains unknown at present, past studies have 

reported that epigenetic events may be key determinants 

of germ cell meiotic commitment in mammalian ovaries 

[67, 82]. Other studies have reported that specific 

epigenetic events may also be involved in conveying 

OSC identity, unipotency and function [83]. In 

alignment with these findings, we observed that OSCs 

cultured in the presence of a Dnmt1 inhibitor gained 

responsiveness to RA exposure with respect to 

inducible Stra8 expression. Future experiments to 

further delineate the molecular mechanisms responsible 

for the developmental divergence in meiotic-initiating 

cues between PGCs and OSCs will be of interest to 

pursue. In conclusion, these data collectively add to the 

growing body of work to define the properties, 

regulation and function of OSCs in adult mammalian 

ovaries [42, 43]. Additionally, this work opens the 

possibility that the well described changes in ovarian E2 

production as females age may underlie, at least in part, 

OSC dysfunction and a corresponding loss of oogenic 

support as mechanisms that contribute to aging-

associated ovarian failure. Studies of how E2 interacts 

with other pathways already tied to OSC function, such 

as BMP4 signaling [75] and extracellular matrix 

proteins [76], and whether E2 affects pathways in 

addition to Stra8 that have been linked to meiosis [84], 

should offer a more complete picture of how changes in 

ovarian-intrinsic and -extrinsic factors play into 

reproductive aging. 

 

MATERIALS AND METHODS 
 

Animals and treatments 
 

Wild-type C57BL/6 mice were obtained from Charles 

River Laboratories. Heterozygous mutant mice with a 

targeted disruption of Esr1 (B6.129P2-Esr1tm1Ksk/J; 

stock number: 004744) or Esr2 (B6.129P2-
Esr2tm1Unc/J; stock number: 004745) were obtained 
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from the Jackson Laboratory and used to set up 

breeding colonies for direct comparative studies of WT 

and homozygous-null littermates. All mice were 

backcrossed to congenic C57BL/6 prior to use. 

Transgenic knock-in mice with GFP or HSVtk 

expression driven by a 1.5-kb fragment of the mouse 

Stra8 promoter (pStra8-GFP or pStra8-HSVtk, 

respectively) were generated and maintained as 

described [29, 69]. All steroid injections were delivered 

via the intraperitoneal cavity, and dosing strategies were 

based on extensive prior mouse studies using steroid 

injections as a treatment protocol. Stock solutions of E2 

(MilliporeSigma) and P4 (MilliporeSigma) were 

prepared in ethanol prior to dilution in sesame oil as a 

vehicle for injection of each steroid (E2, 0.5 mg/kg 

body weight; P4, 100 mg/kg body weight). Ganciclovir 

(Roche) was dissolved in sterile water at 10 mg/ml and 

then diluted in sterile 1X-concentrated phosphate-

buffered saline (PBS) for once daily intraperitoneal 

injections (10 mg/kg body weight for the indicated 

number of days) [29]. Gonadotropins (MilliporeSigma) 

were prepared in 1X-PBS for subcutaneous injections 

(PMSG, 10 IU per mouse; hCG, 10 IU per mouse). 

Fulvestrant (MilliporeSigma) was dissolved in ethanol 

at 10 mg/ml as stock prior to further dilution to 1 mg/ml 

in sesame oil for subcutaneous injection every 2 days at 

10 mg/kg body weight. Raloxifene (MilliporeSigma) 

was dissolved in 50% DMSO (vol:vol), 40% 1X-PBS 

(vol:vol) and 10% ethanol (vol:vol) at 13.3 mg/ml, and 

then injected subcutaneously at 20 mg/kg body weight 

every day for the duration of the treatment protocol. All 

animal procedures were reviewed and approved by the 

institutional animal care and use committees of 

Massachusetts General Hospital and Northeastern 

University. 

 

Oocyte counts by histomorphometry 
 

Complete and serially sectioned mouse ovaries were 

processed for histomorphometry-based quantification of 

the numbers of healthy or degenerative (atretic) oocyte-

containing follicles at the indicated stages of 

development, as detailed [29]. This protocol has been 

rigorously validated for reproducibility and accuracy in 

identification and direct quantification of oocytes at the 

indicated stages of development [29]. 

 

Isolation and culture of OSCs 

 

Oogonial stem cells were isolated by fluorescence-

activated cell sorting (FACS) from dispersed ovaries of 

mice at 2 months of age based on externalized 

expression of the C-terminus of Ddx4 in viable cells 

and established as actively dividing germ cell cultures 

without somatic feeder cells [24, 50]. Purified mouse 

OSCs propagated under these conditions spontaneously 

generate IVD-oocytes for up to 72 hours after passage 

until confluence is regained, and the number of IVD-

oocytes generated by a fixed number of OSCs seeded 

per well remains relatively constant over successive 

passages [24, 29, 37, 50, 75, 76]. Accordingly, IVD-

oocyte formation can be used as a very reliable and 

rapid bioassay for identification of factors that affect 

OSC differentiation [29, 75, 76]. In some experiments, 

OSCs (passages 28–34) were seeded into 24-well tissue 

culture plates (2.5 X 104 cells/well) in OSC culture 

medium containing charcoal-stripped 10% fetal bovine 

serum (FBS) (Thermo Fisher), acclimated for 24 hours, 

and then exposed to vehicle (ethanol, 0.1% final), E2 

(10 nM), P4 (2 μM), E2 plus P4, or E2 (10 nM) in the 

absence or presence of raloxifene (10 nM) or 

fulvestrant (10 nM) for up to 72 hours. Concentrations 

of all treatments used were based on extensive prior 

studies of these hormones and compounds in vitro as 

well as on in-house empirical testing (not shown). In 

other experiments designed to directly compare the 

effects of E2 and RA, OSCs (passages 30–35) were 

cultured in hormone-free OSC medium composed of 

phenol red-free minimum essential medium-α (Thermo 

Fisher), charcoal-stripped 10% FBS (Thermo Fisher), 

20 μg/ml transferrin (MilliporeSigma), 5 μg/ml  

insulin (MilliporeSigma) and 60 μM putrescine 

(MilliporeSigma) for 7 days, and then seeded into 6-

well (1.25 X 105 cells/well; gene expression) or 24-well 

(2.5 X 104 cells/well; IVD-oocyte formation) tissue 

culture plates. After 24 hours of acclimation, the cells 

were exposed to each vehicle (0.1% ethanol or 0.2% 

DMSO), E2 (10 nM) or RA (2 μM) for up to 24 hours. 

Changes in gene expression (Stra8, CD38) were then 

assessed, and numbers of IVD-oocytes generated were 

determined by direct visual counts [24, 29, 37,  

50, 75, 76]. 

 

Gene expression analysis 

 

Total RNA was extracted using Tri-Reagent 

(MilliporeSigma) or RNAzol® RT (MilliporeSigma), 

treated with DNase1 (Thermo Fisher) to remove 

genomic DNA, and reverse transcribed (1-μg of total 

RNA per sample) using either Superscript III (Thermo 

Fisher) or RevertAid (Thermo Fisher) reverse 

transcriptase along with oligo-dT primers into cDNA. In 

some experiments designed to assess if a specific 

mRNA transcript was simply present or not, 

amplification of target gene sequences was performed 

by conventional PCR using primers specific for each 

gene (Table 1). All products were sequenced for 

identity confirmation. For quantitative comparative 

analysis of the relative levels of specific mRNA 

transcripts across samples, qPCR was performed using a 

Cepheid Smart Cycler II Automated Real-time PCR 

System, along with primers specific for each target 
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Table 1. Primers used for conventional and real-time (quantitative, q) PCR analysis of gene expression. 

Conventional PCR analysis 

β-actin, NCBI Gene ID 11461: forward, 5'-GATGACGATATCGCTGCGCTG-3'; 

 reverse, 5'-GTACGACCAGAGGCATACAGG-3' 

ERα, NCBI Gene ID 13982: forward, 5’-CAGGTGCCCTACTACCTGGA-3’;  

reverse, 5’-CCTGAAGCACCCATTTCATT-3’ 

ERβ, NCBI Gene ID 13983: forward, 5’-CAATCATCGCTTCTCTATGCAG-3’;  

reverse, 5’-TTTTACGCCGGTTCTTGTCTAT-3’ 

PR, NCBI Gene ID 18667: forward, 5’-GGTGGAGGTCGTACAAGCAT-3’;  

reverse, 5’-AAATTCCACAGCCAGTGTCC-3’ 

Stra8, NCBI Gene ID 20899: forward, 5'-GCCAGAATGTATTCCGAGAA-3';  

reverse, 5'-CTCACTCTTGTCCAGGAAAC-3' 

Real-time PCR analysis 

β-actin, NCBI Gene ID 11461: Invitrogen FAM-labeled primer set 101M-01 for mouse and rat β-actin, used as a sample 

loading control 

β-2-microglobulin, NCBI Gene ID 12010; forward, 5’-TTCTGGTGCTTGTCTCACTGA-3’;  

reverse, 5’-CAGTATGTTCGGCTTCCCATTC-3’, used as a sample loading control 

CD38, NCBI Gene ID 12494: forward 5’-TTGCAAGGGTTCTTGGAAAC-3’;  

reverse, 5’-CGCTGCCTCATCTACACTCA-3’ 

Ddx4, NCBI Gene ID 13206: forward 5’-GCAGAGATGTTCAGCAGACG-3’;  

reverse, 5’-ATCGCTCTGCCAGTATTTCC-3’ 

Gapdh, NCBI Gene ID 14433: TaqMan primer set for mouse Gapdh (Assay ID Mm99999915_g1) 

Stra8 (Figures 1, 2–5, 7), NCBI Gene ID 11461: FAM-labeled primer set MLUX3312362 for mouse Stra8 (Invitrogen) 

Stra8 (Figure 6) NCBI Gene ID 11461: TaqMan primer set for mouse Stra8 (Assay ID Mm00486473_m1) 

 

sequence (Table 1). Data were analyzed by the ΔΔCt 

method of relative quantitation. 

 

DNA methylation analysis 

 

To identify potential sites of epigenetic regulation of 

Stra8, the reference genomic sequence (NCBI Gene ID: 

20899) was analyzed using the Genome Browser CpG 

Islands Tracks [85]. This analysis identified a region 

within the first exon of the Stra8 gene (chr6:34921372-

34921757) meeting the following criteria of a CpG 

island: GC content 50% or greater (66.3%), length 

>200-bp (386-bp), and ratio >0.6 of observed CG 

dinucleotides to the expected number (0.81). For cell 

studies, 24 hours after plating 2.5 X 104 OSCs in plastic 

24-well tissue culture plates containing 0.5 ml of OSC 

culture medium, the cells were pretreated with 50-µM 

EGCG (Tocris Bioscience) for 4 hours prior to 

treatment with RA (2-µM) for an additional 20 hours. 

The culture medium was then evaluated for the number 

of IVD-oocytes, while adherent cells were collected in 

RNAzol® RT for RNA isolation and reverse 

transcription with RevertAid. Quantitative PCR analysis 

of Stra8 mRNA levels was then performed using  

Stra8-specific oligonucleotide primers (forward: 3’-

GAGGCCCAGCATATGTCTAAC-5’; reverse: 3’-GC 

TCTGGTTCCTGGTTTAATG-5’), along with primers 

specific for beta-2-microglobulin as a reference  

gene (forward: 3’-TTCTGGTGCTTGTCTCACTGA-

5’; reverse: 3’-CAGTATGTTCGGCTTCCCATTC-5’), 

using SYBR Green (Thermo Fisher). Data were 

analyzed by the ΔΔCt method of relative quantitation.  

 

Western blot analysis 
 

Total proteins were isolated from cultured OSCs 

(passage 30) or ovaries (2.5-month-old mice; used a 

positive controls) in RIPA buffer [10 mM Tris-HCl  

(pH 7.4), 150 mM NaCl, 1% Triton X-100, 1.0% 

sodium deoxycholate, 0.1% SDS, 1.0 mM EDTA] 

supplemented with a protease inhibitor cocktail 

(Roche). Lysates were centrifuged at 14,000 x g for 10 

min at 4°C, and protein concentrations in supernatants 

were determined using the BCA protein assay (Thermo 

Fisher). Twenty μg of protein from each sample were 

mixed with 2X-concentrated Laemmli Sample Buffer 

(BioRad) and then denatured for 10 min at 70°C. 

Proteins were resolved by sodium dodecyl sulfate 

(SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) 

using 7.5% reducing-denaturing gels and transferred to 

nitrocellulose membranes. Blots were probed with 

antibodies against ERα (ab32063, 1:1,000 dilution; 

Abcam), ERβ (PA1311, 1:1,000 dilution; Thermo 

Fisher), PR (PA568778, 1:1,000 dilution; Thermo 
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Fisher) or β-actin (MS-1295-P, 1:10,000 dilution; Lab 

Vision/NeoMarkers), washed and reacted with a 1:400 

dilution of TidyBlot horseradish peroxidase-conjugated 

detection reagent (BioRad). Detection was performed 

with the Clarity™ Western ECL Substrate (BioRad) 

using a ChemiDoc imaging system (BioRad). 

 

Flow cytometric analysis 
 

Cultured OSCs (passage 30) were fixed in 3.7% 

formaldehyde for 15 min at 22°C (room temperature). 

Following fixation, cells were permeabilized in 1X-PBS 

containing 0.1% Triton-X for 5 min at room temperature, 

and washed in 1X-PBS containing 0.01% Triton-X. Cells 

were then blocked in 10% normal goat serum 

(MilliporeSigma) for 30 min at room temperature, washed 

and incubated with the following conjugated antibodies: 

rabbit anti-ERα (ab32063, Abcam) conjugated to 

allophycocyanin (APC, Abcam), rabbit anti-DDX4 

(ab13840, Abcam) conjugated to AlexaFluor 488 

(Thermo Fisher), or a normal rabbit IgG isotype control 

conjugated with a matched fluorophore (Thermo Fisher). 

The cells were then analyzed by flow cytometry using a 

FACSAria-III (Becton, Dickinson and Company) and 

gated against unlabeled cells (those incubated with the 

normal rabbit IgG isotype control) as a baseline. 

 

ChIP-PCR analysis 

 

Cell lysates were processed using the EZ-ChIPTM kit 

(MilliporeSigma) with a mouse monoclonal anti-ERα 

antibody (17-603, MilliporeSigma) for immuno-

precipitation, as per the manufacturer’s protocol. 

Precipitated soluble chromatin was then subjected to 

PCR to amplify a 149-bp region of the mouse Stra8 

promoter containing a consensus ERE sequence using 

the following primers: forward, 5’-

CAAGTGACCTCCGTTTAACCTC-3’; reverse, 5’-

GAGAAAGGAAAGCAAGCAAAAG-3’. To confirm 

specificity of ERα binding with the Stra8 promoter, 2 X 

106 OSCs at passage 30 were seeded onto 10-cm2 tissue 

culture plates and acclimated for 24 hours. The cells 

were then exposed to vehicle or the pure ER antagonist, 

fulvestrant (10 nM), for 30 min prior to the addition of 

E2 (10 nM). After 4 hours (empirically determined to be 

the peak time for ERα interaction with the Stra8 

promoter in the presence of E2 alone; Figure 2A), the 

cells were collected and processed for ChIP-PCR 

analysis as described above. 

 

Immunohistochemistry 

 

Freshly collected tissues were fixed in 4% 

paraformaldehyde, embedded in paraffin, and sectioned 

for analysis using a rabbit polyclonal antibody against 

Stra8 (ab49602, Abcam). Detection was performed 

using biotin-conjugated anti-rabbit IgG as secondary 

antibody for streptavidin-horseradish peroxidase–based 

3,3’-diaminobenzidine detection (MilliporeSigma). 

Images were captured using a Nikon ECLIPSE 

TE2000-S microscope. 
 

Experimental replication and data analysis 
 

All experiments were independently replicated at least 

three times, using different mice, tissues from different 

mice, or cells for each biological replicate. Where 

possible, assignment of mice to experimental groups 

was made randomly. Quantitative data from the 

experimental replicates for each study design were 

combined (mean ± SEM) and analyzed by one-way 

ANOVA followed by Student’s t-test for statistical 

differences (set at P<0.05). Qualitative images 

presented are representative of the outcomes obtained in 

the experimental replicates. 
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