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INTRODUCTION 
 

Lung cancers are the most commonly diagnosed 

malignant tumors and a major cause of cancer-related 

death throughout the world [1]. Among those, non-

small cell lung cancers (NSCLC) make up 

approximately 83% of all lung cancers. Moreover, 

about 80% of patients with NSCLC are diagnosed at 

advanced stages [2]. Although much effort has been 

made to improve treatment of NSCLC, the prognosis 

remains poor [3]. It is therefore urgent to find a new 

biomarker for diagnosis of NSCLC at earlier stages, 

which could potentially improve prognoses and 

outcomes among patients with NSCLC. 

 

Circular RNA (circRNA) is an endogenous RNA with 

a covalently closed cyclic structure [4]. Intracellular 

circRNAs with competing endogenous RNA (ceRNA) 

activity may function as microRNA (miRNA)  

antagonists by binding to microRNA recognition 

elements (MREs) on target genes. This would suppress 

the activity of miRNA, thereby enhancing expression 

of target genes [5, 6]. For that reason, circRNAs  

are considered important biological regulators when 

exploring the molecular mechanisms of diseases or 

seeking to identify therapeutic markers. For example, 

recent studies have shown the importance of circRNAs 

in modulating cancer-related signaling pathways [7, 8]. 

In addition, particular circRNAs may be related to 

specific types of malignant tumors and serve as  

key factors for tumorigenesis [9–11]. However, the 

function of circRNAs during the progression of 

NSCLC remains largely unexplored. Therefore, in an 

effort to identify potential targets for the development 

of novel therapeutic strategies against NSCLC, we 

used systemic bioinformatics analysis to identify 

circRNAs essential for the biological processes of 

NSCLC.  
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ABSTRACT 
 

To identify potential therapeutic targets in non-small cell lung cancer NSCLC, we conducted a bioinformatics 
analysis of circRNAs differentially expressed between NSCLC tissues and adjacent normal tissues. Cell 
proliferation and apoptosis was assessed using CCK-8 and flow cytometry, respectively. A connection between 
hsa_circ_0018818 and miR-767-3p was confirmed in dual luciferase reporter assays. Gene and protein 
expression in NSCLC cells were measured using quantitative PCR and Western-blotting, respectively. And a 
xenograft tumor model was established to assess the function of hsa_circ_0018818 in NSCLC in vivo. 
Hsa_circ_0018818 was greatly upregulated in NSCLC tumor tissues. Knocking down hsa_circ_0018818 using a 
targeted shRNA inhibited the proliferation and invasiveness of NSCLC cells and induced their apoptosis via the 
miR-767-3p/Nidogen 1 (NID1) signaling axis. Hsa_circ_0018818 knockdown also inactivated Epithelial-
mesenchymal transition (EMT) process and PI3K/Akt signaling. In summary, hsa_circ_0018818 knockdown 
inhibited NSCLC tumorigenesis in vitro and in vivo, which suggests it could potentially serve as a target for the 
treatment of NSCLC. 
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RESULTS 
 

Differentially expressed circRNAs in NSCLC  

 

To detect differentially expressed circRNAs in NSCLC, 

we performed a bioinformatics analysis. In Figure 1A–1C, 

circRNAs differentially expressed as compared to normal 

tissues in the GSE101586, GSE101586 and GSE112214 

datasets are presented as volcano plots. Overlap among 

the three datasets is illustrated by the Venn diagram in 

Figure 1D. Among the differentially expressed circRNAs, 

890 in GSE101684 were related to early stage NSCLC. 

 

Gene ontology (Go) and pathway analyses performed  

to determine the host genes of the circRNAs showed 

that the most common biological process was 

nucleocytoplasmic transport. The most enriched cellular 

component was cell-cell junction, and the most enriched 

molecular function was GTPase binding (Figure 2A). 

Pathway analysis revealed that the phosphatidylinositol 

 

 
 

Figure 1. Differentially expressed circRNAs in NSCLC. Volcano plots illustrating the circRNAs differentially expressed in NSCLC detected 
in the (A) GSE101684, (B) GSE112214 and (C) GSE101586 datasets. Red indicates a higher expression level, while blue indicates a lower 
expression level. (D) Venn diagram showing the overlap among the differentially expressed circRNAs in the three datasets. In GSE101684, 890 
circRNAs were related to NSCLC.  
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3 kinase (PI3K) signaling pathway was related to the 

development of NSCLC (Figure 2B). 

 

Silencing hsa_circ_0018818 significantly inhibits 

NSCLC cell proliferation  

 

The top differentially expressed circRNAs in GSE101684 

were related to early stage NSCLC (Figure 3A). Among 

them, hsa_circ_0018818 (host gene: USP54) closely 

correlated with NSCLC tumorigenesis. Therefore, 

hsa_circ_0018818 was selected for further analysis. In 

addition, hsa_circ_0018818 was significantly upregulated 

in NSCLC tissues compared with adjacent normal tissues 

(Figure 3B). Besides, hsa_circ_0018818 was closely 

associated with the metastasis of NSLC (Table 1). RT-

qPCR analysis showed that hsa_circ_0018818 expression 

was upregulated in several NSCLC cell lines as 

compared to BEAS-2B normal lung epithelial cells 

(Figure 3C). Further analysis of A549 and NCI-H1650 

cells showed that transfecting the cells with shRNA1 or 

shRNA2 targeting hsa_circ_0018818 significantly 

downregulated its expression (Figure 3D, 3E). Although 

both shRNAs were stably transfected, hsa_circ_0018818 

shRNA1 exhibited better transfection efficiency and  

was therefore used in subsequent experiments. CCK-8 

assays demonstrated that silencing of hsa_circ_0000 

18818 significantly inhibited NSCLC cell proliferation 

(Figure 3F, 3G). 

 

Hsa_circ_0018818 shRNA1 induces apoptosis and 

reduces the invasiveness of NSCLC cells 

 

Flow cytometry exemplified by the results presented in 

Figure 4A, 4B showed that downregulating hsa_ 

circ_0018818 obviously induced apoptosis among both 

A549 and NCI-H1650 cells. Moreover, transwell assays 

revealed that transfection with hsa_circ_0018818 

shRNA1 substantially reduced the invasiveness of these 

cells (Figure 4C, 4D). Because, NCI-H1650 cells were 

more sensitive to hsa_circ_0018818 shRNA1 than A549 

cells, NCI-H1650 cells were used in the following 

experiments. 

 

MiR-767-3p is a downstream target of hsa_circ_ 

0018818 
 

To investigate the mechanism by which 

hsa_circ_0018818 regulates the progression of NSCLC, 

its interactome was examined using the web tool 

CircInteractome (https://circinteractome.nia.nih.gov/). 

We found that miR-767-3p was the most likely 

downstream target of hsa_circ_0018818 (Figure 5A, 

5B). In addition, RT-qPCR analysis demonstrated that 

miR-767-3p expression was notably upregulated by 

miR-767-3p agonist and but downregulated by miR-767-

3p antagonist (Figure 5C). Dual luciferase reporter assays 

confirmed that miR-767-3p is a downstream target of 

hsa_circ_0018818 (Figure 5D). This was further verified 

by fluorescence in situ hybridization (FISH), which 

showed their colocalization with cells (Figure 5E). Taken 

together, these findings indicate that miR-767-3p is a 

downstream target of hsa_circ_0018818. 

 

Nidogen 1 (NID1) is a direct target of miR-767-3p 
 

To determine the target of miR-767-3p, Targetscan 

(http://www.targetscan.org/vert_71/), miRDB (http:// 

www.mirdb.org/), and dual luciferase assays were used. 

As illustrated in Figure 5F, 5G, NID1 is a direct target 

of miR-767-3p.  

 

 
 

Figure 2. Profiles of circRNAs in NSCLC analyzed with GO and pathway analyses. (A) Go analysis exploring the potential functions of 
differentially expressed circRNAs. (B) Pathway analysis exploring the signaling pathways related to NSCLC.  

https://circinteractome.nia.nih.gov/
http://www.targetscan.org/vert_71/
http://www.mirdb.org/
http://www.mirdb.org/
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Hsa_circ_0018818 knockdown inhibits NSCLC 

progression by inactivating PI3K signaling 

 

Subsequent western blot analysis demonstrated that 

hsa_circ_0018818 knockdown significantly decreased 

expression of NID1 (Figure 6A, 6B). This inhibitory 

effect of hsa_circ_0018818 shRNA1 on NID1 was 

partially reversed by miR-767-3p antagonist (Figure 6B). 

Moreover, expression of Twist-2 and E-cadherin in 

NSCLC cells was notably increased by knockdown  

of hsa_circ_0018818. In contrast, hsa_circ_0018818 

shRNA1 greatly decreased the expression of Vimentin. 

Meanwhile, downregulation of miR-136 partially 

suppressed the inhibitory effect of hsa_circ_0018818 

shRNA on EMT process of NSCLC (Figure 6A, 6C–6E). 

Besides, expression of p-Akt and p-ERK in NSCLC cells 

was significantly downregulated by hsa_circ_0018818 

knockdown, but was partially rescued in the presence of 

miR-767-3p antagonist (Figure 6A, 6F, 6G). This 

suggests that hsa_circ_0018818 silencing inhibits the 

progression of NSCLC by inactivating EMT process and 

PI3K/Akt signaling.  

 

 

Akt inhibitor further enhanced the inhibitory effect 

of hsa_circ_0018818 shRNA on the progression of 

NSCLC 
 

To further verify the mechanism by which hsa_ 

circ_0018818 mediated the progression of NSCLC, 

CCK-8 assay was performed. The data confirmed that 

anti-proliferative effect of hsa_circ_0018818 shRNA  

on NSCLC was further increased in the presence  

of AZD5363 (Figure 7A). Consistently, AZD5363 

enhanced the apoptotic effect of hsa_circ_0018818 

shRNA (Figure 7B). Moreover, the inhibitory effect of 

hsa_circ_0018818 shRNA on cell invasion was 

enhanced by AZD5363 as well (Figure 7C). To sum up, 

Akt inhibitor further enhanced the inhibitory effect of 

hsa_circ_0018818 shRNA on progression of NSCLC. 

 

Hsa_circ_0018818 knockdown significantly inhibits 

NSCLC tumor growth in vivo 

 

Finally, a xenograft mouse model was established  

to detect the function of hsa_circ_0018818 in NSCLC  

 

 

 
 

Figure 3. Downregulation of hsa_circ_0018818 inhibits NSCLC cells proliferation. (A) The overlap of these differentially expressed 
circRNAs was analyzed. (B) RT-qPCR analysis of hsa_circ_0018818 gene expression in NSCLC and adjacent normal tissues. (C) RT-qPCR analysis 
of hsa_circ_0018818 gene expression in BEAS-2B, A549, PC-9, NCI-H1441 and NCI-H1650 cells. (D, E) Suppression of hsa_circ_0018818 
expression after transfection of A549 and NCI-H1650 cells with shRNA for 24 h. (F, G) CCK-8 assays of A549 and NCI-H1650 cell proliferation. 
Shown are the OD450 values. **P< 0.01 vs. control.  
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Table 1. The correlation of hsa_circ_0018818 and clinic-pathological parameters  
of patients with NSCLC. 

Parameters No. of patients Mean ± SD p value 

Age 
  

0.619 

≤ 50 18 2.711 ± 1.208 
 

> 50 12 2.061 ± 0.828 
 

Smoking   0.656 

Yes 17 2.608 ± 1.070  

No 13 2.133 ± 0.928  

Tumor volume 
   

≤ 3 cm 13 2.501 ± 1.109 0.571 

> 3 cm 17 2.266 ± 0.899 
 

Lymph node metastasis 
 

 0.008** 

N0-N1 18 3.768 ± 1.322 
 

N2-N3 12 1.461 ± 0.887 
 

Distant metastasis 
  

0.058* 

M0 17 3.432 ± 1.322 
 

M1 13 1.885 ± 0.821 
 

TNM stage 
  

0.389 

I-II 15 2.934 ± 1.181  

III- IV 15 2.115 ± 0.923 
 

*P<0.05, **P<0.01, student’s t test. 
TNM: Tumor Node Metastasis. 
According to Union for International Cancer Control, version 8. 

 

in vivo. Four weeks after subcutaneous injection of NC1-

H1650 cells, tumor size and weight were significantly 

lower when cells were transfected hsa_circ_0018818 

shRNA1 prior to injection (Figure 8A, 8B). RT-qPCR 

confirmed that hsa_circ_0018818 levels were stably 

suppressed within the tumor tissue (Figure 8C). In 

addition, western blotting revealed that expression levels 

of NID1, p-Akt and p-ERK were all significantly reduced 

in tumor tissues expressing hsa_circ_0018818 shRNA1 

(Figure 8D–8G). These results demonstrate that 

downregulating hsa_circ_0018818 significantly 

attenuates NSCLC tumorigenesis in vivo. 

 

 
 

Figure 4. Hsa_circ_0018818 shRNA1 induces apoptosis and inhibits invasion by NSCLC cells. (A, B) The incidence of apoptosis was 
detected using FACS after double staining cells with Annexin V and PI. X axis: the level of Annexin-V FITC fluorescence; Y axis: the PI 
fluorescence. (C, D) Transwell assays testing the invasiveness of A549 and NCI-H1650 cells. Magnification: 400×. **P< 0.01 compared to 
control. 
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Figure 5. MiR-767-3p is the downstream target of hsa_circ_0018818. (A, B) Gene structure of hsa_circ_0018818 indicating the 
predicted miR-767-3p binding site in its 3'UTR. (C) RT-qPCR analysis miR-767-3p expression in NCI-H1650 cells. (D) The luciferase activity in 
NCI-H1650 cells after co-transfecting a plasmid encoding the wild-type (WT) or mutant (MT) hsa_circ_0018818 3′-UTR and miR-767-3p. (E) 
Co-localization of hsa_circ_0018818 and miR-767-3p detected using FISH. **P< 0.01 vs. control. (F) Gene structure of NID1 at the position of 
bp 161-167 showing the predicted miR-767-3p binding site in its 3'UTR. (G) Luciferase activity in NCI-H1650 cells after co-transfecting a 
plasmid encoding the WT or MT NID1 3′-UTR and miR-767-3p. **P< 0.01 vs. control. 

 

 
 

Figure 6. Silencing Hsa_circ_0018818 inhibits NSCLC progression by inactivating EMT process and PI3K/Akt signaling. (A) 
Western blot analysis of NID1, E-cadherin, Vimentin, Twist-2, Akt, ERK, p-Akt and p-ERK expression in NCI-H1650 cells. (B–G) Relative levels of 
NID1, Vimentin, E-cadherin, Twist-2,p-Akt and p-ERK expression in NCI-H1650 cells normalized to β-actin expression. **P< 0.01 vs. control. 
##P< 0.01 vs. shRNA1. 
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Figure 7. Akt inhibitor further enhanced the inhibitory effect of hsa_circ_0018818 shRNA on progression of NSCLC. (A) The OD 
value of NCI-H1650 cells was detected by CCK-8 assay. (B) The apoptotic NSCLC cells were examined by flow cytometry. (C) The invasion of 
NSCLC cells was tested by transwell assay. **P< 0.01 vs. control. ##P< 0.01 vs. shRNA1.  

 

 
 

Figure 8. Hsa_circ_0018818 shRNA1 suppresses NSCLC tumor growth in vivo. Mice were subcutaneously injected NC1-H1650 
transfected with vector-control or hsa_circ_0018818 shRNA1 or left untreated (Blank), after which tumors were allowed to grow for 4 weeks. 
(A) Volumes of tumors collected at the indicted times after transplantation. (B) Images of tumors (left) and tumor weights (right) after  
4 weeks. (C) RT-qPCR analysis of hsa_circ_0018818 gene expression in tumor tissues. (D) Western blot analysis of NID1, Akt, ERK, p-Akt and  
p-ERK levels in tumor tissues. (E–G) Relative levels of NID1, p-Akt and p-ERK expression normalized to β-actin expression. **P< 0.01 vs. control. 
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DISCUSSION 
 

CircRNAs, which are species of noncoding RNAs widely 

distributed in humans [12], different from linear noncoding 

RNAs such as miRNAs. It has been reported that 

circRNAs may mediate upregulation or downregulation  

of gene expression and, despite being classified as 

noncoding, may also encode proteins [13]. Moreover, 

circRNAs are stable and widely expressed in many 

tumor tissues [14, 15]. Some circRNAs have important 

biological functions and can be considered as 

biomarkers for diagnosis of multiple diseases [4, 16, 

17]. This suggests the possibility that circRNAs, like 

miRNAs, may be involved in paracrine signaling or 

cell-to-cell crosstalk. Our findings indicate that 

hsa_circ_0018818 downregulation suppresses NSCLC 

cell proliferation and induces apoptosis, which is 

consistent with earlier reports indicating that circRNAs 

regulate the progression of NSCLC [9, 18, 19]. These 

findings suggest that hsa_circ_0018818 likely acts to 

promote tumorigenesis of NSCLC, particularly during 

the early stages of the disease. This may make 

hsa_circ_0018818 an important biomarker for diagnosis 

of early stage NSCLC. 

 

MiRNAs are known to play important roles in the 

progression of multiple diseases, including NSCLC [20, 

21]. We found that a miR-767-3p antagonist partially 

reversed the inhibitory effect of hsa_circ_0018818 

knockdown on expression of NID1, p-Akt and p-ERK. 

Wan et al reported that miR-767-3p induces 

downregulation of lung adenocarcinoma cell 

proliferation and induce apoptosis [22]. Our findings 

suggest miR-767-3p is also a key regulator of NSCLC 

progression. In addition, Jiang et al demonstrated that 

hsa_circ_0000673 enhances hepatocellular carcinoma 

malignancy by sponging miR-767-3p [23]. These 

results are similar to our present findings, indicating 

that hsa_circ_0018818 knockdown suppresses the 

tumorigenesis of NSCLC by sponging miR-767-3p. 

 

It was previously reported that NID1 plays a key role in 

multiple malignant tumors [24, 25]. For example, NID1 

reportedly regulates such functions as cell proliferation, 

survival and metastasis [26, 27]. Our findings indicate 

that NID1 is a direct target of miR-767-3p. It was 

previously reported that miR-192 suppresses the 

progression of Hirschsprung's disease by directly 

targeting NID1 [28], and that NID1 acts as a tumor 

promoter in NSCLC [27]. These results further 

implicate NID1 in the development of NSCLC; indeed, 

the suggest NID1 may act as a key promoter in the 

occurrence of NSCLC. Otherwise, Jiang W et al 

indicated SET is the direct target of miR-767-3p in 

hepatocellular carcinoma [23]. This difference may due 

to the different tumor type. 

Components of the PI3K/Akt pathway are targeted in 

more types of cancer than any other growth factor 

signaling pathway, and it is commonly activated as a 

cancer promoter [29]. It appears that the PI3K/Akt 

pathway is composed of multiple bifurcating and 

converging kinase cascades, supplying numerous 

potential targets for tumor therapy [30, 31]. In our 

current research, hsa_circ_0018818 knockdown 

significantly inactivated PI3K/Akt signaling. An earlier 

report similarly found that inactivation of PI3K/Akt 

signaling contributes to NSCLC cell apoptosis [32]. 

Moreover, our findings suggested that knockdown of 

hsa_circ_0018818 inactivated EMT in NSCLC cells. Ya 

Zhou et al revealed that NID1 could activate 

NID1/PI3K/Akt/EMT to regulate the tumorigenesis of 

ovarian cancer [33]. Together with that report, our 

results suggest NID1 promotes EMT process in NSCLC 

through activation of PI3K/Akt. Frankly speaking, this 

study only focused on the effect of hsa_circ_0018818 

on PI3K/Akt signaling so far. Given that ASK1/JNK 

signaling reportedly acts as a tumor suppressor during 

the pathogenesis of NSCLC [34], we will investigate 

the effect of hsa_circ_0018818 on ASK1/JNK signaling 

in a future study. 

 

In summary, we found that hsa_circ_0018818 was 

upregulated in NSCLC. Moreover, knockdown of 

hsa_circ_0018818 could inhibit NSCLC tumorigenesis 

by mediating miR-767-3p sponging and 

NID1/PI3K/Akt/EMT axis, making it a potential 

biomarker for the prognosis and treatment of NSCLC. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

The BEAS-2B, A549, PC-9, NCI-H441, NCI-H1650 and 

293T cell lines were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA, USA) and 

cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM, Thermo Fisher Scientific, Waltham, MA, USA) 

supplemented with 10% FBS (Thermo Fischer Scientific), 

1% penicillin and streptomycin (Thermo Fisher Scientific) 

at 37°C under a 5% CO2 atmosphere. AZD5363 (Akt 

inhibitor) was obtained from MedChemExpress (MCE, 

Monmouth Junction, NJ, USA). 

 

Bioinformatics analysis 

 

Three datasets (GSE101586, GSE101684 and 

GSE112214) containing the gene expression data for 

NSCLC and adjacent normal tissue (controls) were 

obtained from the GEO database (https://www.ncbi. 

nlm.nih.gov/geo/). Among them, GSE101684 was a 

dataset from a patient with early stage of NSCLC. Gene 

Ontology (GO) analysis was performed to explore the 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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functional roles of circRNA-targeted genes in terms  

of biological processes, cellular components, and 

molecular functions. Biological pathways were defined 

using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG). 

 

Tissue collection 

 

In total, 30 pairs of NSCLC samples and adjacent 

normal tissues were collected from Peking Union 

Medical College Hospital between June 2018 and June 

2019. The clinical and pathological data of these 

patients were collected with their written informed 

consent. Each tissue sample was stored at -80°C until 

RNA extraction. The present study was approved by the 

Ethics Committee of Peking Union Medical College 

Hospital. The correlation of hsa_circ_0018818 and 

clinic-pathological parameters of patients with NSCLC 

was presented in Table 1. 

 

Quantitative real time polymerase chain reaction 

(RT-qPCR) 

 

Total RNA was extracted from NSCLC cell lines or 

tissues using TRIzol reagent (TaKaRa, Tokyo, Japan) 

according to the manufacturer's protocol. cDNA was 

synthesized using a reverse transcription kit (TaKaRa, 

Ver.3.0) according to the manufacturer's protocol. Real-

Time qPCRs were performed in triplicate using the 

following protocol: 2 min at 94°C, followed by 35 

cycles or 30 s at 94°C and 45 s at 55°C. The primers for 

hsa_circ_0018818, miR-767-3p, β-actin and U6 were 

obtained from GenePharma (Shanghai, China): for 

Hsa_circ_0018818, 5’-CCCACAGTTTTGCTCTGC 

AG-3’ (forward) and 5’-AGGTGTAGCCTGAGAAG 

TACGC-3’ (reverse); for MiR-767-3p, 5’-TCCA 

TTTGTTTTGATGATGGACT-3’ (forward) and 5’-

CTCAACTGGTGTCGTGGAGTC-3’ (reverse); for  

β-actin, 5’-GTCCACCGCAAATGCTTCTA-3’ 

(forward) and 5’-TGCTGTCACCTTCACCGTTC-3’ 

(reverse); and for U6, 5’-CTCGCTTCGGCAGCACAT-

3’ (forward) and 5’-AACGCTTCACGAATTTGCGT-

3’ (reverse). The relative fold changes were calculated 

using the 2-ΔΔCt method with the formula 2-(sample ΔCt 

– control ΔCt), where ΔCt is the difference between the 

amplification fluorescent thresholds of the gene of 

interest and the internal reference gene (U6 or β-actin) 

used for normalization. 

 

Cell transfection 

 

PcDNA3.1 expression vector encoding short-hairpin 

RNA (shRNA1 or shRNA2) targeting hsa_circ_ 

0018818 or a non-targeted sequence (negative control) 

were obtained from GenScript Co., Ltd (Nanjing, 

China). NSCLC cells were then transfected with the 

vector using Liposome 2000, after which the 

transfectants were selected by incubation in the 

presence of G418 (Sigma Aldrich, St. Louis, MO, 

USA). RT-qPCR was used to verify the transfection 

efficiency. The shRNA sequences were as follows: 

hsa_circ_0018818 shRNA1, 5’-CTTCCCACAGTTTT 

GCTCTG-3’ (forward) and AAAACTTCCCACAGT 

TTTG (reverse); hsa_circ_0018818 shRNA2, 5’-CAG 

TTTTGCTCTGCAGACGG-3’ (forward) and AAAAA 

CAGTTTTGCTCTGCA (reverse). 

 

In addition, NCI-H1650 cells were transfected with 

miR-767-3p agonist, miR-767-3p antagonist or negative 

control (NC) RNAs (GenePharma, Shanghai, China) 

using Lipofectamine 2000 as previously described [35]. 

The transfection efficiency was determined using  

q-PCR. 

 

CCK-8 assays 

 

A549 or NCI-H1650 cells were seeded into 96-well 

plates (5×103 per well) and incubated overnight at 37°C. 

The cells were then treated with NC, hsa_circ_0018818 

shRNA1 or hsa_circ_0018818 shRNA1 + AZD5363 

(Akt inhibitor) for 0, 24, 48 or 72 h, after which 10 μl of 

CCK-8 reagent were added to each well, and the cells 

were incubated for an additional 2 h. Finally, the 

absorbance at 450 nm was measured using a microplate 

reader (Thermo Fisher Scientific). 

 

Cell apoptosis analysis 

 

A549 or NCI-H1650 cells were trypsinized, washed 

with phosphate-buffered saline, resuspended in Annexin 

V Binding Buffer, and stained with 5 μl of FITC and 5 

μl of propidium (PI) for 15 min. The cells were the 

analyzed using a flow cytometer (BD, Franklin Lake, 

NJ, USA) to assess the incidence of cell apoptosis.  

 

Transwell assays 

 

The invasiveness of the cells was assessed using 

transwell assays. The upper chamber is pre-treated with 

100 μl of Matrigel, after which A549 or NCI-H1650 

cells were seeded into the upper chamber in RPMI1640 

medium with 1% FBS. The density was adjusted to 

about 1.0×106 cells per chamber. RPMI1640 medium 

with 10% FBS was added in the lower chamber. After 

incubation for 48 h at 37°C, the non-invading cells in 

the upper chamber were removed with a cotton swab. 

Cells in the lower chamber were stained with 0.1% 

crystal violet and counted under a microscope 

(LEICADMLB2, Frankfurt, Germany). 
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Dual luciferase reporter assay 
 

The partial sequences of hsa_circ_0018818 and the 

NID1 3’-UTR containing putative miR-767-3p binding 

sites were obtained from Sangon Biotech (Shanghai, 

China) and cloned into pmirGLO Dual-Luciferase 

miRNA Target Expression Vectors (Promega, Madison, 

WI, USA) to construct wild-type reporter vectors 

hsa_circ_0018818 (WT) and NID1 (WT), respectively. 

Mutant hsa_circ_0018818 and NID1 3’-UTR sequences 

containing the putative miR-767-3p binding site were 

generated using a Q5 Site-Directed Mutagenesis Kit 

(New England Biolabs, Ipswich, MA, USA) and then 

cloned into pmirGLO vectors to generate the mutant-

type reporter vectors hsa_circ_0018818 (MUT) and 

NID1 (MUT). hsa_circ_0018818 (WT) or hsa_circ_ 

0018818 (MUT) were transfected into 293T cells together 

with NC or miR-767-3p agonist using Lipofectamine 

2000 (Thermo Fisher Scientific). Similarly, NID1 (WT) 

or NID1 (MUT) was transfected into 293T cells together 

with NC or miR-767-3p agonist. Relative luciferase 

activities were then analyzed using a Dual-Glo Luciferase 

Assay System (Promega). 

 

Fluorescence in situ hybridization (FISH)  

 

To explore the relation between hsa_circ_0018818 and 

miR-767-3p, their colocalization in the cytoplasm was 

investigated using FISH as previously described [36]. 

 

Western blotting  

 

Total protein was isolated from cell lysates or tumor 

tissues using RIPA buffer, and quantified using a BCA 

protein assay kit (Beyotime, Shanghai, China). Proteins 

were resolved on 10% SDS-PAGE and then transferred 

to PVDF (Bio-Rad) membranes. After blocking, the 

membranes were incubated first with primary antibodies 

at 4°C overnight and then with secondary anti-rabbit 

antibody (Abcam; 1:5000) at room temperature for 1 h. 

Membranes were scanned using an Odyssey Imaging 

System and analyzed using Odyssey v2.0 software 

(LICOR Biosciences, Lincoln, NE, USA). The primary 

antibodies were anti-Akt (Abcam, Cambridge, MA, 

USA; 1:1000), anti-ERK (Abcam; 1:1000), anti-NID1 

(Abcam; 1:1000), anti-E-cadherin (Abcam; 1:1000), 

anti-Twist2 (Abcam; 1:1000), anti-Vimentin (Abcam; 

1:1000) and anti-β-actin (Abcam; 1:1000). β-actin 

served as an internal control. 

 

In vivo study 

 

Eighteen BALB/c nude mice (6-8 weeks old) were 

purchased from Vital River (Beijing, China) and housed 

within a dedicated SPF facility. NCI-H1650 cells  

stably expressing hsa_circ_0018818 shRNA1 were 

transplanted subcutaneously into each mouse as 

described previously [37]. Tumor volume was then 

measured weekly as described previously [38]. At the 

end of the experiment, the mice were sacrificed and the 

tumors were collected and weighted. All in vivo 

experiments were performed in accordance with 

National Institutes of Health Guide for the Care and Use 

of Laboratory Animals. The protocol was approved by 

the Ethics Committees of Peking Union Medical 

College Hospital. 

 

Statistical analysis  

 

All data were expressed as the mean ± standard 

deviation (SD) of at least three independent 

experiments. Differences were analyzed using one-way 

analysis of variance (ANOVA) followed by Tukey’s 

test (more than 2 groups, Graphpad Prism7). Values of 

P<0.05 was considered statistically significant. 
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