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INTRODUCTION 
 

Spinal cord injury (SCI) is a severe injury to the spinal 

cord that causes a loss of sensation, neurological 

function, autonomic function and muscle function in the 

body. Nearly 80 cases per million people suffer from 

spinal cord injury each year worldwide [1–3]. SCI 

consists mainly of the primary damage and the 

secondary damage. The primary injury includes the cell 

death, biochemical cascades, and tissue damage, which 

is usually caused by traffic accidents, violence and 

sports injuries. Furthermore, the secondary damage 

mainly contains the ischemic, inflammation, swelling 

and neural signal disorder, which is mediated by 

multiple neurodegenerative processes that accelerate the 

primary damage [4–6]. SCI involves in a series of 

pathophysiological processes such as metabolic disorder 

of extracellular matrix, reactive hyperplasia of glial 

cells and overexpression of inflammatory factors [7–9].  

 

Among them, the reactive hyperplasia of glial cells is 

the main process of forming glial scars, which plays an 

important role in the development of SCI [10]. Glial 

fibrillary acidic protein (GFAP) is an intermediate 

filament protein that is mainly expressed in the cells 

from the central nervous system including astrocytes 

[11]. GFAP plays an essential role in maintaining the 

mechanical strength and the shape of astrocytes, which 

is recognized as a marker of reactive astrocytes [12]. 

Previous studies demonstrated that the expression of 

GFAP was increased after SCI in rats [13]. Although 

latest studies have revealed various effective manners 

and drugs in the treatment of SCI, the efficient carriers 

of transportation to achieve the specific location of 

spinal cord injury remained to solve [14, 15]. At 

present, many scholars have proposed the usage of 

different biological materials as neuroprotective drugs 

for SCI treatment [16–18]. Methylprednisolone (MP) is 

the only clinical drug for SCI treatment, which is still 
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controversy in efficacy and safety of treating SCI [19–

22]. A recent study adopted MP-loaded poly lactic-co-

glycolic acid (PLGA) nanoparticles in the injured spinal 

cord to reduce the inflammation and improve damage 

level after contusion SCI [23]. However, the usage of 

systemic high-dose of MP in the acute SCI has the risk 

of serious side effects including gastric bleeding, sepsis, 

pneumonia, and acute corticosteroid myopathy and 

wound infections, with just modest improvements in 

neurological recovery [24–26]. Thus, the newly 

effective therapeutic method is urgent to investigate in 

the treatment of SCI. 

 

Synthetic nano-sized polymers have been recently 

recognized as a new type of neuroprotective agents for 

treatment of early SCI [27, 28]. Valproic and chitosan 

nanoparticles were separately reported to effectively 

improve the recovery of the function and tissue repair 

after SCI as the intervention factors [29, 30]. Previous 

studies demonstrated that chitosan nanoparticles and its 

modifications promoted functional restoration of 

traumatically injured spinal cord after SCI [31, 32]. On 

the other hand, valproic acid was showed microglia 

neuroprotection and involved in rat cauda equina injury 

[33]. The latest report demonstrated that valproic acid 

alleviated the inflammation induced by traumatic spinal 

cord injury via STAT1 and NF-κB dependent of 

HDAC3 signaling pathway [34]. Therefore, the 

neuroprotective effect of valproic acid combined 

chitosan nanoparticles and their fundamental 

mechanism on the nervous system after SCI need 

further investigate. Here, we found valproic acid labeled 

chitosan nanoparticles treatment promoted the recovery 

of the function and tissue repair and inhibited the 

reactive astrocytes after SCI. Meanwhile, valproic acid 

labeled chitosan nanoparticles treatment enhanced the 

blood spinal cord barrier integrity after SCI. The results 

provided a new potential therapeutic approach for the 

clinical treatment of SCI. 

 

RESULTS 
 

Characteristics of valproic acid labeled chitosan 

nanoparticles 
 

As shown in Figure 1A, valproic acid was incorporated 

to chitosan nanoparticles through coupling carboxyl to 

amino group (Figure 1A). The morphology of valproic 

acid labeled chitosan nanoparticles was observed by 

transmission electron microscopy. The result revealed 

the spherical shape of valproic acid labeled chitosan 

nanoparticles were sized at 200 nm or so (Figure 1B). 

To determine the stability and surface charge of 

valproic acid labeled chitosan nanoparticles, the 

particles were incubated at 4°C for 30 days. The sizes of 

valproic acid labeled chitosan nanoparticles were 

around 220 nm and the zeta potential of valproic acid 

labeled chitosan nanoparticles was found to be nearly 

15 mV, which suggested that the stability of the 

particles was successfully maintained at low 

temperature for one month (Figure 1C and 1D). In 

addition, the sizes of chitosan nanoparticles were 

around 170 nm and their zeta potential were nearly 10 

mV at 4°C for 30 days (Figure 1C and 1D).  

 

VA-CN targeted delivery to injured spinal cord 
 

To investigate the effect of VA-CN on targeted delivery 

to injured spinal cord, the Cy5.5 was labeled to VA-CN 

polymer at room temperature. The Cy5.5 labeled VA-

CN and VA were treated the rats of SCI by intravenous 

administration and quantified in the injured spinal cord 

and different organs at 24 h after SCI (Figure 2A and 

2B). The concentration of the particles was measured at 

injured spinal cord for various time points by detecting 

the fluorescence intensity of Cy5.5. The result 

demonstrated that the fluorescence intensity was 

gradually decreased in the two groups with the 

increased treatment time (Figure 2C). The effectiveness 

and maintenance of delivery to injured spinal cord were 

significantly enhanced by the treatment of VA-CN 

compared with VA treatment group, which estimated 

through the fluorescence intensity of Cy5.5 at injured 

spinal cord (Figure 2D). The fluorescence intensity was 

seldom detected in the VA group after 48 h post 

treatment (Figure 2C). Moreover, the distribution of 

VA-CN was testified in the spinal cord of uninjured rats 

and the fluorescence intensity of Cy5.5 was obviously 

detected in the treatment of VA-CN-Cy5.5 for 48 h, but 

not in the treatment of VA-Cy5.5 (Supplementary 

Figure 1). In addition, H&E staining result showed no 

morphological difference between the Sham rats and the 

VA-CN treated SCI rats (Supplementary Figure 2), 

which suggested VA-CN revealed no adverse effects in 

various organs of the rats.   

 

VA-CN enhanced the function and tissue recovery 

after SCI 
 

To investigate the effect of VA-CN on SCI, we assessed 

the tissue and function repair by treatment of VA-CN 

after SCI. The BBB scores of all experimental groups 

decreased significantly compared with the sham group 

(Figure 3A). After treatment of VA-CN for one week, 

the BBB scores were significantly increased compared 

with the SCI group (Figure 3A). On the other hand, VA 

or CN alone treatment resulted in no significant increase 

of the BBB scores for different time points compared 

with the SCI group (Figure 3A). Moreover, VA-CN 

treatment remarkably enhanced void frequency and 

decreased void volume compared with the control group 

at 4 weeks after SCI, which suggested the improved 
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connections between the control system of brain and the 

bladder (Figure 3B and 3C). VA treatment just slightly 

improved the connections compared with the SCI group 

(Figure 3B and 3C). Furthermore, the residual urine 

volumes were also measured at different time points and 

the result revealed that VA-CN treatment led to a 

significant decrease in residual urine volumes after two 

weeks post injury compared with the SCI group (Figure 

3D). The residual urine volumes were gradually 

decreased after one week post injury in the VA 

treatment and two weeks post injury in the SCI group, 

and VA or CN alone treatment showed no significant 

change in residual urine volumes for different time 

points compared with the SCI group (Figure 3D). In 

order to explore the effect of VA-CN on tissue recovery 

after SCI, the H&E staining was performed at 4 weeks 

after injury. The result demonstrated that administration 

of VA-CN significantly reduced the lesion cavity 

volume, and VA treatment slightly improved the lesion 

cavity volume compared the SCI group (Figure 3E and 

3F). In addition, the dispersed structure and hemorrhage 

were apparently improved by the VA-CN treatment 

when compared with the SCI, VA, and CN treatment 

group (Figure 3E).  

 

VA-CN reduced astrocytic reactivity after SCI 

 

To investigate the effect of VA-CN on astrocytic 

reactivity, the astrocyte reactivity was measured 

following VA-CN treatment after SCI. In comparison to 

the Sham group, the GFAP+nestin+ cells were 

significantly enhanced in SCI rats (Figure 4A and 4B). 

Moreover, we found the immunoreaction of GFAP and 

Nestin was reduced obviously by the treatment of VA-

CN, which suggested that VA-CN might inhibit the 

reactive astrocytes in rats of SCI (Figure 4A). 

Furthermore, the result revealed that GFAP+nestin+ cells 

were significantly decreased following treatment with 

VA-CN compared with SCI group (Figure 4A and 4B). 

Interestingly, VA alone treatment also lead to a slight 

decrease in percentage of GFAP+nestin+ cells, which 

were not significant changes in the CN treatment group

 

 
 

Figure 1. Valproic acid modified chitosan nanoparticles (VA-CN). (A) Chemical structure of VA-CN nanoparticles. (B) TEM 
image of VA-CN nanoparticles (Scale bar: 200 nm). (C) Sizes of VA-CN and CN nanoparticles were observed for different time points 
during one mouth. (D) Zeta potential of VA-CN and CN nanoparticles were detected by ZetaPlus for different time points during one 
mouth.  
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when compared with the SCI rats (Figure 4A and 4B). 

These results demonstrated that VA-CN administration 

significantly reduced the levels of astrocyte reactivity 

compared to the SCI rats.  

 

VA-CN promoted neuroprotection and inhibited 

inflammation after SCI 
 

To investigate the effect of VA-CN on the proliferation 

of microglia after SCI, the injured spinal cord was co-

labeled with CD11b and Ki67. The result revealed that 

VA-CN treatment lead to a decrease in the number of 

microglia and the proliferation of microglia (Figure 

5A). To further estimate the effect of VA-CN on the 

nerve after SCI, the neuronal related marker NF160 was 

detected by histological analysis. The result indicated 

that VA-CN treatment enhanced the immunoreaction of 

NF160, while VA administration revealed slight 

increase in the NF160 immunoreaction compared with 

the SCI group (Figure 5B and 5G). The immunohistry 

analysis revealed that VA-CN significantly decreased 

the expression of IL-1β compared with SCI group, 

 

 
 

Figure 2. VA-CN targeted delivery to injured spinal cord. (A) Fluorescence images of VA-CN-Cy5.5 and VA-Cy5.5 in injured spinal cord 
at 24h after SCI (Scale bar: 500 μm) n=8 per group. (B) Quantification of VA-CN-Cy5.5 and VA-Cy5.5 in organ distribution, n=4 per group. (C) 
Fluorescence images of VA-CN-Cy5.5 and VA-Cy5.5 in injured spinal cord, (Scale bar: 100 μm). (D) Quantitative results of fluorescence 
intensity of Cy5.5. n=8 per group, ** p<0.01 VS VA group, *** p<0.001 VS VA group. 
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Figure 3. VA-CN administration promoted recovery after SCI. (A) Basso, Beattie and Bresnahan (BBB) scores were evaluated at 
different time points after injury in Sham rats (n=9), SCI rats (n=10), CN treated rats (n=10), VA treated rats (n=12), and  VA-CN treated rats 
(n=11). Six rats with perineal infections, limb wounds, or tail and foot grazing were eliminated from the test. * p<0.05 VS SCI group, # p<0.001 
VS Sham group. (B, C) Void frequency and average void volume were tested at 4 weeks after SCI. n=6 per group, * p<0.05, ** p<0.01, *** 
p<0.001. (D) Residual urine volumes were recorded at different time points after injury. n=10 for Sham group, n=12 per experiment group, * 
p<0.05, ** p<0.01 VS SCI group. (E) The HE staining was performed at 4 weeks after injury (Scale bar: 100 μm). (F) The lesion cavity area was 
quantified in the injured spinal cords. n=10 for Sham group, n=12 per experiment group, * p<0.05, ** p<0.01 VS SCI group. 
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whereas CN and VA treatment also reduced the IL-1β 

positive cells in the injured spinal cord after SCI (Figure 

5C and 5H). Furthermore, the inflammation induced by 

SCI was assessed by the production of IL-1β, IL-6 and 

TNF-α at 7 days after injury. The result revealed that 

VA-CN significantly decreased the secretion of IL-1β, 

IL-6 and TNF-α compared with the SCI, CN and VA 

treatment group, whereas VA administration effectively 

reduced the production of IL-1β and revealed no 

significant difference in the IL-6 and TNF-α secretion at 

7 days after injury (Figure 5D–5F). 

 

VA-CN enhanced the integrity of blood spinal cord 

barrier after SCI 

 

The BSCB restricts the access of erythrocytes and 

plasma components in the central nervous system, 

which is damaged after SCI. Thus, the repair of BSCB 

 

 
 

Figure 4. VA-CN reduced astrocytic reactivity in the injuried spinal cord grey matter. Levels of astrocytic reactivity was estimated 
by double immunostaining for GFAP and nestin. (A) Confocal images of injury sites analyzed for overlap of GFAP (red), nestin (green) and Dapi 
(blue), Scale bar: 50 μm. (B) The astrocytic reactivity was quantified by GFAP+nestin+ cells, n=6 per group, * p<0.05, *** p<0.001 VS SCI group, 
### p<0.001 VS Sham group, ## p<0.01 VS Sham group, # p<0.05 VS Sham group. 
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disruption is necessary to estimate in various treatments 

after SCI. The representative markers immunoreaction 

of BSCB integrity, including Claudin-5, Albumin and 

IgG, were detected and the result revealed that VA-CN 

treatment led to a significant increase of Claudin-5 

immunoreaction compared with the control, CH and VA 

group after SCI (Figure 6A and 6E). Moreover, the 

immunoreactive intensity of Albumin was significantly 

decreased in the treatment of VA-CN in comparison to the 

control, CH and VA group after SCI (Figure 6B and 6F).  

 

 
 

Figure 5. VA-CN promoted neuroprotection after SCI. (A) Co-labeled CD11b (green) immunoreactive, Ki67 marker (red) and Dapi (blue) 
in the spinal cord of rats. White arrows represent microglia, yellow arrows represent proliferated cells and red arrows represent the 
proliferation of microglia cells (Scale bar: 20 μm), n=6 per group. (B) Florescence images of NF160 in injured spinal cord at 28 day after SCI 
(Scale bar: 50 μm). (C, H) Representative images for IL-1β immunohistry (200× magnification) at 7 days after injury and the IL-1β positive cells 
were quantified. n=6 per group, * p<0.05, ** p<0.01, *** p<0.001. (D–F) Quantification of IL-1β, IL-6 and TNF-α production was evaluated at 
7 days after injury, n=6 per group, * p<0.05, ** p<0.01, *** p<0.001. (G) Intensify quantification of NF160 florescence in injured spinal cord at 
28 day after SCI, n=6 per group, * p<0.05, ** p<0.01. 
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On the other hand, administration of VA-CN resulted in a 

decrease of IgG immunoreaction compared with the 

control, CH and VA group after SCI (Figure 6C and 6G). 

Moreover, to further evaluate the effect of VA-CN on the 

BSCB permeability, Evans blue extravasation was 

performed after SCI. The Evans blue fluorescence and 

content results showed that VA-CN significantly inhibited 

the extravasation of EB after SCI (Figure 6D, 6H and 6I). 

These results suggested that VA-CN treatment could 

enhance the integrity of blood spinal cord barrier after SCI. 

 

 
 

Figure 6. VA-CN enhanced the integrity of blood spinal cord barrier after SCI. The blood spinal cord barrier integrity was measured 
by Claudin-5, Albumin, IgG expression at 4 weeks (n=6 per group) and Evans blue extravasation at 24 h (n=4 per group) after injury. (A, E) 
Claudin-5 immunoreactivity and quantification to the spinal cord of rats (Scale bar: 100 μm), * p<0.05, ** p<0.01. (B, F) Albumin 
immunoreactivity and quantification to the spinal cord of rats (Scale bar: 100 μm), * p<0.05, ** p<0.01. (C, G) IgG immunoreactivity and 
quantification to the spinal cord of rats (Scale bar: 100 μm), * p<0.05. (D, H) Evans blue extravasation and quantification in the spinal cord of 
rats (Scale bar: 50 μm), * p<0.05, ** p<0.01 VS SCI, ## p<0.01 VS Sham, ### p<0.001 VS Sham. (I) Quantification data of Evans blue content in 
the spinal cord (μg/g), * p<0.05 VS SCI, # p<0.05 VS Sham, ## p<0.01 VS Sham. 
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DISCUSSION 
 

PLGA-MP labeled nanoparticles administration has 

been shown to significantly reduce lesion volume and 

improve recovery of SCI compared with the systemic 

MP delivery in rats [23]. A number of previous studies 

have demonstrated that the therapeutic effects of 

valproic acid delivery on SCI were valid through 

various mechanisms, including attenuated inflam-

mation induced by SCI, mediated neuroprotection and 

neurogenesis, promoted neurite outgrowth by 

stimulating overexpression of microtubule-associated 

protein 2, reduced autophagy and enhanced motor 

function, attenuated blood-spinal cord barrier 

disruption by inhibiting matrix metalloprotease-9 

activity [35–37]. However, the utilization of highly 

dose valproic acid delivery by intravenous 

administration was controversial since the risk of side 

effects and limited effectiveness in SCI [38, 39]. 

Synthetic nano-sized polymers have been shown to 

effective administration containing various types of 

drugs for treatment of SCI [40, 41]. Therefore, it is 

necessary to explore the therapeutic effects and 

detailed mechanisms of valproic acid combined with 

nanoparticles delivery on SCI in rats. 

 

In this study, we developed a novel approach of chitosan 

nanoparticles carried valproic acid for the first time in the 

treatment of injured spinal cord in rats. Previous studies 

have demonstrated that potential advantages of chitosan 

nanoparticles administration containing various types of 

drugs revealed biocompatibility, availability and ease of 

functionalization compared with conventional systemic 

delivery [42]. A recent study has revealed that chitosan 

nanoparticles exerted neuroprotection by its membrane 

sealing effects in oxidative stress-mediated injury [43]. 

Our results showed that administration of VA-CN 

significantly promoted the recovery of the function and 

tissue repair and inhibited the reactive astrocytes after 

SCI. On the other hand, previous studies have shown that 

VA potentiated neuroprotection and function recovery 

after SCI [30, 34]. However, our results revealed that VA 

alone treatment just slightly improved the injured area, 

neuronal injury, reactive astrocytes, inflammation, and 

blood spinal cord barrier disruption, which might be 

relevant to the low dose of VA and intravenous 

administration manner in this study. The effectiveness 

and maintenance of delivery to injured spinal cord were 

significantly enhanced by administration of VA-CN 

through evaluating the fluorescence intensity of Cy5.5 at 

injured spinal cord. Interestingly, the distribution of VA-

CN was also revealed in the spinal cord of uninjured rats. 

In vivo toxicity analysis demonstrated VA-CN treatment 

resulted in no morphological changes in the liver, lung, 

spleen, kidney, and heart of SCI rats, which suggested 

that accumulation of VA-CN cause no damage in various 

organs of the rats. Moreover, the BBB scores, 

connections between the control system of brain and the 

bladder, lesion cavity volume were significantly 

improved by treatment of VA-CN after SCI. 

Furthermore, administration of VA-CN effectively 

increased the immunoreaction of neuronal related marker 

NF160 and remarkably reduced the reactive astrocytes in 

rats of SCI. The production of IL-1β, IL-6 and TNF-α 

were significantly decreased following treatment of VA-

CN. In addition, administration of VA-CN also 

effectively improved the blood spinal cord barrier 

disruption after SCI through estimating the BSCB 

representative markers Claudin-5, Albumin and IgG 

expression and Evans blue extravasation. Our results 

indicated the promising potential of VA-CN 

nanoparticles for treating SCI in clinic. We presented 

evidence that administration of VA-CN exerted the 

potential to improve recovery of neuronal injury and 

motor function after SCI by intravenous route, which was 

relatively simple to implement and provided new insight 

into the benefits of administration of VA-CN and 

encouraged the clinical application of this treatment. 

However, further work is needed to validate the 

effectiveness by assessing preclinical outcomes.  

 

CONCLUSIONS 
 

Taken together, effective delivery of VA-CN to the 

injured spinal cord decreased lesion cavity volume and 

improved function recovery compared with systemic VA 

delivery. Based on our results, administration of VA-CN 

could enhance the recovery of neuronal injury, suppress 

the reactive astrocytes and inflammation, and improve 

the blood spinal cord barrier disruption after SCI in rats. 

These results maximized the therapeutic effectiveness of 

VA in the treatment of SCI. Although further studies are 

needed to more precisely determine the exact therapeutic 

mechanism and to assess how dosage, administration 

frequency and timing of treatment with VA-CN may 

affect the clinical outcome, this study find a new 

perspective for the treatment of SCI. 
 

MATERIALS AND METHODS 
 

Preparation and characterization of valproic acid 

labeled chitosan nanoparticles 
 

Conjugation of valproic acid and chitosan nanoparticles 

was shown in Figure 1A. The valproic acid and chitosan 

nanoparticles were conjugated by coupling carboxyl to 

amino group. Briefly, 10 mg valproic acid diluted by 5 

ml dimethyl sulfoxide (DMSO) was added to 10 ml of 1 

mg/ml chitosan solution in the presence of 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide hydrochloride 

(EDC) and N-hydroxysuccinimide (NHS) modification 

reagents for 24 h at room temperature. The resulting 
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solutions were dialyzed for 48 h to isolate conjugates. 

The morphology of conjugates was analyzed by 

transmission electron microscopy (TEM). The surface 

charges of VC-CN nanoparticles in distilled water were 

determined using a Zetaplus analyzer (Brookhaven 

Instrument Co., CA). 

 

Cy5.5-labeled VC-CN nanoparticles 
 

Cy5.5 was dissolved in DMSO and added to VC-CN or 

VC solution for 6 h at room temperature in the dark. 

The solution was performed with dialysis against 

distilled water. The amounts of Cy5.5 in the VC-CN 

and VC treatment in the injured spinal cord, uninjured 

spinal cord, and various organs were determined by 

fluorescence. 

 

Animals 

 

Adult male rats (180 to 220 g, Sprague-Dawley, Harlan) 

were provided by the Animal Center of Capital Medical 

University. All of the animals were treated humanely 

and with regard for the alleviation of suffering. This 

study was carried out in accordance with the guidelines 

of the Care and Use of Laboratory Animals of the 

National Institutes of Health. All experimental protocols 

described in this study were approved by the Ethics 

Review Committee for Animal Experimentation of 

Capital Medical University.  

 

Animal model of SCI 

 

The rats were anesthesia by 4 % isoflurane. A 

laminectomy was performed at the thoracic vertebra 

level 10 (T10) after shaving and cleaning until fully 

recovered from the anesthesia. Spinal cord contusion 

was induced using a weight-drop apparatus, where a 

guided 5g rod was dropped from a height of 80 mm 

onto the exposed cord, representing moderate SCI. 

After surgery, the muscles were sutured in layers and 

the skin incision was closed with silk threads. Penicillin 

G (40,000 U, i.m.) was administrated daily for 3 days to 

prevent infection. Rats that died for any reasons were 

excluded from the experiment, and a new one was 

added to the study. The sham rats were subjected to 

laminectomy without SCI. 
 

Experimental groups and interventions 
 

Fifty-eight rats were randomly assigned to five groups: 

Sham rats (n=10), SCI rats (n=12), CN-treated SCI rats 

(n=12), VA-treated SCI rats (n=12) and VA-CN-treated 

SCI rats (n=12). 15 mg/kg concentration of VA-CN, 15 

mg/kg concentration of CN and 80 mg/kg concentration 

of VA were intravenously administered daily for 5 days 

and started at 1 h after injury. After injury, the rats of 

SCI model group were injected with saline solution in 

the tail vein. The other groups were administrated with 

15 mg/kg concentration of VA-CN, 15 mg/kg 

concentration of CN or 80 mg/kg concentration of VA 

(500 ul in saline) through a single intravenous tail vein 

injection. In addition, four Sham rats and four VA-CN-

treated SCI rats were used to evaluate the side effect of 

VA-CN in vivo.  

 

Behavioral assessment 
 

The locomotor activity was assessed at 1, 3, 7, 14 and 28 

days post-injury using the Basso Beattie Bresnahan 

(BBB) locomotor score method. The final score for each 

animal was obtained by averaging values from both 

investigators. Rats with perineal infections, limb wounds, 

or tail and foot grazing were eliminated from the test. 

 

Urine collection 
 

The residual urine volumes were detected from morning 

volumes. To obtain urine from SCI rats at various times, 

animals were anesthetized with 4% isoflurane and 

administered 2 ml PBS intravenously via the tail vein to 

facilitate urine production. After 1 hour, urine was 

collected via transurethral catheterization. The void 

frequency per hour and volume per void were collected 

using constant infusion of room temperature PBS through 

the catheter into the bladder at 4 weeks after SCI. 

 

Histopathological analysis 

 

The 5 μm longitudinal sections were made from the 

paraffin embedded blocks and stained with hematoxylin 

solution for 5 min. Then the sections were stained with 

eosin solution for 3 min and followed by dehydration 

with graded alcohol and clearing in xylene. The 

mounted slides were then observed and photographed 

using a light microscope (Nikon, Tokyo, Japan). Images 

were collected at 100× magnification. The lesion cavity 

volume was evaluated using H&E staining under the 

light microscope. In vivo toxicity analysis, the liver, 

lung, spleen, kidney, and heart were embedded into 

paraffin. Sections of 5 m thickness were stained with 

haematoxylin and eosin to evaluate the in vivo toxicity 

of VA-CN (400× magnification). 

 

Tissue preparation and ELISA analysis  

 

For the enzyme-linked immunosorbent assay, rats were 

sacrificed and the spinal cord was immediately 

dissected on ice. 10-mm-long spinal cord segments 

containing the injury epicenter were removed as quickly 

as possible. The samples were then flash-frozen and 

stored in liquid nitrogen. The samples were subjected to 

measure the cytokines production of IL-1β, IL-6 and 
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TNF-α at 7 days post-injury by ELISA according to 

manufacturer’ s instructions (Cusabio Biotech Co, 

Wuhan, China). All assays were performed in 

duplicates using recommended buffers, diluents, and 

substrates. 
 

Immunocytochemistry 
 

At 28 days post injury, the rats were anesthetized and 

transcardially exsanguinated with 150 ml physiological 

saline followed by fixation. A 1 cm spinal cord segment 

at the lesion center was dissected and then fixed 4 h by 4 

% paraformaldehyde in PBS. The cord segments were 

embedded in tissue embedding medium, and 30 m 

sagittal sections were cut on a cryotome and mounted 

onto glass slides. Albumin (cat. #EPR20195) and IgG 

(cat. #ab150116) (Abcam, Cambridge, MA, USA), 

claudin-5 (cat. #sc-374221) antibodies (Santa Cruz 

Biotechnology, CA, USA) were used to evaluate BSCB 

integrity. CD11b (Cat. #NB110-89474) antibodies 

(Novus Biologicals, Littleton, CO, USA) and Ki67 (cat. 

#ab16667) antibodies (Abcam, Cambridge, MA, USA) 

were used to evaluate activated microglia. IL-1β (Cat. 

#ab9722) antibodies (Abcam, Cambridge, MA, USA) 

were used to evaluate inflammation. NF160 (cat. 

#ab7794), GFAP (cat. #ab4674), Nestin (Cat. 

#ab134017) antibodies (Abcam, Cambridge, MA, USA) 

were used to evaluate neuronal restore and astrocyte 

reactivity. Sections were incubated in a hydrogen 

peroxide solution (0.3%) for 1 hour at room temperature. 

Second antibodies were visualized using the fluorescence 

microscopy (Nikon, Tokyo, Japan) or visualized using 

confocal microscopy (Zeiss 710 and LSM software).  
 

Measurement of Evans blue extravasation  
 

After SCI, Evans Blue dye (2% w/v in saline, Sigma-

Aldrich) was injected intravenously under anesthesia. 1 h 

after the injection, rats were perfused with saline and 

rinsed thoroughly until no more blue dye flew out of the 

right atrium. The spinal cords were acquired and the 

Evans Blue content and Evans Blue fluorescence were 

used to measure Evans Blue extravasation. The spinal 

cord tissue was weighed and soaked in methanamide for 

24 hours and then centrifuged. The absorption of the 

supernatant was measured at 620 nm with a microplate 

reader (Molecular Devices). The content of EB was 

measured as micrograms per gram of spinal cord tissue. 

The spinal cord tissue was fixed in 4% paraformaldehyde 

and kept frozen. Evans Blue staining was visualized 

using a light microscope (Nikon, Tokyo, Japan). 
 

Statistical analysis 
 

Results are presented as the means ± S.D. from at  

least three independent experiments. The statistical 

differences were calculated by the Student’s t-test or 

one-way ANOVA analysis of variance with Dunnett’s 

test. * P<0.05 was considered significant.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 

 

 
 

Supplementary Figure 1. The distribution of VA-CN in the spinal cord of uninjured rats. (A) Fluorescence images of VA-CN-Cy5.5 
and VA-Cy5.5 in uninjured spinal cord at 48 h after treatment (Scale bar: 100 μm), n=4 per group. (B) Quantitative results of fluorescence 
intensity of Cy5.5, n=4 per group. ** p<0.01. 

 

 

 
 

Supplementary Figure 2. In vivo toxicity analysis. Histological analysis of the liver, lung, spleen, kidney, and heart stained with 
hematoxylin and eosin in Sham and VA-CN treated rats at 4 weeks after injury (Scale bar: 50 μm). 

 

 

 


