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ABSTRACT

Theblood exhibits a dynamicflux of proteins that are secretedby the tissuesand cellsof the body. Toidentify
novel agingrelated circulating proteins, we comparedthe plasmaproteomic profiles of young and old mice
usingtandem massspectrometry. The expressionof 134 proteins differed between young and old mice. We
selected seven proteins that were expressedat higher levels in young mice, and confirmed their plasme
expressionin immunoassays.The plasmalevels of anthrax toxin receptor 2 (ANTXR2)cadherin13 (CDH13),
scavengerreceptor cysteinerich type 1 protein M130 (CD163),cartilage oligomeric matrix protein (COMP)
Dickkopfrelated protein 3 (DKK3)periostin, and secretograninl were all confirmedto decreasewith age.We
then investigated whether any of the secretedproteins influenced bone metabolism and found that CDH13
inhibited osteoclast differentiation. CDH13 treatment suppressedthe receptor activator of NF¢ . ligand
(RANKL}ignalingpathway in bone marrow-derived macrophagesand intraperitoneal administration of CDH
13 delayedagerelated bone lossin the femurs of agedmice. Thesefindings suggestthat low plasmaCDH13
expressionin aged mice promotes aging-associatedosteopeniaby facilitating excessiveosteoclastformation.
Thus,CDH13 could havetherapeutic potential asa protein drug for the prevention of osteopenia.
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INTRODUCTION

Aging is a time-dependent functional decline that is
characterized by the progressive loss of physiological
integrity, leading to organ dysfunction and increased
vulnerability to age-related diseases [1]. With age, the
plasma proteins secreted by tissues change dramatically
[2—4]. Since plasma proteins reflect human physiological
or pathological states, they are a potential goldmine of
candidate biomarkers for age-related changes [5]. The
study of such markers could clarify the physiological
processes of aging, which in turn could provide insights
into potential therapeutic targets and strategies to alleviate
the effects of aging [6, 7].

Numerous studies have demonstrated that young plasma
can reverse aging phenotypes and rejuvenate the aged
brain, muscles, bones, liver and heart [8-11]. Various
approaches have been used to identify circulating proteins
that are differentially expressed and/or involved in organ
dysfunction during aging. CCL11 (a chemokine also
known as eotaxin) and p2-microglobulin are upregulated
in aged humans and mice, and these increases are
speculated to impair cognitive function [12, 13].
Conversely, thrombospondin-4 (THBS4) and SPARC-like
protein 1 (SPARCL1) are enriched in the plasma of young
mice, and act directly on neurons as synaptogenic factors
[14]. The plasma levels of oxytocin and apelin decrease
with age, which is notable because oxytocin deficiency
leads to premature sarcopenia in mice [15]. The injection
of aged mice with recombinant apelin was reported to
reverse age-related losses of muscle mass and strength
[16]. These findings suggest that specific factors in young
or old plasma can contribute to the aging process and/or
age-related diseases.

With advancing age, osteoclast-induced bone resorption
outpaces osteoblast-induced bone deposition, leading to
a gradual loss of bone mass. The use of therapeutic
agents that inhibit osteoclast activity and differentiation
has been proposed as a strategy to prevent osteoporosis
and other  bone-related  diseases.  Osteoclast
differentiation is induced by macrophage-colony
stimulating factor (M-CSF), receptor activator of
nuclear factor (NF)-xB ligand (RANKL) and
osteoprotegerin [17]. These cytokines are involved in
signaling pathways that balance the activities of
osteoblasts and osteoclasts to maintain bone mass
homeostasis. The monoclonal antibody denosumab is
the only RANKL inhibitor currently approved by the
US Food and Drug Administration, and has been
reported to reduce bone turnover and increase bone
mineral density (BMD) [18].

Cadherin-13 (CDH-13, also known as T-cadherin or H-
cadherin) is an atypical member of the cadherin

superfamily. It lacks the typical transmembrane and
cytoplasmic domains of this superfamily, and is linked to
the plasma membrane via a glycosylphosphatidylinositol
moiety [19, 20]. CDH-13 is abundant in developing and
adult brains [21], and has been associated with various
psychiatric disorders [22-24]. In addition, CDH-13
influences vascular function, and has been associated with
vascular disorders such as atherosclerosis and hypertension
[25-27]. Although CDH-13 is known to regulate cell-cell
interactions in the plasma membrane, it also circulates in
the blood. Elevated plasma CDH-13 levels have been
associated with early atherosclerosis development [26], but
reduced plasma CDH-13 levels have been associated with
a greater severity of coronary artery disease and a higher
risk of acute coronary syndrome [28]. Thus, the function of
circulating CDH-13 is not fully understood.

Given that plasma proteins include aging-related factors,
we hypothesized that aging would dynamically alter the
plasma levels of proteins involved in age-related bone loss.
We used a proteomic approach to identify plasma proteins
that were differentially expressed between young and old
mice, and investigated their effects on osteoclasts and
osteoblasts. We focused on CDH-13, examining its impact
on osteoclast differentiation and bone resorption. Finally,
we tested whether intraperitoneal administration of CDH-
13 could prevent age-related bone loss.

RESULTS
Plasma proteome profiling of youngand old mice

The overall workflow of this study is outlined in Figure 1.
We collected plasma samples from 18 young (2-month-
old) and 18 aged (21- to 23-month-old) C57BL/6J mice,
and pooled the samples of every three mice (six pools per
group) for subsequent experiments (Figure 1A). The most
abundant mouse plasma proteins (albumin, IgG and
transferrin)  were  depleted by immunoaffinity
chromatography. The remaining plasma proteins (300 pg
each) were digested with trypsin and separated into 12
fractions using isoelectric-point (pl)-based OFFGEL
separation and  high-pH  reversed-phase liquid
chromatography (RPLC). Each fraction was further
analyzed using nanoRPLC-tandem mass spectrometry
(MS/MS). The mass spectra were searched against the
SwissProt mouse protein database. Comparative protein
quantitation was performed with the spectral count
values (Figure 1B).

Protein identification in young and old mouse
plasma

In total, 288 liquid chromatography (LC)-MS/MS
analyses were performed: 24 (2 separation methods x
12 sub-fractions) for each of the six replicates in both
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young and old mouse plasma samples. We identified
2217 proteins in young mouse plasma, 2244 proteins in
old mouse plasma, and a total of 3280 proteins (Figure
2A, Supplementary Table 1). Many proteins were only
identified in a single sample (Figure 2B), indicating that
numerous proteins are present at very low levels in
plasma and are difficult to quantify due to their
variability among mice [29, 30]. However, nearly 600
proteins were found in all 12 pooled plasma samples,
and some of them varied in concentration between
young and old mice. This indicates that the plasma
proteome may change with age.

Quantification of age-related protein abundances
through spectral counts

The abundances of the proteins and peptide-spectrum
matches identified in the six sets of young mouse
plasma and old mouse plasma were compared based
on their G-test and Significance Analysis of
Microarrays (SAM) values. When G-values > 3.841
and SAM values of d > 1.96 were both applied as
acceptance criteria, 134 abundant proteins were
identified (Supplementary Table 1). Among them, 68
proteins were identified in young mouse plasma, while
the remaining 66 proteins were identified in old mouse
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plasma (Figure 2C). It is well known that 22 high-
abundance proteins, including albumin and
immunoglobulin, make up 99% of plasma proteins
[29]. Most of the proteins screened in our analysis
were not members of this abundant protein group, and
thus were probably present at relatively low levels.
This demonstrates that lower-abundance proteins may
be important contributors to the aging process.

Age-related changes in candidate proteins in mouse

plasma

From the plasma proteins identified above, we selected
seven candidates that were downregulated in aged mice
and had not been studied previously in aging-related
research (Table 1). We prioritized proteins that
contained signal peptides or were previously reported to
be circulating proteins. The candidate proteins were
anthrax toxin receptor 2 (ANTXR2), CDH-13, cartilage
oligomeric matrix protein (COMP), scavenger receptor
cysteine-rich type 1 protein M130 (CD163), Dickkopf-
related protein 3 (DKK3), periostin and secretogranin-1.
We used enzyme-linked immunosorbent assays to detect
these candidates in the plasma of young and old mice,
and found that all of them were expressed at lower levels
in old mice than in young mice (Figure 3A-3G).
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Figure 1. Overall workflow of the proteomic profiling of young versus old mouse plas@ePlasma samples were collected from
18 young (Zmonth-old) and 18 aged (21to 23-month-old) C57BL/6J mice, and plasma samples from trios of mice were combined to
generate six pooled sets per groyB) Flowchart of the proteomic analysis of mouse plasmd #he validation of reversaging candidate

proteins.

Www. a-g$ ngom

8654

AGI

NG



CDH-13 inhibits osteoclast differentiation

We speculated that the candidate proteins might
contribute to the aging process or the development of
aging-associated  diseases such as  sarcopenia,
osteopenia, cognitive decline, cardiovascular disease
and so on. With increasing age, greater osteoclast
formation or function can initially reduce the BMD. To
test whether any of the identified proteins could inhibit
osteoclast formation, we treated bone marrow-derived
macrophages (BMMs) with each of the candidates
during  RANKL-induced osteoclast differentiation.
Among the candidates, CDH-13, which was not toxic to
the cells at any of the tested doses (Supplementary
Figure 1), was found to inhibit osteoclast differentiation
dose-dependently (Figure 4A-4C),
while it did not inhibit osteoblast differentiation
(Supplementary Figure 2A and 2B).

To assess the effects of CDH-13 on RANKL-associated
signaling cascades, we examined the phosphorylation of
signaling molecules in the mitogen-activated protein
kinase and canonical NF-xB pathways. BMMs were
pretreated with CDH-13 or PBS (the control) for 30 min,
and then were stimulated with RANKL at the indicated
time points. As shown in Figure 4D, RANKL rapidly
induced the phosphorylation of extracellular signal-
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regulated kinase (ERK), p38, c-Jun N-terminal kinase
(JNK), p65 and phospholipase C gamma 2 (PLCy2), as
well as the degradation of NF-«xB inhibitor alpha (IxBa).
CDH-13 pretreatment significantly inhibited the
RANKL-induced phosphorylation/degradation of these
signaling molecules (Figure 4D). These results suggest
that CDH-13 blocks the initial activation of
RANKL/RANK-induced signaling.

To determine whether CDH-13 treatment could also
suppress  osteoclast-induced bone resorption, we
assessed pit formation in CDH-13-treated dentin slices
(Figure 4E and 4F). However, CDH-13 treatment did
not alter the area of bone resorbed by differentiated
osteoclasts. These results indicate that CDH-13 inhibits
osteoclast differentiation, but not osteoclast-induced
bone resorption.

CDH-13 administration delays bone loss in aged

mice

To examine the possibility of using CDH-13 to treat age-
related bone loss, we tested the effects of CDH-13 on
bone homeostasis in old mice. Beginning at 15 months
of age, female mice were intraperitoneally injected with
CDH-13 or phosphate-buffered saline (the vehicle) for
four months, as shown in the experimental timeline

Cc
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Number of samples where each protein is identified

Figure 2. Comparison of plasma proteins between young and old n&eA Venn diagram is shown for the identified proteins,
which included 2217 proteins from young mouse plasma, 2244 proteins from old mouse plasma, and a total of 3280 plasmB)roken
graph displays the number of samples in which each identified protein was found. Many pfotieéns were identified in only a single
sample, while nearly 600 proteins were found in all 12 samf@&umber of proteins expressed at different levielsyoung and old mice.

Statistical analyses were germed with the Gtest and SAM.
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Table 1. Selected candidates for agdated changes in mouse plasma.

pl-based separation

High pH separation

) Gene - Total Total Fold Total Total Fold
Accession Description
name PSMs, PSMs, G-value Dvalue change PSMs, PSMs, G-value Dvalue change
Young Old Q1Y) Young Old (1Y)
Anthrax toxin
Q6DFX2 Antxr2 48 20 10.2 45 0.417 11 6 N.S. N.S. 0.545
receptor 2
Cadherin-13 (T-
QIWTRS Cdh13 . 34 30 N.S. N.S. 0.882 36 16 6.1 31 0.444
Cadherin)
Cartilage
Q9R0G6 Comp oligomeric 78 38 12.2 3.7 0.487 44 24 43 2.6 0.545
matrix protein
Dickkopf-related
Q9QUN9 Dkk3 . 42 18 8.4 3.2 0.429 2 0 N.S. N.S. 0.000
protein 3
Scavenger
Cd163  receptor cysteine-
Q2VLH6 . 32 5 19.5 29 0.156 13 0 13.2 4.6 0.000
M130 rich type 1
protein M130
P47867 Scg3 Secretogranin-3 10 2 4.2 2.6 0.200 6 5 N.S. N.S. 0.833
Postn
Q62009 Osf2 Periostin 184 95 25.6 2.2 0.516 133 47 37.2 49 0.353

N.S., not significant or able talculate

(Figure 5A). There were no differences in body weight or
dietary consumption between the two groups of mice
(Figure 5B and 5C). We used live-animal micro-
computed tomography (micro-CT) for quantitative
longitudinal analyses of bone loss (Figure 5D-5K). Over
the 16 weeks following the primary injection, the BMD of
the femur declined dramatically and progressively in the
control mice. In the CDH-13-treated mice, this BMD
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Figure 3. Validation of the selected candidates in plasma from young and old .rRlasma concentrations ofY ANTXRZB) CDH
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decrease was attenuated, while the bone volume fraction
and trabecular thickness were elevated (Figure 5E and
5F). CDH-13-treated mice showed higher trabecular bone
volume (BV/TV) and bone specific surface (BS/BV) than
the control mice (Figure 5G and 5H). The trabecular
thickness and number were significantly higher in the
CDH-13-treated mice than in the control mice (Figure 5I
and 5K). The trabecular separation displayed a decreasing

20 25
- . = 20
£ -
S 15
10 £
o 10
5
5 O 5
0 0
Young Old Young Old
- 25
aJ
E
o 20
&
% 15
£
c
g 10
o
£
o 5
e ke
o
[ ]
Young Old

13, (0 CD163(D) COMP(E) DKK3(F periostinand (G) secretogranirl. Error bargepresentt SEM. **P< 0.001, **P < 0.01, *P < 0.05;

NS, not significant.

Www. a-g$ ngom

8656

AGI

NG



trend in the CDH-13-treated group, but the difference did biomarkers that could be used to reduce the burden of

not reach statistical significance (Figure 5J). These results aging and to improve the health-span and productivity
demonstrate that CDH-13 administration can attenuate of senior citizens. Therefore, we assessed the plasma
age-associated bone loss in aged mice, likely by blocking protein profiles of young and old mice, identified
RANK-induced osteoclastogenesis. proteins that were downregulated in old mice, and
verified their age-related characteristics. We adopted
DISCUSSION two different peptide separation/fractionation strategies
for our proteomic analysis (OFFGEL separation and
The characterization of aging-related proteins is an high-pH RPLC) in order to avoid method bias and to
important step towards understanding the mechanisms maximize the total number of identified proteins. We
of aging and age-related pathogenesis [4, 31]. Such also applied two different statistical methods, which
analysis could also reveal diagnostic and prognostic increased our confidence in the quantification results.
A B M-CSF M-CSF + RANKL
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Figure 4. Effects of CBEB on RANKinduced osteoclast differentiation(A) BMMs were cultured fothree days in the presence of
M-CSF (30 ng/mL) and RANKL (100 ng/mL) with one of the candidate proteins (ANTXE2, CDt63, COMP, DKK3, periostin or
secretograniAl; 100 ng/mL). Osteoclasts were stained with TRBBIIMs were incubated with varioe®ncentrations of CDH3 (0, 1, 10

and 100 ng/mL).G) TRAPositive multinucleated cells with more than five nuclei were countB).\-CSHreated BMMs were pretreated

with CDHL13 or the vehicle for 30 min. RANKL (100 ng/wés used to stimulate the cells at the indicated timasgd immunoblottingwas

used to detect members of the RANKiitbgen-activated protein kinasand NFk B s i g n a | i EnRyDifferantiatedv@steczlasts (vere
cultured in the presence of the vehtobr CDHL3 (1, 10 or 100 ng/mL) on dentin slices. Resorption pits were visualized with hematoxylin, and
the resorption areas were measurdgrror bars represent + SEM. P« 0.01, *P< 0.05NS, not significant.
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Although plasma proteins that change with aging
have been documented in many ways, few studies
have systematically explored and characterized the
proteins that influence the aging process and age-
related diseases. Several plasma proteome studies
have used two-dimensional difference  gel
electrophoresis (2D-DIGE) approaches to identify
age-related changes in plasma protein levels in
humans and mice [32, 33], and Tanaka et al.
identified 217 age-related plasma proteins using the
SOMAscan proteomic assay [2]. However, these two
proteomic approaches can detect only part of the
plasma proteome. In addition, these studies revealed
that there is considerable inter-individual variability
in many plasma proteins, likely reflecting the health
status of individuals. When we compared our listed
proteins with those identified by the 2D-DIGE and

SOMAscan approaches, we found little overlap.
Recently, Gan et al. analyzed serum samples from
young and old mice using MS/MS, and reported
that the top 10 differentially expressed proteins
were a2HS-glycoprotein, lumican (LUM), THBS4,
a-fetoprotein, SPARCL1, COMP, pregnancy zone
protein, complement factor H (CFH), «alf
glycoprotein and complement factor 1 [14].
Surprisingly, five of these proteins overlapped with
our candidate proteins: LUM, THBS4, SPARCLI,
COMP and CFH. Among them, LUM, THBS4,
SPARCL1 and COMP were enriched in the blood of
young mice, while CFH was more abundant in the
blood of old mice. Although many plasma proteins
are known to be altered in aged mice and/or humans,
their functions in the aging process have not yet been
characterized in detail.
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Figure 5. Effects of CBEB on agerelated bone loss in the distal femurs of old mic@) Schematic representation of the
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In order to identify novel circulating proteins that may be
linked with bone loss, we tested the effects of the
identified differentially expressed proteins on osteoclast
differentiation. Among the seven selected candidates,
CDH-13 was found to inhibit osteoclast differentiation in
vitro and to preserve the BMD of the femur in aged mice.
The cadherin family members are cell-cell adhesion
molecules that have cadherin repeats in their extracellular
domains. The large cadherin proteins are key contributors
to morphogenetic processes during development and
tissue organization [34]. Several cadherins are cleaved by
proteases, and their cleaved fragments are involved in
various biological processes. For example, the matrix
metalloproteinase-induced cleavage of E-cadherin is
required for apical cell extrusion and cancer progression
[35-38]. The extracellular fragment of cadherin-11,
which is cleaved by A Disintegrin And Metalloprotease
13 (ADAM13), promotes cell migration [39]. CDH-13
has been demonstrated to circulate in plasma, which may
indicate that it is proteolytically cleaved and released
from a yet-unknown source to enter the bloodstream.

CDH-13 has been reported to suppress cell migration,
neuronal outgrowth and axon guidance through
homophilic and heterophilic interactions [20, 40-42]. It
also serves as a receptor for low-density lipoprotein,
functions as a receptor for adiponectin to support
angiogenesis and  protect from stress-induced
pathological cardiac remodeling [43-46], and binds to
insulin granules to contribute to insulin secretion [47].
Our results demonstrated that CDH-13 inhibits
osteoclast differentiation by blocking RANKL signaling
(Figure 4). Although the underlying molecular
mechanisms remain to be elucidated, we speculate that
plasma CDH-13 may function as a decoy receptor of
RANKL or as a RANK receptor antagonist.

We also found that CDH-13 was enriched in the blood
of young mice and helped to preserve bone mass by
inhibiting RANKL-induced osteoclast differentiation.
Multiple circulating factors regulate bone mass [48].
Our results suggested that CDH-13 is an age-related
bone factor, and that lower levels of CDH-13 disrupt the
balance of bone remodeling and promote age-related
bone loss. Since the inhibition of RANKL has long been
recognized as a therapeutic strategy for osteoporosis,
our findings suggest that CDH-13 could be used as a
novel therapeutic molecule to inhibit bone loss.

MATERIALS AND METHOD S
Reagents
All the chemicals used in this study were of sequencing

grade and were purchased from Sigma (St. Louis, MO,
USA) unless otherwise specified.

Mouse plasmasample preparation

Plasma samples from healthy young (2-month-old) and
aged (21- to 23-month-old) C57BL/6J mice were
obtained from the Biomedical Mouse Resource Center
at the Korea Research Institute of Bioscience and
Biotechnology (KRIBB) and stored at —80 °C until
further use. Plasma samples from every three mice were
combined to generate pooled plasma sample sets. Six
mouse plasma sets were collected from each group
(young and old).

Immunoaffinity
proteins

depletion of high-abundance

The three most abundant mouse plasma proteins
(albumin, IgG and transferrin) were depleted with an
Agilent Multiple Affinity Removal System Column on
an Agilent LC system (1290 Infinity; Agilent
Technologies, Santa Clara, CA, USA). Briefly, 20 pL of
plasma was diluted to 100 pL in Buffer A mixed with
protease inhibitor, filtered through a 0.22-pm
microcentrifuge filter, injected onto the column, and
depleted with the manufacturer’s recommended
protocols and buffers. The flow-through fractions
containing unbound proteins were collected and stored
at —20 °C until further use. The depleted mouse plasma
samples were then concentrated through 3-kDa filter
spin columns (Amicon® Ultra-0.5 filter) and stored at
—80 °C until further use.

In-solution trypsin digestion

In-solution trypsin digestion was performed as
described in our recent publication with little
modification [49]. Briefly, the protein concentration
was determined using the Bradford method, and 300 pg
of protein from young or old mouse plasma was
resuspended in 8 M urea, 75 mM NaCl, 50 mM Tris-
HCI (pH 7.5) and a protease inhibitor mix. The protein
mixture was then reduced in tris(2-carboxyethyl)
phosphine (Thermo Fisher Scientific) at a final
concentration of 5 mM for 60 min at room temperature
(25 °C). Cysteines were alkylated with iodoacetamide at
a final concentration of 15 mM for 60 min at room
temperature in the dark. The sample was diluted 10-fold
with 50 mM Tris-HCI to reduce the concentration of
urea to 0.8 M or less, and then was digested overnight
with trypsin (1:50 enzyme:substrate ratio) at 37 °C. The
digested sample was allowed to cool at room
temperature, and digestion was quenched by
acidification with 0.5% trifluoroacetic acid. The sample
was purified/desalted with a C18 MacroSpin column
(The Nest Group Inc., Southborough, MA, USA),
divided into two equal parts (one for OFFGEL
separation and the other for high-pH fractionation;
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~150 pg of peptides per portion), dried in vacuo and
stored at —20 °C for further use.

OFFGEL separation

For pl-based peptide separation, a 3100 OFFGEL
Fractionator and an OFFGEL Kit pH 3-10 (both from
Agilent Technologies) with a 12-well setup were used
according to the manufacturer’s instructions. First,
12-cm-long immobilized pH-gradient gel strips with a
non-linear pH gradient ranging from 3 to 10 were
rehydrated in the assembled device with 40 pL of
focusing buffer per well for 15 min prior to sample
loading. Then, 150 pg of the tryptic digest from young
or aged mouse plasma was diluted in focusing buffer to
a final volume of 1.8 mL, and 150 pL of each peptide
sample was loaded into each well. The sample was
electrofocused with a maximum current of 50 pA and a
maximum power of 200 mW until 50 kVVh was reached
after 24 h. The recovered fractions (volumes between
100 and 200 pL) were acidified with trifluoroacetic
acid. The OFFGEL fractions were subsequently
purified/desalted on a Pierce® C18 Spin column
(Thermo Scientific, Rockford, IL, USA), dried in vacuo
and stored at —20 °C for MS analysis.

High-pH reversedphase fractionation

Tryptic digests of plasma samples were fractionated
with a high-pH RPLC system (Agilent Technologies,
1290 Infinity LC System). The fractionations were
performed with an XBridge C18 column (4.6 mm
internal diameter x 250 mm length; pore size 300 A
and particle size 5 pm; Waters Corporation, Milford,
MA, USA) at a flow rate of 0.5 mL/min. The phases
consisted of 10 mM ammonium formate (pH 10) as
mobile phase A and 10 mM ammonium formate in
90% acetonitrile (pH 10) as mobile phase B.
Individual plasma digests were dissolved in 20 puL of
mobile phase A and then injected through an
autosampler into a 20-pL sample loop. The following
program was used: hold at 5% mobile phase B for 10
min; apply gradients of 5% to 40% B for 38.5 min and
40% to 70% B for 14 min; wash the column with a
hold at 70% B for 10 min; and finally re-equilibrate
the column with a gradient of 70% to 5% B for 20
min. During fractionation, the peptide elution profile
was monitored based on the ultraviolet absorbance at
215 nm, and the eluents were collected every 0.4 min
into separate 1.5-mL tubes, for a total of 168 initial
fractions. We pooled these 168 fractions into 12
concatenated fractions by combining each set of an
arithmetic sequence with a common difference of 12
into one concatenated fraction. The final 12 major
fractions were dried in a SpeedVac and stored at —20
°C for further use.

MS analysis

Peptide samples were reconstituted with 0.4% acetic
acid and injected from a cooled (10 °C) autosampler
into a reversed-phase Magic C18aqg column (15 cm x 75
um, 5 pm, 200 A, packed in-house; Michrom
BioResources, Auburn, CA, USA) on an Eksigent
NanoLC-Ultra 1D Plus system at a flow rate of 300
nL/min. Prior to use, the column was equilibrated with
95% buffer A (0.1% formic acid in water) and 5%
buffer B (0.1% formic acid in acetonitrile). The peptides
were eluted with a linear gradient from 5% to 40%
buffer B over 120 min, followed by an organic wash
and aqueous re-equilibration at a flow rate of 300
nL/min, with a total run time of 170 min. The LC
system was coupled to a Q Exactive quadrupole mass
spectrometer (Thermo Fisher Scientific, Bremen,
Germany) operated in data-dependent acquisition mode.
Survey full-scan MS spectra (m/z 300-2000) were
acquired with a resolution of 70,000. The utilized
source ionization parameters were as follows: spray
voltage, 1.9 kV; capillary temperature, 275 °C; and
s-lens level, 44.0. The MS peak width at half height was
< 30 s. The MS/MS spectra of the 12 most intense ions
from the MS1 scan with a charge state > 2 were
acquired with the following options: resolution, 17,500;
isolation width, 2.0 m/z; normalized collision energy,
27%; ion selection threshold, 4.00E+03 counts; and
peptide match, ‘prefer’. A previous report indicated that
the quantification of proteins was independent of the
dynamic exclusion settings of the data-dependent
acquisition mode, and that extension of the dynamic
exclusion duration to 90 s allowed greater quantification
of less-abundant proteins [50]. Thus, in our MS
configuration, the dynamic exclusion duration was set
to 90 s. The volumes of the injected fractions were
adjusted so that approximately 1 pg of tryptic peptides
would be consistently injected. The peptide
concentrations were estimated based on the assumption
of quantitative recovery and an equal distribution of
peptides among all fractions.

Database searches and data processing

The RAW files obtained from the Q Exactive mass
spectrometer were converted into mgf files by means of
ProteoWizard 3.0 (MSConvert). To identify peptides
and proteins, we used the MSGF* (v9881) search engine
to compare the mgf files with the UniprotKB (SwissProt
only) mouse database (July 2014). The search engine
settings were as follows: semitrypsin; 15 ppm as MSL1,;
3 as instrument method; 0.2 as isotopeErrorRange;
allow to decoy database search; variable modification,
oxidation of methionine (+15.9949 Da); and fixed
modification, carbamidomethyl of cysteine (+57.0215
Da). The false discovery rate was set to 1% at the
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peptide-spectrum match level. The search output files
were filtered and assembled, and parsimonious protein
identifications were determined with IDPicker 3.1. The
false discovery rate of each spectrum, peptide and
protein was set to < 1%, with a minimum of one unique
peptide and spectrum.

Detection of differentially expressed plasma proteins
through spectral counting

To determine the differential plasma protein abundances
between young and old mice, we used spectral count
statistics as applied with the G-test [33]. The spectral
count of each protein was corrected with the Yates
correction for continuity. Proteins with G-values larger
than 3.841 were regarded as differentially expressed at
P < 0.05, according to the y2-distribution. SAM
analysis, which is analogous to the t-test but includes a
resampling-based  permutation  procedure,  was
performed in R (r-project.org; version 3.4.2) package
“samr” (version 2.0) with the false discovery rate set to
2.0% [51].

Enzyme-linked immunosorbent assays

Commercial enzyme-linked immunosorbent assay kits
were used to measure the levels of the following
candidate proteins in blood: ANTXR2 (MBS2533474,
Mybiosource), CDH-13 (MBS2883514, Mybiosource),
COMP  (MBS2886878,  Mybiosource), CD163
(MBS2885730, Mybiosource), DKK3 (DY1118, R&D
Systems), periostin (MBS824594, Mybiosource) and
secretogranin-1 (MBS913309, Mybiosource).

Production and purification of CDH-13

Recombinant ANTXR2, CDH-13, COMP, CD163,
DKK3, periostin and secretogranin-1 were purchased
from Y-Biologics (Daejeon, Korea). The appropriate
DNA fragments were cloned into the N293F-FC vector,
and proteins were generated in HEK293F cells.

Osteoclast differentiation

BMMs from murine bone marrow precursors derived
from six- to eight-week-old male C57BL/6 mice (The
Jackson Laboratory) were prepared as previously
described [52]. BMMs were treated with M-CSF (30
ng/mL) and RANKL (100 ng/mL) for three to four
days, and matured osteoclasts were fixed and stained for
the presence of tartrate-resistant acid phosphatase
(TRAP) with a TRAP staining kit (Sigma-Aldrich).
Osteoclasts were defined as pink TRAP-positive
multinucleated cells (i.e., having more than five nuclei).
The results of the osteoclast formation assays are
presented as the mean of three independent experiments

done in triplicate + the standard deviation (SD) of the
mean.

Resorption assay

Mature osteoclasts were seeded on dentin slices and
cultured with 30 ng/mL M-CSF and 100 ng/mL
RANKL for two days. The dentin slices were then
mechanically agitated to remove the cells.
Subsequently, the slices were stained with a
hematoxylin solution and Gill No. 3 for 10 min, and
were washed with water. The resorbed pit area was
guantified with Image J software (National Institutes of
Health, Bethesda, MD, USA). Four bone slices were
measured under each experimental condition.

Western blot analysis

Cells were vortexed five times during a 30-min period
on ice in a lysis buffer containing 20 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES, pH 7.0), 150 mM NaCl, 1% Triton X-100,
10% glycerol, proteinase inhibitors (1 mM
phenylmethanesulfonyl fluoride and 1 pg/mL leupeptin
and aprotinin) and phosphatase inhibitors (1 mM
NaVOs4 and 1 mM NaF). The samples were centrifuged
at 14,000 rpm for 20 min, and the supernatants were
boiled in 6X sodium dodecyl sulfate sample buffer
containing 0.6 M dithiothreitol. The cell lysates were
separated with 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis and
electrotransferred to a polyvinylidene difluoride
membrane (Millipore, Billerica, MA, USA). The
membranes were blocked with 5% bovine serum
albumin in Tris-buffered saline containing 0.1% Tween-
20, and were immunoblotted with primary antibodies
against ERK, phospho-ERK, p38, phospho-p38, JNK,
phospho-JNK, p65, phospho-p65, IkBa, PLCy2,
phospho-PLCy2  (1:1000) and glyceraldehyde-3-
phosphate dehydrogenase (1:5000) (Cell Signaling
Technology, Beverly, MA, USA). The bound antibodies
were reacted with horseradish peroxidase-conjugated
secondary antibodies (1:5000), and the protein bands
were detected with an enhanced chemiluminescence
detection kit (Bio-Rad Laboratories, Hercules, CA,
USA).

Micro -CT imaging and data analysis

CT imaging was performed with a Quantum GX Micro-
CT imaging system (PerkinElmer, Hopkinton, MA,
USA) located at the Korea Basic Science Institute
(Gwangju, Korea). The X-ray source was set to 90 kV
and 88 mA, with a field of view of 10 mm (voxel size,
20 pm; scanning time, 14 min). The 3D images were
integrated using the 3D Viewer software within the
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Quantum GX system, and the resolution was set to 4.5 3. Bjelosevic S, Pascovici D, Ping H, Karlaftis V, Zaw T,
um. Images were obtained for visualization and display. Song X, Molloy MP, Monagle P, Ignjatovic V.
Following scanning, the structural parameters of Quantitative Agespecific Variability of Plasma Proteins
trabecular bone were evaluated with Analyze 12.0 in Healthy Neonates, Children and Adults. Mol Cell
software (AnalyzeDirect, Overland Park, KS, USA). Proteomics. 2017; 16:92485.
The BMD of the femur was estimated based on a https://doi.org/10.1074/mcp.M116.066720
hydroxyapatite phantom (QRM-MicroCT-HA, Quality PMID28336724
Assurance - in . Radiology and Mec_ilcme GmbH, 4. Lehallier B, Gate D, SchatimNanasi T, Lee SE, Yousef
Germany), which was scanned with the same H, Moran Losada P, Berdnik D, Keller A, Verghese J
parameters. The Region of Interest tool in the software Séth an S FranceS(’:hi C Milmén S et él Ungdulatin '
was used to calculate the BMD, total volume, bone h yan ,h | ' i ' il ' th 9
volume, bone surface area, bone surface density (bone I(?f anges;\? Llj\/lmzn goisgmgspgg)me profiies across the
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trabecular separation and trabecular number of the https://doi.org/10.1038/541591019.06732
femur. The values of the parameters are shown as the PMID31806903
mean + SD. 5. Anderson NL, Anderson NG. The human plasma
proteome: history, character, and diagnigsprospects.
Statistical analysis Mol Cell Proteomics. 2002; 1:84%.
https://doi.org/10.1074/mcp.R20006KCP200
Statistical analyses were performed with the Statistical PMID12488461
Pacl_(age for_ th.e.SOC'al Sciences (SPSS version 17'0,)' 6. Rifai N, Gillette MA, Carr SA. Protein biomarker
Statistical significance was calculated with Student’s . o .
. . e discovery and validation: the long and uncertain path
unpaired t-test. Unless otherwise specified, all data are linical uilitv. Nat Biotechnol. 2006: 24-G8B
presented as the mean+ standard error of the mean Locw'uca.u v ) T '
. N ttps://doi.org/10.1038/nbt1235
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**P<0.01 and ***P <0.001. =
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SUPPLEMENTARY MATERIALS
Supplementary Methods

Cytotoxicity assay

The toxicity of CDH-13 was determined with an MTT
assay. Cells were seeded in 96-well plates, treated with
5 mg/mL MTT and incubated for 3 h at 37 °C. The
medium was removed and 150 mL of MTT solvent was
added (isopropanol containing 4 mL HCL and 0.1%
Nonidet P-40). The plate was incubated for 15 min and
read at 590 nm with a microplate reader.

and

Mouse calvarial preosteoblast isolation

osteoblast differentiation

Primary mouse osteoblasts were obtained from calvarial
bones excised from two-day-old neonatal mice [1]. For
osteoblast differentiation, the cells were cultured with
osteogenic medium containing 10 mM B-glycerol
phosphate (Sigma), 50 ug/mL ascorbate-2-phosphate
(Sigma), 10”7 M dexamethasone (Sigma) and 25 ng/mL
human recombinant bone morphogenetic protein 2
(R&D Systems) for 7 or 21 days.

Alkaline phosphatase (ALP) assay and Alizarine red
S (ARS) staining

After 7 days of osteoblast differentiation, ALP activity
was detected with  5-bromo-4-chloro-3-indolyl-

phosphate/nitro blue tetrazolium (BCIP/NBT) color
development substrate (Promega, Wisconsin, USA)
according to the manufacturer’s instructions. For the
detection of mineralization, preosteoblasts were
cultured in osteogenic medium for 14-21 days and
stained with ARS. Briefly, cells were fixed with 4%
paraformaldehyde for 10 min and stained with 2% ARS,
pH 4 (Alphachem, Middlesex, UK) for 10 min. For
quantification of mineralization, ARS was removed by
treatment with 10% acetic acid for 30 min, heating at 85
°C for 10 min, centrifugation at 20,000 x g for 15 min
and neutralization with 10% ammonium hydroxide. The
supernatants were read at 405 nm with a microplate
reader.
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represent + SEM. NS, not significant.

>
w

ALP ARS aOM
CDH-13 CDH-13 z 07 NS
0.6
Vehicle 1 ng/mi 10 ng/ml 100 ng/ml Vehicle 1 ng/ml 10 ng/ml 100 ng/ml P 'é o5
= o Yo
© 50.4
- £ o
S S 0.3
N g2
<£
Q0.1
r-
oM < 0

Vehicle 1 10 100

CDH-13 (ng/ml)

SupplementaryFigure 2. CDH13 does not alter osteoblast differentiation(d) Calvarial preosteoblasts were cultured frlays
(alkaline phosphatase [ALP] staining) or 21 days (Alizarin Red S [ARS] staining) in the presence of osteogenic mediuthg @ahjalé or CDH
13 (1, 10 or 100 ng/mL). The osteoblasts were then stained with ALP oBAR®: ARS content wasanuified. Error bars represent the SEM. NS,
not significant
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Supplementary Table
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. List of proteins identified in mouse plasmas
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