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INTRODUCTION 
 

Among gynecologic malignancies, ovarian cancer 

(OC) has a poor prognosis. High-grade serous ovarian 

cancer (HGSOC), the most common epithelial OC, is 

usually diagnosed in an advanced stage [1, 2], and 

patients have widely different outcomes in spite or 

showing equivalent clinical or pathologic 

characteristics. Conventional clinical features, such as 

CA-125 levels, do not accurately predict HGSOC 

prognosis [3]. Given the genetic heterogeneity of 

patients, identifying prognostic biomarkers may 

improve patient outcomes. The availability of large-

scale public cohorts offers the opportunity to explore  

 

the association between gene expression and clinical 

prognosis [4–6]. 

 

Accumulated evidence indicates that the tumor 

microenvironment (TME) can help predict survival 

outcomes and assess therapeutic efficacy [7–10], 

although genetic and epigenetic changes may 

contribute to progression and recurrence in different 

cancer types. The state of the patient’s immune 

system can be a determining factor of cancer 

initiation and progression. In recent years, immune 

profiling has come to the forefront in cancer research 

[11, 12], with studies based on immunoscores 

providing prognostic parameters for various types of 

www.aging-us.com AGING 2020, Vol. 12, No. 12 

Research Paper 

Immune profiling reveals prognostic genes in high-grade serous 
ovarian cancer 
 

Yong Wu1,2,*, Lingfang Xia1,2,*, Ping Zhao3, Yu Deng4, Qinhao Guo1,2, Jun Zhu1,2, Xiaojun Chen1,2, 
Xingzhu Ju1,2, Xiaohua Wu1,2 
 
1Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China 
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China 
3Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 
4Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 
*Equal contribution 
 

Correspondence to: Xiaohua Wu; email: docwuxh@hotmail.com  
Keywords: high-grade serous ovarian cancer, tumor microenvironment score, TCGA, ICGC, overall survival 
Received: December 13, 2019    Accepted: March 30, 2020  Published: June 16, 2020 
 

Copyright: Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

High-grade serous ovarian cancer (HGSOC) is a heterogeneous disease with diverse clinical outcomes, 
highlighting a need for prognostic biomarker identification. Here, we combined tumor microenvironment (TME) 
scores with HGSOC characteristics to identify immune-related prognostic genes through analysis of gene 
expression profiles and clinical patient data from The Cancer Genome Atlas and the International Cancer 
Genome Consortium public cohorts. We found that high TME scores (TMEscores) based on the fractions of 
immune cell types correlated with better overall survival. Furthermore, differential expression analysis 
revealed 329 differentially expressed genes between patients with high vs. low TMEscores. Gene Ontology and 
Kyoto Encyclopedia of Genes and Genomes analyses showed that these genes participated mainly in immune-
related functions and, among them, 48 TME-related genes predicted overall survival in HGSOC. Seven of those 
genes were associated with prognosis in an independent HGSOC database. Finally, the two genes with the 
lowest p-values in the prognostic analysis (GBP1, ETV7) were verified through in vitro experiments. These 
findings reveal specific TME-related genes that could serve as effective prognostic biomarkers for HGSOC. 
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solid tumors [13]. Therefore, using computer-based 

analysis to explore the relationship between the TME 

and prognosis in HGSOC may improve the clinical 

management of HGSOC. 

 

CIBERSORT is a deconvolution algorithm that uses a 

set of reference gene expression values (a signature 

with 547 genes) considered a minimal representation 

for each cell type and, based on those values, uses a 

support vector regression method to infer cell type 

proportions in data from bulk tumor samples 

containing mixed cell types [14, 15]. Here, for the first 

time, by taking advantage of both public databases of 

HGSOC cohorts and CIBERSORT algorithm-derived 

TMEscore values, we extracted a list of TME-related 

genes that can predict the survival of HGSOC patients. 

Furthermore, we employed molecular experiments to 

confirm the in vitro functions and prognostic value of 

this profile. 

 

RESULTS 
 

Study design and patient selection 
 

The overall scheme is shown in Figure 1A. A total of 

361 ovarian cancer samples were enrolled according to 

the criteria (eligible clinical information, overall 

survival > 1 month). Patient characteristics obtained 

from The Cancer Genome Atlas (TCGA) are detailed in 

Table 1. In general, we assessed the prognostic value of 

the TMEscore and then attempted to identify TME-

related differentially expressed genes (DEGs) that 

contribute to HGSOC overall survival in the TCGA 

database. DEGs were further validated in the 

International Cancer Genome Consortium (ICGC), a 

separate HGSOC database. 

 

TMEscore is associated with overall survival in 

HGSOC 

 

Of all HGSOC samples, 361 samples were 

evaluated. As calculated using the CIBERSORT 

algorithm, the TMEscore values ranged from -

2.93883 to 2.27524 (Supplementary Table 1). Based 

on the median TMEscore values, 194 patients were 

in the high score group (53.7%), while 167 were in 

the low score group (46.3%, Figure 1B). The 

associations between the TMEscore and corres-

ponding overall survival were then analyzed by 

generating Kaplan-Meier plots and evaluating the 

data with a log-rank test. The Kaplan-Meier plots 

demonstrated that a high TMEscore was positively 

correlated with favorable survival in HGSOC 

patients (Figure 1C, p=0.0036). Further evaluation 

revealed no correlation between TMEscore and 

tumor stage (p=0.54, Figure 1D). 

DEGs between the TMEscore groups 
 

We computed a heatmap to compare differential gene 

expression profiles in the high and low TMEscore 

groups (Figure 2A). We identified a total of 329 DEGs, 

including 311 upregulated and 18 downregulated genes 

(Supplementary Table 2). A volcano plot of gene 

expression profile data between patients with a high or 

low TMEscore is shown in Figure 2B. We carried out 

biological enrichment analyses, including Gene 

ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses, to outline the 

potential functions of DEGs. These genes were mainly 

involved in immune-related functions (Figure 2C–2F), 

such as T cell activation, cytokine receptor binding, T 

cell receptor complex and Th17 cell differentiation, 

suggesting that DEGs might exert functions in immune-

related pathways in HGSOC. 

 

Survival analysis of DEGs in HGSOC 

 

To explore the clinical role of individual DEGs in 

overall survival, we generated Kaplan-Meier survival 

curves from TCGA data. Based on the median value of 

each DEG, a total of 48 genes were shown to predict 

overall survival (Supplementary Table 3; p<0.05). The 

survival curves for the prognostic genes are shown in 

Figure 3A and Supplementary Figure 1. Consequently, 

enrichment analyses were performed with the 

prognostic DEGs. KEGG and GO analyses indicated 

that these genes were mainly involved in immune 

pathways such asTh17 cell differentiation, 

Cytokine−cytokine receptor interaction and Chemokine 

signaling pathways, similar to previous enrichment 

analysis of DEGs (Figure 3B–3E).  

 

Protein-protein interaction (PPI) network among 

prognostic genes 

 

To explore the interplay among the 48 DEGs, we used 

the STRING database (https://string-db.org/) to analyze 

protein network interactions. We obtained a relationship 

network containing 222 edges and 43 nodes (Figure 

4A). Moreover, in the PPI network, CXCL9, CXCL13, 

CCL5, GZMB and CD2 were the most remarkable 

nodes as they had the most connections with other 

nodes. Molecular COmplex DEtection (MCODE), a 

Cytoscape plugin, was used to identify the main 

coregulated modules. By applying the MCODE tool, we 

identified two closely related subgroups (Figure 4B). As 

shown in Figure 4B, we can see that all the module 

genes are up-regulated genes of DEGs, including 

CXCL9, CCL5, CXCL11, CD27, FOXP3, CD8A and 

other immune-related genes. The connected nodes for 

each gene intersection are listed in Supplementary 

Table 4. 

https://string-db.org/
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Prognostic validation in the ICGC database 
 

To further validate the prognostic significance of 48 genes 

identified from the TCGA database, we downloaded and 

analyzed the gene expression data of a cohort of 81 

HGSOC patients from the ICGC (Supplementary Table 

5), an independent HGSOC database. Forty-seven of the 

48 genes identified above had expression values, and 

further analyses validated seven genes (p<0.05, Figure 

5A–5G) associated with prognosis (Supplementary Table 

6). Notably, elevated mRNA levels of these genes 

correlated with better patient OS. 

 

 
 

Figure 1. Association between the TMEscore and prognosis in TCGA data analyzed by the CIBERSORT algorithm. (A) Workflow 
of the current study. (B) Based on the median TMEscore values, patients with HGSOC were divided into the high and low TMEscore groups. 
(C) As shown in the Kaplan-Meier plot, the median survival time in the high TMEscore group was longer than that in the low score group 
(p=0.0036). (D) Distribution of TMEscores by tumor stage for HGSOC patients. The boxplot shows that there was no association between 
tumor stage and TMEscore. 
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Table 1. Clinicopathological characteristics of 361 patients with HGSOC. 

Parameter Subtype Patients (n) 

>=59 182 

<59 179 

I 1 

II 20 

III 283 

IV 54 

Not available 3 

<12 65 

>=12 296 

 

GBP1, ETV7 and CXCL13 perform molecular 

functions in vitro  

 

Crosstalk between tumor cells and their surrounding 

microenvironment is necessary for cell survival, growth, 

and proliferation and for epithelial-mesenchymal 

transition (EMT) and metastasis [16–18]. We sought to 

examine the molecular functions of these genes. The 

three genes with the lowest p-values validated from the 

ICGC database were selected for functional assays in 

HGSOC cells. A2780 cells were separately transduced 

with small interfering RNAs (siRNAs) targeting these 

three genes, and western blotting confirmed the 

efficiency of the siRNAs in A2780 cells (Figure 6A). 

The results showed that knockdown of GBP1 and ETV7 

promoted the proliferation, colony formation, and 

migration of cells (Figure 6B–6D). In contrast, the 

opposite effects were observed when CXCL13 was 

downregulated (Figure 6B–6D). 

 

Confirmation of the expression levels of GBP1, 

ETV7 in patients 

 

To further validate the clinical importance of GBP1, 

ETV7 and CXCL13, we aimed to perform immuno-

staining with antibodies on microarrays containing 

tissue from 165 HGSOC patients. Given that no 

antibodies specific for ETV7 and CXCL13 are 

commercially available, RT-PCR was adopted to 

confirm their expression levels and prognostic 

significance. We first assessed the protein expression of 

GBP1. Positive immunostaining signals of GBP1 were 

seen in the cytoplasm and membrane (Figure 7A). Of 

165 patients with HGSOC, low expression (score 0-1) 

was observed in 94, and high expression (score 2-3) was 

observed in 71 (Figure 7B). The protein level of GBP1 

was not correlated with any pathological characteristics 

of HGSOC but was potentially correlated with 

diaphragmatic metastasis (p=0.05; Table 2). We then 

plotted the overall survival curves according to GBP1 

protein levels using the Kaplan-Meier method. As 

shown in Figure 7C, patients with high GBP1 protein 

expression exhibited more favorable overall survival 

(p=0.0003). Univariate analysis of overall survival 

revealed that GBP1 levels (p < 0.001), the residual 

tumor margins (p=0.003), diaphragmatic metastasis (p = 

0.013) and mesenteric metastasis (p=0.021) were 

prognostic indicators in HGSOC (Figure 7D). Further 

multivariate analysis revealed that GBP1 expression (p 

< 0.001) and the residual tumor margins (p=0.003) were 

independent predictors for overall survival in HGSOC 

patients (Figure 7E). Moreover, we observed decreased 

ETV7 and CXCL13 mRNA expression in HGSOC 

tissues compared with normal ovary tissues (Figure 7F–

7G). Kaplan-Meier analysis indicated that ETV7 and 

CXCL13 mRNA expression correlated with positive OS 

(p<0.05, Figure 7F–7G). Of note, the prognostic results 

of CXCL13 contradicted our in vitro experiments, 

perhaps because mRNA expression is not always 

consistent with protein levels. In addition, CXCL13, 

which is a cytokine, may exert its functions outside 

cells. In general, we demonstrated the prognostic value 

of GBP1 and ETV7 in HGSOC patients. Besides that, 

CXCL13 may require further large samples validation.  

 

DISCUSSION 
 

Despite advances in surgery and targeted therapy for 

ovarian cancer, 70% of women still succumb to this 

disease. The identification of effective prognostic 

biomarkers for HGSOC could enhance clinical 

decision making. Recently, immune profiling in 

cancers, which is based on immune cell distribution 

and density, has become an important indicator for 

prognostic evaluations. In this study, we used the 

CIBERSORT algorithm and, for the first time, 

combined the calculated TMEscore with HGSOC 

characteristics to explore TME-related prognostic 

genes. 

 

Numerous studies to date have developed immune-

relevant signatures to stratify cancer survival, detect 

recurrence, and distinguish benign from malignant 

masses based on different cohorts [19, 20].
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Figure 2. DEG profiles by TMEscore in HGSOC. (A) Heatmap of the DEGs between the top half (high score) vs. bottom half (low score) of 
TMEscore values. A |log(fold change)|≥1 and an adjusted p-value < 0.05 were set as the cutoff criteria to screen for DEGs. (B) Volcano plot of 
gene expression profile data for patients with high and low TMEscores. (C–F) Functional enrichment analysis including Biological Process (BP), 
Cellular Components (CC),  and Molecular Functions (MF) categories as well as KEGG pathways for 329 DEGs. 
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Table 2. Correlation between GBP1 and clinicopathological parameters. 

Variable n (%) 
Expression of GBP1 

χ2 p-value 
Low High 

Age (years)    1.311 0.252 

≤ 65   140 (84.8) 78 62   

> 65   25 (15.2) 17 8   

Size (cm)    0.057 0.811 

≤ 5   89 (53.9) 52 37   

> 5   76 (46.1) 43 33   

FIGO stage    0.198 0.657 

III  157 (95.2) 91 66   

IV  8 (4.8) 4 4   

Residual tumor margins    3.177 0.210 

≤1 cm 113 (68.5) 59 54   

>1 cm 52 (31.5) 35 17   

Ascites (ml)   0.455 0.500 

≤1500   94 (57.0) 52 42   

>1500   71 (43.0) 43 28   

Diaphragmatic metastasis   3.830 0.050 

Yes 83 (50.3) 54 29   

No 82 (49.7) 41 41   

Mesenteric metastasis   2.991 0.084 

Yes 86 (52.1) 55 31   

No 79 (47.9) 40 39   

 

For example, D Zeng [10] constructed an 

immunoscore to estimate OS in patients with gastric 

cancer. XB Pan [8] provided a more comprehensive 

understanding of the TME as well as a list of 

prognostic immune-related genes in cervical cancer 

by public database analysis. L Deng [7] suggested that 

plasma cells and CD4+ central memory T (Tcm) cells 

in the TME may play a role in the subsequent 

progression of triple-negative breast cancer. WH Xu 

[9] obtained a list of TME-related genes with 

prognostic value using immune/stromal scores after 

processing by the ESTIMATE algorithm in multiple 

cohorts. However, these studies focused only on 

bioinformatic analyses. To our knowledge, ours is a 

novel study incorporating the TCGA database and 

experimental exploration to confirm the prognostic 

significance of the TMEscore in HGSOC. 

 

To explore the potential mechanisms underlying 

changes in the TME in HGSOC, we derived TME-

related genes for further use in functional enrichment 

analysis and PPI network construction. We identified 

a total of 329 DEGs by comparing the high vs. low 

TMEscore groups, many of which were involved in 

immune pathways, such as T cell activation, CXCR 

chemokine receptor binding and chemokine activity. 

This finding is consistent with those of previous 

intrinsic studies showing that the functions of immune 

cells and chemokines are interrelated in the 

establishment of the TME in HGSOC. Further 

analysis via additional validation in public datasets 

revealed seven significant genes (GBP1, ETV7, 

CXCL13, UBD, TAP1, GBP5, and PLA2G2D) related 

to HGSOC outcomes. Guanylate-Binding Protein-1 

(GBP1) is a member of the large GTPase family and 

is induced by interferons and inflammatory cytokines 

[21–23]. ETV7 (also referred to as TEL2) is a member 

of the ETS transcription factor family and plays a key 

role in hematopoiesis [24–26]. Chemokine (C-X-C 

motif) ligand 13 (CXCL13) is a B cell-attracting 

chemokine that serves as an important factor during 

tumor proliferation and migration [27, 28]. UBD, a 

member of the ubiquitin-like protein (UBL) family, is 

involved in various essential cellular development 

processes, including immune-mediated inflammation, 

apoptosis, cell cycle progression, and proliferation 

[29, 30]. Transporter associated with antigen 

processing 1 (TAP1) is essential for peptide delivery 

from the cytosol to the lumen of the endoplasmic 

reticulum in the major histocompatibility complex 

(MHC) class I antigen-presenting pathway [31]. As 

described above, Guanylate-binding protein (GBP) 5 

belongs to the GBP family, which is involved in 

important cellular processes, including signal 

transduction, translation, vesicle trafficking, and 

exocytosis [32]. The PLA2G2D protein is expressed 

in human monocyte-derived macrophages, nasal 

epithelial cells and bronchial epithelial cells following 
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Figure 3. Discovery of prognostic TME-related DEGs with functional annotations in TCGA. (A) Kaplan-Meier survival curves were 
generated for selected DEGs with prognostic significance by a log-rank test. OS=overall survival time in months. (B–E) GO term and KEGG 
pathway analyses with the 48 prognostic DEGs. 

 

 
 

Figure 4. Construction of the PPI network for the 48 prognostic DEGs. (A) The PPI network was constructed using the 48 prognostic 
DEGs with the R software package STRINGdb. (B) MCODE was used to identify the main coregulated modules. The most significant module is 
indicated in two closely related subgroups. 
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inflammatory stimulation with, for example, 

interferon-γ [33]. 

 

Given that the TME plays a critical role in the 

progression of tumors, we also preliminarily 

investigated the role of TME-derived genes in vitro. 

We were particularly interested in the three genes 

with the lowest p-values in the prognostic analysis 

(GBP1, ETV7 and CXCL13). Cellular verification 

demonstrated that GBP1 and ETV7 may act as tumor 

suppressors in HGSOC, whereas CXCL13 may 

promote cell proliferation and migration. These 

findings are consistent with those of previous studies, 

although the functions of GBP1 and ETV7 in different 

tumors are controversial [21, 22, 34, 35]. Moreover, 

we conducted immunohistochemistry (IHC) 

experiments to assess the expression of GBP1. 

Multivariate analysis revealed that GBP1 expression 

was an independent prognostic predictor in HGSOC 

patients. Notably, CXCL13 was specifically 

associated with more favorable OS, a finding 

contradicted by our experimental results. Ignacio 

RMC arrived at the same conclusion regarding 

survival in p53 mutant serous OC [36]. The specific 

reason may be attributed to the ascites of HGSOC and 

our use of RT-PCR, but further studies are needed to 

confirm these findings. 

 

Our study suffered from some limitations. First, the 

TME-related prognostic genes were identified from 

 

 
 

Figure 5. Validation of prognostic DEGs extracted from the TCGA database in the ICGC cohort. (A–G) Kaplan-Meier survival 
curves were generated for seven validated DEGs in an additional cohort of 81 HGSOC patients from the ICGC. p<0.05 by a log-rank test. 
OS=overall survival time in days. 
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the TCGA database. These genes should be further 

validated in large prospective clinical trials. Second, 

the methodology for interpreting immune infiltration 

and the appropriate cutoff value needs to be 

standardized. Third, considering tumor heterogeneity, 

single-cell sequencing may more accurately reflect 

changes in the TME. Fourth, more mechanistic studies 

are required to further elucidate the biological 

functions underlying the discovered prognostic genes. 

Nonetheless, we identified several prognostic genes 

related to the TME that may become new effective 

prognostic biomarkers for HGSOC. 

 

 

 

Figure 6. In vitro assessment of GBP1, ETV7 and CXCL13. (A) The protein levels of GBP1, ETV7 and CXCL13 were measured by western 
blotting in A2780 cells transfected with siRNAs. (B) CCK-8 assays were performed to evaluate the proliferation of GBP1-, ETV7- and CXCL13-
knockdown cells. (C) The colony-forming ability of A2780 cells was assessed to determine the effects of GBP1, ETV7 or CXCL13 
downregulation on cell growth. (D) The invasion potential of cells was assessed using a Transwell assay. The scale bar represents 100 μm. NC: 
negative control. * indicates p< 0.05. 
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Figure 7. Levels of GBP1 and ETV7 expression correlated with overall survival in HGSOC. (A) Representative images of GBP1 
expression in HGSOC tissues, visualized at 40× and 200× magnification. (B) Distribution of the immunoreactive score (IRS) in an HGSOC TMA. 
(C) Kaplan-Meier survival curve with log-rank analysis of overall survival showed statistical significance between the curves of patients with 
high GBP1 expression and those with low GBP1 expression (log-rank test, p=0.0003). (D) Univariate analysis was performed in 165 HGSOC 
patients. All bars correspond to 95% confidence intervals. (E) Multivariate analysis was performed in 165 HGSOC patients. All bars correspond 

to 95% confidence intervals. (F–G) Expression levels of ETV7 and CXCL13 were measured in HGSOC tissues compared with controls. 
Moreover, Kaplan-Meier method indicated the prognostic significance of ETV7 and CXCL13. 
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MATERIALS AND METHODS 
 

Ethics statement 

 

The patients samples were used with approval from 

the Ethics Committee of Fudan University Shanghai 

Cancer Center and with consent from all patients.  

All procedures were performed in accordance with  

the Declaration of Helsinki and relevant policies in 

China. 

 

Public data processing and TMEscore calculation 
 

Level 3 data of HGSOC patients with available clinico- 

pathological and survival data were downloaded from 

the TCGA data coordination center (https://tcga-

data.nci.nih.gov/tcga/). For validation, gene expression 

profiles and clinical survival data for OC patients were 

obtained from the ICGC data portal (Supplementary 

Table 7, https://icgc.org/). 

 

Based on the expression profile and clinical data 

downloaded from TCGA, heteroscedasticity was 

removed using the edgeR voom algorithm, and the 

proportion of LM22 cells was calculated with 

CIBERSORT, which allows sensitive and specific 

discrimination of 22 human immune cell 

phenotypes, including B cells, T cells, natural killer 

cells, macrophages, dendritic cells (DCs), and 

myeloid subsets [14, 15]. Then, according to the 

obtained cell proportions, three unsupervised 

clustering methods were used to explore sample 

classification, and the differences in expression 

were analyzed. According to the differential gene 

expression values obtained, consistency clustering 

was conducted to explore sample classification, and 

a chi-square test of independence was used to 

determine whether the two classifications before and 

after the three methods were consistent. Via a 

random forest model, signature genes were obtained 

by removing the redundancy of differentially-

expressed genes (DEGs) with consistent classifica-

tion. A Cox regression model was used to detect the 

relationship between signature genes and sample 

survival and to classify the genes. Finally, the 

TMEscores associated with every sample were 

calculated according to the gene classification. Data 

processing and TMEscore construction methods are 

detailed in the Supplementary Methods. 
 

DEGs associated with the TMEscore 
 

DEG analysis was performed with the Limma 

package [37] according to the median TMEscore 

value. The samples were separated into high and a 

low TMEscore groups. An empirical Bayesian 

approach was applied to estimate the gene expression 

changes using moderated t tests. The adjusted p-

values for multiple testing were calculated using the 

Benjamini-Hochberg correction. A |log(fold 

change)|≥1 and an adjusted p-value < 0.05 were set as 

the cutoff criteria to screen for DEGs. 

 

Module analysis and PPI network construction 
 

The PPI network was retrieved from the STRING 

database [38]. Molecular interaction networks were 

visualized using Cytoscape software. Only individual 

networks with 10 or more nodes were included in 

further analyses. The connectivity degree of each node 

in the network was calculated. MCODE was then used 

to find clusters based on topology to locate densely 

connected regions [39]. 

 

Pathway enrichment analysis for molecular function 
 

To further understand the functions of prognosis-

related genes, we performed pathway enrichment 

analysis with the genes based on the KEGG and GO 

databases, including biological process (BP), 

molecular function (MF) and cellular component (CC) 

categories [40]. The top-ranked pathways with an 

adjusted p-value < 0.05 were identified as statistically 

significant. All analyses were performed using the R 

package ClusterProfiler [41]. 

 

Survival analysis 

 

Kaplan-Meier plots were generated to illustrate the 

relationship between patient overall survival and the 

levels of DEGs. DEGs were identified as binary 

variables (high vs. low) using the median expression 

value as the cutoff value. A log-rank test was used to 

assess differences between survival curves. 

 

Cell culture and treatments 

 

The human OC cell line A2780 was cultured in 

Dulbecco’s modified Eagle’s medium (Gibco, 

Carlsbad, CA, USA) supplemented with 10% fetal 

bovine serum (FBS) (Gibco), 50 U/mL of penicillin 

and 50 µg/mL of streptomycin (Gibco). A2780 cell 

line was maintained at 37 °C and 5% CO2 in a 

humidified atmosphere. 

 

Cell transfections and western blot analysis 
 

SiRNAs targeting GBP1, ETV7, CXCL13 were 

purchased from GenePharma (Shanghai, China). 

Lipofectamine 3000 (Invitrogen, USA) was used for 

transfection experiments. All siRNA sequences are 

listed in Supplementary Table 8. 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://icgc.org/
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Transfected cells were cultured for 60 h and were then 

lysed in RIPA buffer (Sigma-Aldrich, USA) 

supplemented with a phosphatase inhibitor (Roche) and 

a protease inhibitor (Roche, Basel, Switzerland). A 

BCA protein assay kit (Thermo Scientific, USA) was 

used to measure protein concentration. The collected 

cell lysates were separated on 10% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) gels (EpiZyme, Shanghai, China) and were then 

transferred to polyvinylidene fluoride (PVDF) 

membranes (Millipore, Billerica, MA), which were 

blocked with 5% milk for 1 h at room temperature. 

PVDF membranes were incubated with primary anti-

bodies (anti-β-actin, anti-GBP1, anti-ETV7, anti-

CXCL13 antibodies, purchased from Proteintech) 

overnight at 4 °C, washed, and incubated with a 

secondary antibody for 1 h at room temperature. Signals 

were detected using chemiluminescence. β-Actin was 

used as the endogenous loading control. 

 

Cell proliferation assays 
 

A total of 2×103 cells per well were seeded in 96-well 

plates 24 h before the experiment. A2780 cells were 

transfected with the targeting siRNAs or scrambled 

siRNA. Proliferation was measured using a CCK-8 kit 

(BOSTER, China) according to the manufacturer’s 

protocol. All experiments were performed in triplicate. 

Cell proliferation curves were plotted using the 

absorbance at each time point. 

 

Transfected cells were digested with trypsin into single-

cell suspensions 48 h later. For the colony formation 

assay, a total of 500 or 1,000 cells were plated in 12-

well plates and incubated in corresponding medium 

containing 10% FBS at 37 °C. After being cultured for 

two weeks, the cells were fixed with anhydrous alcohol 

for 30 min and stained with 0.1% crystal violet for 

approximately 15 min. Then, visible colonies were 

manually counted. Triplicate wells were analyzed for 

each treatment group. 

 

Migration assays 
 

A cell invasion assay was performed using Transwell 

chamber inserts (8.0 mm, Corning, NY, USA) in a 

24-well plate. Then, 4×104 cells suspended in 200 µL 

of serum-free medium were added to the upper 

chambers. Culture medium containing 20% FBS was 

placed in the bottom chambers. The cells were 

incubated for 36 or 48 h at 37 °C. After incubation, 

the cells on the upper surface were scraped and 

washed away, whereas the cells on the lower surface 

were fixed with 20% methanol and stained with 0.1% 

crystal violet. The numbers of invaded cells in five 

randomly selected fields were counted using a 

microscope. The experiments were repeated 

independently in triplicate. 

 

Immunohistochemistry 
 

Immunohistochemistry was performed using the 

Envision System with diaminobenzidine (Gene Tech 

Co., Ltd., Shanghai) according to the manufacturer’s 

protocol. HGSOC tissue microarrays (TMAs) were 

constructed by Shanghai Outdo Biotech. In brief, 

specimens were incubated first with an anti-GBP1 

antibody (1:200, Proteintech, China) overnight at 4 

°C and then with a biotinylated secondary antibody 

(1:100, goat anti-rabbit IgG) for 30 min at 37 °C. 

 

RNA isolation, reverse transcription and 

quantitative real-time PCR 
 

Total RNA was extracted from the tissue samples using 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s protocol. Reverse 

transcription (RT) and quantitative real-time PCR (qRT-

PCR) kits (Takara, Dalian, China) were utilized to 

evaluate the mRNA levels of the indicated genes. PCR 

primers were designed and synthesized using a primer 

design tool (Vector NTI®); The primers used in this 

study were listed as follows: ETV7: 5′-CTG CTG TGG 

GAT TAC GTG TAT C-3′ (Forward) and 5′-GTT CTT 

GTG ATT TCC CCA GAG TC-3′ (Reverse); CXCL13: 

5′-GCT TGA GGT GTA GAT GTG TCC-3′ (Forward) 

and  5′-CCC ACG GGG CAA GAT TTG AA-3′ 

(Reverse). The relative quantification value for each 

target gene was expressed as 2−ΔΔCT. β-Actin was used 

as an internal reference. 

 

Statistical analysis 
 

RStudio software (Version 1.2.1335) and GraphPad 

Prism 8 were used to construct the plots shown in the 

figures. Statistical analyses were conducted using 

RStudio software (Version 1.2.1335) and SPSS 22.0 

(SPSS, Inc., Chicago, IL, USA). A value of P<0.05 

indicated a statistically significant difference. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Method 

 
TMEscore construction 

 

To quantify the proportions of immune cells in the 

ovarian cancer samples, we used the CIBERSORT 

algorithm and the LM22 gene signature, which allows 

for highly sensitive and specific discrimination of 22 

human immune cell phenotypes, including B cells, T 

cells, natural killer cells, macrophages, DCs, and 

myeloid subsets. CIBERSORT is a deconvolution 

algorithm that uses a set of reference gene expression 

values (a signature with 547 genes) considered a 

minimal representation for each cell type and, based on 

those values, infers cell type proportions in data from 

bulk tumor samples with mixed cell types using support 

vector regression. Gene expression profiles were 

prepared using standard annotation files, and data were 

uploaded to the CIBERSORT web portal 

(http://cibersort.stanford.edu/), with the algorithm run 

using the LM22 signature and 1,000 permutations. 

Tumors with qualitatively different TME cell 

infiltration patterns were grouped using hierarchical 

agglomerative clustering (based on Euclidean distance 

and Ward's linkage). Unsupervised clustering methods 

(K-means) for dataset analysis were used to identify 

TME patterns and classify patients for further analysis. 

Principal component analysis (PCA) was conducted. 

Principal component 1 was extracted to serve as the 

gene signature score. After obtaining the prognostic 

value of each gene signature score, we applied a method 

similar to GGI to define the TMEscore of each patient: 

TMEscore = ∑ PC1i – ∑PC1j where i is the signature 

score whose Cox coefficient is positive, and j is the 

expression level of genes whose Cox coefficient is 

negative. 

  

http://cibersort.stanford.edu/
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Supplementary Figure 
 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. The survival analysis of DEGs in HGSOC. OS=overall survival time in months. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 7. 

 

Supplementary Table 1. The TMEscore values of TCGA samples calculated by CIBERSORT algorithm. 

 

Supplementary Table 2. The list of DEGs between the TMEscore groups. 

 

Supplementary Table 3. A total of 48 DEGs were shown to predict overall survival. 

 

Supplementary Table 4. The list of connected nodes for each gene intersection. 

 

Supplementary Table 5. Gene expression data of a cohort of 81 HGSOC patients from the ICGC dataset. 

 

Supplementary Table 6. The prognostic 48 DEGs were validated in ICGC dataset. 

 

Supplementary Table 7. Total Gene expression profiles and clinical data were obtained from the ICGC dataset. 

 

Supplementary Table 8. Oligonucleotide sequences of siRNAs. 

Name Sequence (5' - 3') 

aGBP1 (human) siRNA-1 GAU ACA GGC UGA AGA GAU UTT 

GBP1 (human) siRNA-2 GCA CAG GGA CAG UGA GAG ATT 

GBP1 (human) siRNA-3 GAA CAG AAG GAG AGG AGU UTT 

 ETV7 (human) siRNA-1 GGG AAG ACA AGG ACG CCA ATT 

 ETV7 (human) siRNA-2 ACA AGA ACC GGG UGA ACA UTT 

 ETV7 (human) siRNA-3 GCU GUG GGA UUA CGU GUA UTT 

CXCL13 (human) siRNA-1 UGA UGG AAG UAU UGA GAA ATT 

CXCL13 (human) siRNA-2 GGA AGA AGA ACA AGU CAA UTT 

CXCL13 (human) siRNA-3 GGG AAU GGU UGU CCA AGA ATT 

 


