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INTRODUCTION 
 

Osteoporosis is characterized by reduced bone mass and 

weakened bone micro-architecture, resulting in an 

increased risk of fractures [1]. Osteoporosis is a 

common age-related disease in post-menopausal women 

and the elderly [2]. It affects the quality of life of nearly 

200 million people worldwide and is a significant 

burden on the public healthcare systems [3]. Nearly 

40% of women suffer from osteoporosis and sustain 

fractures of the hip, spine, or the forearm during their  

 

lifetime [4]. While there are several medications to treat 

osteoporosis based on their symptoms and severity, 

there is no gold standard treatment established, as yet 

[4]. Therefore, it is important to understand the genetic 

mechanisms underlying osteoporosis so that new 

therapeutic targets can be identified [5]. Recent studies 

have identified SQRDL and PPWD1 genes as risk 

factors that are associated with osteoporosis [6, 7]. 

 

miRNAs are small noncoding RNAs between 21–25 

nucleotides in length that regulate protein expression 

www.aging-us.com AGING 2020, Vol. 12, No. 10 

Research Paper 

MiR-16-5p regulates postmenopausal osteoporosis by directly 
targeting VEGFA 
 

Tao Yu1,*, Xiaomeng You2,*, Haichao Zhou1, Wenbao He1, Zihua Li1, Bing Li1, Jiang Xia1, Hui Zhu1, 
Youguang Zhao1, Guangrong Yu1, Yuan Xiong3, Yunfeng Yang1 
 
1Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, 
China 
2Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, 
USA 
3Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and 
Technology, Wuhan 430022, China 
*Equal contribution 
 

Correspondence to: Yunfeng Yang, Yuan Xiong; email: yangyunfeng1051@126.com, xiongyuanmed@163.com  
Keywords: osteoporosis, osteogenesis, bone mass density, miR-16-5p, VEGFA 
Received: February 8, 2020   Accepted: March 31, 2020  Published: May 19, 2020 
 

Copyright: Yu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

In this study, we used bioinformatics tools, and experiments with patient tissues and human mesenchymal 
stem cells (hMSCs) to identify differentially regulated genes (DEGs) and microRNAs (miRNAs) that promote 
postmenopausal osteoporosis. By analyzing the GSE56815 dataset from the NCBI GEO database, we identified 
638 DEGs, including 371 upregulated and 267 downregulated genes, in postmenopausal women with low bone 
density. Enrichment and protein-protein interaction network analyses showed that TP53, RPS27A, and VEGFA 
were the top three hub genes with the highest degree of betweenness and closeness centrality. 
TargetScanHuman and DIANA software analyses and dual luciferase reporter assays confirmed that miR-16a-5p 
directly targets the 3’UTR of VEGFA. Postmenopausal patients with osteoporosis showed higher miR-16-5p and 
lower VEGFA levels than those without osteoporosis (n=10 each). VEGFA levels were higher in miR-16-5p 
knockdown hMSCs and were reduced in miR-16-5p-overexpressing hMSCs. mRNA expression of osteogenic 
markers, ALP, OCN, and RUNX2, as well as calcium deposition based on Alizarin red staining, correlated 
inversely with miR-16-5p levels and correlated positively with VEGFA levels. These findings suggest that miR-16-
5p suppresses osteogenesis by inhibiting VEGFA expression and is a promising target for postmenopausal 
osteoporosis therapy. 
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through post-transcriptional gene silencing [8–10]. 

Previous studies have identified differentially expressed 

miRNAs in osteoporosis patients, including miR-21, 

miR-133a, miR-152-3p, miR-30e-5p, miR-140-5p, miR-

324-3p, miR-19b-3p, miR-335-5p, miR-19a-3p, miR-

550a-3p, and miR-422a [11–13]. Moreover, several 

signaling pathways that are involved in osteoporosis are 

regulated by microRNAs such as miR-133a, miR-218, 

miR-618, miR-27a, miR-214-5p, and miR-203 [14–18]. 

However, the mechanistic details of how these miRNAs 

influence osteoporosis are not known. 

 

Bioinformatics is an interdisciplinary field that combines 

computer science and biology to research, analyze and 

interpret large sets of biological data. Computational tools 

are routinely used to model biological processes, predict 

disease mechanisms and generate experimental hypo-

theses [19]. Bioinformatics tools are also widely used to 

screen potential genes related to several human diseases, 

which are then validated by comprehensive follow-up 

experimental studies [20, 21].  

 

In this study, we analyzed microarray data from the 

GSE56815 dataset to identify DEGs that are related to 

osteoporosis. Furthermore, we performed enrichment 

analysis and constructed an interaction network of the 

DEGs to identify hub genes. Furthermore, we used the 

TargetScanHuman and DIANA software to identify 

microRNAs that potentially target the hub genes and 

validated these findings in patient tissues and in vitro 

experiments using human mesenchymal stem cells.  

 

RESULTS 
 

DEGs in postmenopausal osteoporosis 

 

We analyzed the microarray data from the GSE56815 

dataset in the NCBI GEO database, which includes gene 

expression data on the Affymetrix Human Genome 

U133A Array (GPL96) platform of 20 postmenopausal 

women each with high or low bone mineral density 

(BMD). We identified 638 DEGs, including 371 

upregulated and 267 downregulated genes in patients 

with low BMD compared to those with high BMD 

(Figure 1B). The heat map showing hierarchical 

clustering of all DEGs and the volcano plot of the DEGs 

are shown in Figure 1. 

 

Construction of the protein-protein interaction (PPI) 

network of the DEGs 

 

Figure 2 shows the top 100 DEGs from the 3 modules and 

their chromosomal positions. The top 10 hub genes were 

TP53, RPS27A, VEGFA, MAPK8, CDC42, CREBBP, 

SIRT1, RPL35A, RPL30, and SNRPG (Table 1). Figure 3 

shows the degree, betweenness, and closeness centrality 

of the top 10 hub genes. The top three hub genes with the 

highest degree, betweenness and closeness centrality are 

TP53, RPS27A, and VEGFA. 
 

Gene ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analysis 
 

Table 2 and Figure 4 shows the results of the GO and 

KEGG pathway enrichment analysis of the hub genes 
 

 
 

Figure 1. Differentially expressed genes in post-
menopausal osteoporosis patient samples. (A) The heat 
map shows hierarchical clustering of differentially expressed 
gene expression in postmenopausal patients with or without 
osteoporosis (n=20 each) using the GSE56815 dataset. (B) 
Volcano plot shows differentially expressed genes post-
menopausal patients with or without osteoporosis (n=20 each) 
using the GSE56815 dataset. 
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and DEGs using Database for Annotation, Visualization 

and Integrated Discovery version (DAVID). The top 3 

GO terms related to biological processes were cellular 

response to hypoxia, cellular response to decreased 

oxygen levels, and cellular response to oxygen levels. 

The top 3 GO terms related to molecular functions were 

P53 binding, heterocyclic compound binding, and 

organic cyclic compound binding. The top 3 GO terms 

related to cellular components were cytosolic ribosome, 

ribosomal subunit, and cytosolic part. The top three 

KEGG pathways were pancreatic cancer pathway, 

pathways in cancer, and renal cell carcinoma pathway.  

 

Construction of the network of hub genes and 

related microRNAs  

 

Next, we used TargetScanHuman [22] and DIANA [23] 

software to identify miRNAs that target the hub genes. 

As shown in Figure 5, hsa-miR-34a-5p potentially targets 

TP53 and VEGFA, and hsa-miR-15a-5p potentially 

targets TP53 and RPS27A. VEGFA is highly expressed 

in osteoblast precursors [24] and induces osteogenic 

differentiation [25, 26], which suggests its potential role 

in bone turnover. Previous reports suggest that miR-16-

5p, miR-20b-3p, miR-15a-5p, and miR-34a-5p regulate 

osteogenesis [27–30]. QRT-PCR analysis of serum 

samples showed significantly high miR-16-5p levels and 

significantly reduced VEGFA levels in the osteoporosis 

patients compared with the healthy subjects (Sup-

plementary Figure 1 and Figure 7A). Therefore, we 

selected the miR-16-5p/VEGFA axis to validate further. 

 

 

MiR-16-5p is upregulated in osteoporosis patients 

and exerts negative effect on osteogenic 

differentiation 
 

QRT-PCR analyses showed that miR-16-5p levels were 

significantly higher in the post-menopausal osteoporosis 

patients compared to postmenopausal women without

 

 
 

Figure 2. Circular visualization of chromosomal positions and connectivity of the top 100 genes. The circular map represents all 
the chromosomes and the lines from each gene point to their specific chromosomal locations. The names of the DEGs are shown in the outer 
circle and the three hub genes are shown in red. The red and green colors in the outer heatmap represent DEGs with high and low degree, 
respectively. The pink and blue colors in the middle heatmap represent DEGs with high and low betweenness, respectively. The brown and 
black colors in the inner most heatmap represent DEGs with high and low closeness, respectively.  
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Table 1. Degree of the top 10 genes in the protein-protein interaction network. 

Gene ID Gene name Degree 

TP53 Tumor protein p53 91 

RPS27A Ribosomal Protein S27a 60 

VEGFA Vascular Endothelial Growth Factor A 58 

MAPK8 Mitogen-Activated Protein Kinase 8 42 

CDC42 Cell Division Cycle 42 40 

CREBBP CREB binding protein 38 

SIRT1 Sirtuin 1 33 

RPL35A Ribosomal Protein L35a 31 

RPL30 Ribosomal Protein L30 30 

SNRPG Small Nuclear Ribonucleoprotein Polypeptide G 30 

 

osteoporosis (n=10 each; Figure 6A). Furthermore, we 

analyzed miR-16-5p and VEGFA levels in control 

hMSCs and hMSCs transfected with agomiR-NC, 

agomiR-16-5p, antagomiR-NC, and antagomiR-16-5p. 

The miR-16-5p levels inversely correlated with VEGFA 

protein expression compared to the corresponding 

controls (Figure 6B and Figure 7D). Moreover, the 

expression of osteogenic genes, ALP, OCN, and 

RUNX2 were significantly increased in the antagomiR-

16-5p group, but significantly reduced in the agomiR-

16-5p group (Figure 6C). This suggests that miR-16-5p 

suppresses osteogenesis. Furthermore, alizarin red 

 

 
 

Figure 3. The degree, betweenness, and closeness 
centrality of hub genes. The analysis shows that TP53, 
RPS27A, and VEGFA were the top three hub genes with greatest 
degree, betweenness and closeness. 

staining showed increased calcium deposition in the 

antagomiR-16-5p group compared to the corresponding 

controls (Figure 6D–6E). This suggests that miR-16-5p 

expression decreases bone density. 

 

MiR-16-5p directly targets VEGFA 
 

QRT-PCR analysis showed that VEGFA mRNA levels 

were significantly reduced in osteoporosis patients 

compared to healthy subjects (n=10 per group; p < 

0.001; Figure 7A). This suggests that VEGFA levels 

correlate with osteoporosis progression. Next, we 

performed the dual luciferase reporter assay to confirm 

if miR-16-5p specifically binds to the 3’UTR of 

VEGFA mRNA. The results show high luciferase 

activity in the miR-16-5p plus Mutant type (Mut)-

3’UTR-containing luciferase plasmid group, but, 

luciferase activity is significantly reduced in the miR-

16-5p plus Wild type (WT)-3’UTR-containing 

luciferase plasmid group (Figure 7B–7C). These results 

demonstrate that miR-16-5p specifically targets 

VEGFA. Next, we analyzed control hMSCs and hMSCs 

transfected with agomiR-NC, agomiR-16-5p, 

antagomiR-NC, and antagomiR-16-5p. QRT-PCR 

analysis shows that VEGFA mRNA levels were 

significantly reduced in the agomiR-16-5p group and 

significantly increased in the antagomiR-16-5p group (p 

< 0.001; Figure 7D). These results confirm that miR-16-

5p promotes osteoporosis by suppressing VEGFA 

expression.   

 

Next, we transfected hMSCs with empty vector control 

or VEGFA-specific siRNAs (siRNA-NC or siRNA-

VEGFA). Western blot analysis showed that VEGFA 

protein expression was significantly reduced in the 

siRNA-VEGFA group compared to the siRNA-NC 

group (Figure 7E). QRT-PCR analysis showed that the 

expression of osteogenic genes, ALP, OCN and 

RUNX2, was significantly reduced in the siRNA-

VEGFA group compared to the siRNA-NC group 

(Figure 7F). This suggests that VEGFA promotes 
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Table 2. Top 3 GO terms according to biological process, molecular function, and cellular component, and top 3 KEGG 
pathways related to the top 10 hub genes in module.  

(A) Biological processes 

Term Name Count P-value Genes 

GO:0071456 Cellular response to 

hypoxia 

5 2.6E-7 VEGFA, CREBBP, TP53, SIRT1, RPS27A 

GO:0036294 Cellular response to 

decreased oxygen levels 

5 3.2E-7 VEGFA, CREBBP, TP53, SIRT1, RPS27A 

GO:0071453 Cellular response to 

oxygen levels 

5 4.2E-7 VEGFA, CREBBP, TP53, SIRT1, RPS27A 

(B) Molecular functions 

Term Name Count P-value Genes 

GO:0002039 P53 binding 3 6.5E-4 CREBBP, TP53, SIRT1 

GO:1901363 Heterocyclic compound 

binding 

9 2.9E-3 CDC42, RPL35A, RPL30, CREBBP, TP53, MAPK8, 

SIRT1, RPS27A, SNRPG 

GO:0097159 Organic cyclic 

compound binding 

9 3.2E-3 CDC42, RPL35A, RPL30, CREBBP, TP53, MAPK8, 

SIRT1, RPS27A, SNRPG 

(C) Cellular component 

Term Name Count P-value Genes 

GO:0022626 Cytosolic ribosome 3 2.0E-3 RPL35A, RPL30, RPS27A 

GO:0044391 Ribosomal subunit 3 4.5E-3 RPL35A, RPL30, RPS27A 

GO:0044445 Cytosolic part 3 7.1E-3 RPL35A, RPL30, RPS27A 

(D) KEGG pathway 

Term Name Count P-value Genes 

hsa05212 Pancreatic cancer 4 4.4E-5 CDC42, VEGFA, TP53, MAPK8 

Hsa05200 Pathways in cancer 5 6.1E-4 CDC42, VEGFA, CREBBP, TP53, MAPK8 

hsa05211 Renal cell carcinoma 3 2.4E-3 CDC42, VEGFA, CREBBP 

KEGG, Kyoto Encyclopedia of Genes and Genomes; Top 3 terms were selected according to P-value. 
 

osteogenesis. Moreover, Alizarin red staining showed 

significantly reduced calcium deposition in the siRNA-

VEGFA group compared to the siRNA-NC group (p < 

0.001 Figure 7G–7H). This further suggests that 

VEGFA positively regulates bone density by promoting 

osteogenesis. 

 

DISCUSSION 
 

In this study, we compared gene expression microarray 

data from 20 osteoporosis patients and 20 healthy 

subjects, and identified 638 DEGs, including 371 up-

regulated genes and 267 down-regulated genes. We 

constructed a PPI network showing functional interactions 

between the DEGs and identified 10 hub genes, namely, 

TP53, RPS27A, VEGFA, MAPK8, CDC42, CREBBP, 

SIRT1, RPL35A, RPL30, and SNRPG, using CytoScaPe 

plugin of Cytoscape software. 

 

The top three hub genes are TP53, RPS27A, and 
VEGFA. Jia et al. reported that pri-miR-34b/c 

rs4938723 and TP53 Arg72Pro polymorphisms contri-

bute to the risk of osteoporosis [31]. Xie et al. reported 

that hMSCs from osteoporosis patients show 

significantly higher TP53 expression; moreover, TP53, 

SP1 and CTNNB1 transcription factors regulate most of 

the upregulated DEGs [32]. Felthaus et al. demonstrated 

that SP1 and TP53 regulate osteogenic differentiation in 

both dental follicle cells (DFCs) and stem cells from 

human exfoliated deciduous teeth [33]. The tumor 

suppressor p53 binds to OSX and prevents its binding to 

DLX5, thereby repressing osteoblast differentiation via 

de-regulation of the osteogenic transcriptional network 

[34]. Several studies show that VEGFA plays an 

important role in osteoporosis [35, 36]. VEGFA is a 

pro-angiogenic factor that is upregulated in response to 

uniaxial cyclic tensile strain in human adipose-derived 

stem cells (hASCs) and hMSCs from osteoporotic 

donors [37]. In this study, we demonstrate that VEGFA 

is one of the top hub genes in the PPI network. 

 

Hsa-miR-16-5p is the mature miRNA generated from 

precursor miRNAs such as miR-16-1, miR-16-2 [38]. 

Duan et al. reported that osteogenic differentiation is 

reduced by miR-16-2 upregulation and enhanced by 

downregulation of miR-16-2 [39]. Castaño et al. 

showed that antagomiR-16 increased the expression of a 

key osteogenic transcription factor RunX2 and the 
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levels of OCN, an osteogenic biomarker [40]. Wang et al. 

showed that Hsa-miR-16 was differentially expressed in 

the sera of patients with osteogenesis imperfecta, a 

genetic bone disease [41]. In this study, we used 

TargetScanHuman and DIANA software and identified 

hsa-miR-16-5p as a potential miRNA that targets 

VEGFA mRNA. We confirmed this observation using 

dual luciferase reporter assays. Furthermore, we showed 

that miR-16-5p levels were upregulated and VEGFA 

levels were downregulated in osteoporosis patients. 

Moreover, alizarin red staining of hMSCs showed that 

high miR-16-5p expression reduced bone mineralization 

whereas miR-16-5p knockdown increased bone density.  

 

Our study has a few limitations. First, we did not 

perform in vivo experiments to determine the role of 

miR-16-5p/VEGFA in osteoporosis. Secondly, we did 

not analyze other subtypes of osteoporosis in this study. 

Therefore, our results are applicable only to post-

menopausal osteoporosis, which is the most common 

clinical subtype of osteoporosis. Further investigations 

are necessary to identify molecular mechanisms 

involved in other subtypes of osteoporosis. Moreover, 

future studies need to investigate the role of other 

miRNAs that regulate osteoporosis in order to gain a 

comprehensive understanding of the miRNA-mRNA 

axis that regulates osteoporosis. 

 
 

Figure 4. Functional and signaling pathway enrichment analyses of the top 10 genes in the protein-protein interaction 
network. The GO and KEGG pathway analysis of the top 10 genes identified by the PPI network are shown. The top 3 GO terms related to 
biological process are cellular response to hypoxia (GO:0071456), cellular response to decreased oxygen levels (GO:0036294), and cellular 
response to oxygen levels (GO:0071453). The top 3 GO terms related to molecular functions are P53 binding (GO:0002039), heterocyclic 
compound binding (GO:1901363), and Organic cyclic compound binding (GO:0097159). The top 3 GO terms related to cellular component are 
cytosolic ribosome (GO:0022626), ribosomal subunit (GO:0044391), and cytosolic part (GO:0044445). The top 3 KEGG pathways are 
pancreatic cancer (hsa:05212), pathways in cancer (hsa:05200), and renal cell carcinoma (hsa:05211). 
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Figure 5. The miRNA-mRNA targeting prediction network. The results of TargetScanHuman and DIANA software analyses show the 
miRNAs that potentially target the mRNAs of the top 3 hub genes, TP53, RPS27A, and VEGFA.  

 

 
 

Figure 6. High miR-16-5p levels inhibit osteogenic differentiation in osteoporosis patients and hMSCs. (A) QRT-PCR analysis of 
miR-16-5p levels in postmenopausal patients with or without osteoporosis (n=10 per group). (B) QRT-PCR analysis of miR-16-5p levels in 
control hMSCs and hMSCs transfected with agomiR-NC, agomiR-16-5p, antagomiR-NC, and antagomiR-16-5p is shown. (C) QRT-PCR analysis 
shows the relative expression of osteogenic marker genes, ALP, OCN and RUNX2, in control hMSCs and hMSCs transfected with agomiR-NC, 
agomiR-16-5p, antagomiR-NC, and antagomiR-16-5p. (D, E) Alizarin red staining shows calcium deposition in control hMSCs and hMSCs 
transfected with agomiR-NC, agomiR-16-5p, antagomiR-NC, and antagomiR-16-5p for 21 days. Scale bar = 10 mm. Note: The data are 
represented as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. 



 

www.aging-us.com 9507 AGING 

 

 
 

Figure 7. miR-16-5p directly targets VEGFA. (A) QRT-PCR analysis of VEGFA levels in postmenopausal patients with or without 
osteoporosis (n=10 per group). (B, C) Dual luciferase reporter assay results show firefly luciferase activity relative to Renilla luciferase activity 
in hMSCs transfected with dual luciferase vectors containing VEGFA-WT-3’UTR or VEGFA-MUT-3’UTR and miR-16-5p agonist (agomiR-16-5p) 
or negative control (agomiR-NC). (D) QRT-PCR analysis shows relative VEGFA mRNA levels in control hMSCs and hMSCs transfected with 
agomiR-NC, agomiR-16-5p, antagomiR-NC, and antagomiR-16-5p. (E) Western blotting analysis shows relative VEGFA protein levels 
expression in hMSCs transfected with siRNA-NC, and siRNA-VEGFA. (F) QRT-PCR analysis shows relative expression of osteogenic marker 
genes, ALP, OCN and RUNX2, in hMSCs transfected with siRNA-NC, and siRNA-VEGFA. (G, H) Alizarin red staining shows calcium deposition in 
hMSCs transfected with siRNA-NC, and siRNA-VEGFA for 21 days. Scale bar = 10 mm. The data are means ± SD. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001. 
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In conclusion our study shows that miR-16-5p sup-

presses osteogenic differentiation by down-regulating 

VEGFA expression. Therefore, miR-16-5p/VEGFA 

axis is a potential therapeutic target for postmenopause-

related osteoporosis.  

 

MATERIALS AND METHODS 
 

Data search and identification of deferentially 

expressed genes (DEGs)   
 

The RNA microarray data of 20 postmenopausal women 

with osteoporosis and 20 healthy postmenopausal women 

in the GSE56815 dataset was retrieved from NCBI Gene 

Expression Omnibus (GEO) database. The raw gene 

expression data was log2 transformed and differentially 

expressed genes were identified using the GEO2R in-built 

function with a default setting (https://www.ncbi.nlm.nih. 

gov/geo/geo2r/). DEGs with a P < 0.05 were considered as 

statistically significant. A heatmap was constructed from 

the log2 mRNA expression data using the pheatmap R 

package.   

 

PPI network of the DEGs 
 

We imported the DEGs into the Search Tool for the 

Retrieval of Interacting Genes (STRING) database [42] 

and identified protein-protein interactions with a combined 

score of >0.5. PPI networks were constructed using the 

Cytoscape software (version 3.7.2) [43]. Molecular 

Complex Detection (MCODE) plugin from Cytoscape was 

used to screen modules of the PPI network, and those with 

MCODE score ≥ 5 and number of nodes >5 were selected. 

CentiScaPe 2.2 plugin in Cytoscape was used to calculate 

the degree, betweenness, and closeness centralities of 

nodes in the PPI network. Node degree is a measure that 

represents the number of connections associated with a 

specific node in the network. Closeness centrality defines 

how close a node is to all other nodes in the network. 

Betweenness centrality is the number of times a node acts 

as bridge along the shortest path between two other nodes. 

 

GO and KEGG pathway enrichment analysis  
 

The function and pathway enrichment analyses of the 

candidate genes were performed using the DAVID. GO 

annotation was performed to identify top 3 enriched GO 

terms associated with biological processes, molecular 

functions and cellular components. Moreover, the top 

enriched KEGG pathways involved in osteoporosis 

were also analyzed using DAVID.  
 

Circular visualization  
 

The top ten genes with the highest degrees (hub genes) 

were visualized using the ggplot2 software [44]. GO 

plot was used to visualize the results of hub gene 

enrichment analysis [45]. Circular Visualization in R 

[46] was used to visualize chromosomal positions in a 

circular representation and the degree connectivity of 

the top 100 genes. 

 

Cell culture and transfection 
 

The hMSCs were obtained from the Huazhong University 

of Science and Technology, Wuhan, China and grown in 

a specific media designed for human mesenchymal stem 

cells (#MUXMA-90011, Cyagen, Suzhou, China) at 37°C 

in a 5% CO2 incubator. They were maintained for a 

maximum of 3 passages for experiments. The agomiR-16-

5p, antagomiR-16-5p, agomiR-NC, antagomiR-NC, si-

NC and si-VEGFA constructs were obtained from 

GenePharma (Shanghai). Cell transfection experiments 

were performed using Lipofectamine 3000 (ThermoFisher 

Scientific) according to manufacturer’s instructions using 

miRNA constructs at 200 mM and siRNA constructs at 50 

mM.  

 

Blood collection 
 

From May 2016 to June 2018, peripheral blood 

samples from patients in Shanghai Tongji Hospital 

(10 healthy volunteers, 10 postmenopausal 

osteoporosis patients) were collected for gene 

expression analysis. The patient studies were 

approved by the Committees of Clinical Ethics in the 

Tongji Hospital (Tongji University of Medicine, 

Shanghai, China), and informed consent was obtained 

from all participants. 

 

QRT-PCR analysis 

 

Total RNA was extracted using Trizol (#15596018, 

Invitrogen, USA) and reverse transcribed using the 

VersoTM cDNA Synthesis Kit (#AB-1054/A, 

ThermoFisher Scientific) according to the manufac-

turer’s protocol. The exosomal miRNAs were isolated 

using the SeraMir Exosome RNA purification Kit 

(System Biosciences, USA), and reverse transcribed and 

quantified using the TaqMan microRNA assay kit 

(Applied Biosystems, USA) for cDNA synthesis and 

qRT-PCR. The qRT-PCR reactions were performed 

using the Thermal Cycler C-1000 Touch system 

(#10021377, Bio-Rad CFX Manager, USA). U6 was 

used as a control for miRNA quantification whereas 

GAPDH was used as the internal control to quantify 

mRNA. Osteogenesis was estimated by analyzing the 

expression of osteogenic marker genes, ALP, RUNX2 

and OCN by qRT-PCR analysis. The data was 

expressed as fold change relative to the appropriate 

controls. All the primers used in this study are listed in 

Table 3.  

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Table 3. QRT-PCR primers used in the study. 

Gene name Primer sequence 

hsa - miR-16-5p - Forward TGGGGTAGCAGCACGTAAA 
 hsa - miR-16-5p - Reverse CTCAACTGGTGTCGTGGAGTC 

hsa-U6-Forward CTCGCTTCGGCAGCACA 

hsa-U6-Reverse AACGCTTCACGAATTTGCGT 

hsa-VEGFA-Forward AGGGCAGAATCATCACGAAGT 

hsa-VEGFA-Reverse AGGGTCTCGATTGGATGGCA 

hsa-ALP - Forward ACCACCACGAGAGTGAACCA 

hsa-ALP - Reverse CGTTGTCTGAGTACCAGTCCC 

hsa-OCN - Forward CAAAGGTGCAGCCTTTGTGTC 

hsa-OCN - Reverse TCACAGTCCGGATTGAGCTCA 

hsa-Runx2 - Forward TGGTTACTGTCATGGCGGGTA 

hsa-Runx2 - Reverse TCTCAGATCGTTGAACCTTGCTA 

hsa-GAPDH - Forward CCGTTGAATTTGCCGTGA 

hsa-GAPDH - Reverse TGATGACCCTTTTGGCTCCC 

 

Western blotting 

 

Total protein samples were prepared from cells and callus 

samples using Protein Lysis buffer (#AS1004, Aspen, 

South Africa) containing 1% protease inhibitor (#AS1008, 

Aspen). Equal amounts of protein samples were separated 

on SDS-PAGE and transferred onto nitrocellulose 

membranes (#IPVH00010, Millipore, USA). Then, the 

membranes were blocked by incubation with 5% nonfat 

milk for 1 h followed by overnight incubation at 4°C with 

primary antibodies against VEGFA (1:500, Sigma, USA, 

#HPA069116) and GAPDH (1:10,000, Abcam, USA, 

#ab37168). Then, the blots were incubated with HRP-

conjugated secondary antibody (#AS1058, Aspen). The 

blots were developed using enhanced chemiluminescence 

detection system and the expression of VEGFA relative to 

GAPDH was determined for all samples. Each experiment 

was repeated three times. 

 

Alizarin red staining 
 

The hMSCs were grown in 6-well plates in specific 

media containing 100 nM dexamethasone, 50 mM 

ascorbic acid, and 10 mM b-glycerophosphate to pro-

mote osteogenesis (#HUXMA-90021, Cyagen, USA). 

Then, the cells were washed twice with 1X PBS and 

fixed in 10% formalin for 15 minutes. Subsequently, the 

cells were stained with 1 mL 0.5% alizarin red staining 

solution at room temperature for 15 minutes. After 

rinsing the cells with distilled water for 5 minutes, the 

cells were mounted on slides and analyzed for red 

mineralized nodules using the charge-coupled device 

microscope. The absorbance was measured at 570 nm. 

The experiments were repeated in triplicate.  

Luciferase reporter assays 

 

The hMSCs were grown in 24-well plates (2.5×105 

cells/well) and transfected with dual-luciferase vectors 

containing VEGFA-WT-3’UTR and VEGFA-MUT-

3’UTR plus miR-16-5p agonist (agomiR-16-5p) or 

negative control (agomiR-NC). A Quik Change Site-

Directed Mutagenesis Kit (Strata gene) was used to 

mutate the miR-16-5p binding-region in the 

 

 
 

Figure 8. Schematic representation of the experimental 
strategy in the present study. 
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VEGFA-3’UTR. The dual luciferase reporter kit 

(Promega) was used to perform the luciferase assay 

according to the manufacturer’s instructions. A 

luminometer (Glomax, Promega) was used to quantify 

luminescence from the firefly luciferase and control 

Renilla luciferase constructs in each group. The values 

of firefly luciferase activity were normalized to the 

corresponding Renilla signal.  

 

Statistical analysis 
 

The data are presented as means ± SD. Binary groups 

were compared using Student's t-test, whereas, multiple 

groups (more than two) were compared using one-way 

ANOVA with Tukey post hoc test. The statistical 

analyses were conducted using the Graphpad Prism 8.0 

software (Graphpad software, San Diego, CA, USA). 

P<0.05 was considered statistically significant. The 

schema of the approach process in this study is shown 

in Figure 8. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 

 

 
 

Supplementary Figure 1. The expression of the related miRNAs between the non-OP patients (n=10) and the OP patients 
(n=10) were measured by qRT-PCR analysis. 


