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INTRODUCTION 
 
Colorectal cancer (CRC), a commonly diagnosed digestive 
malignant tumor, is the third highest reason for tumor-
associated mortality around the world [1]. In spite of great 
efforts being made to develop effective strategies against 
CRC, the outcomes for patients is unsatisfactory [2, 3]. 
Thus, studying the potential mechanisms involved in 
occurrence and progression of CRC is crucial to explore 
novel targets for diagnosis and treatment of this disease.  
 
Spanning over 200 nucleotides in length, long non-coding 
RNA (lncRNA) are a class of RNA transcripts with little 
protein-coding potential [4]. Emerging evidence 
demonstrates that lncRNAs play a crucial regulatory role 
among various cellular processes, like cell proliferation, 
invasion, apoptosis and cycle [5, 6]. Studies show that 

lncRNAs are associated with initiation and development 
of various cancers [7]. Many lncRNAs are verified to play 
tumor suppressor or oncogenic role in the progression of 
CRC [8, 9], suggesting that lncRNAs could serve as a 
diagnosis marker and therapy agent. 
 
Down Syndrome Cell Adhesion Molecule (DSCAM) 
antisense (DSCAM-AS1), (DSCAM-AS1), a novel 
lncRNA, has been reported to be upregulated and 
function as oncogenic lncRNA in hepatocellular 
carcinoma [10], non-small lung cancer [11], ovarian 
cancer [12], melanoma [13] and breast cancer [14–16]. 
Despite recently studies demonstrated that DSCAM-
AS1 expression was upregulated in CRC and was 
involved in CRC proliferation and invasion [17, 18], the 
function and underlying mechanism of DSCAM-AS1 in 
CRC progression remains largely unknown. 
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ABSTRACT 
 
Down Syndrome Cell Adhesion Molecule antisense1 (DSCAM-AS1), a novel long non-coding RNA (lncRNA), 
reportedly contributes to the development and progression of several cancers. There is a lack of information on 
its biological role and regulatory mechanism with respect to colorectal cancer (CRC). Here, we discovered that 
the expression of DSCAM-AS1 exhibited a significant upregulation in CRC tissues and cell lines in comparison 
with the corresponding control. Increased DSCAM-AS1 expression was associated with poor prognosis for those 
diagnosed with CRC. Loss-of function assay illustrated that knockdown of DSCAM-AS1 resulted in significant 
inhibition of cell proliferation, invasion and migration in vitro, and impaired tumor growth in vivo. MicroRNA-
384(miR-384) was directly targeted by DSCAM-AS1 in CRC cells, and repression of DSCAM-AS1 inhibited the 
expression of AKT3, a known target of miR-384 in CRC. In addition, repression of miR-384 or overexpression of 
AKT3 could partially rescue the inhibitory effect of DSCAM-AS1 knockdown on CRC progression. In summary, 
DSCAM-AS1 exerted an oncogenic role in CRC by functioning as a competing endogenous RNA of miR-384 to 
bring about regulation of AKT3 expression. These results implied that DSCAM-AS1 might be a novel therapeutic 
target for patients suffering from CRC. 
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Studies show that LncRNAs can depict competing 
endogenous RNAs (ceRNAs) or natural microRNA 
(miRNA) sponges that bring about modulation of 
miRNAs [19, 20]. MiRNAs (small non-coding RNAs: 
18-25 nucleotides), bring about inhibition of translation 
or degradation of target mRNAs when it binds to the 3′-
untranslated regions (3′-UTR) of target genes [21]. 
MicroRNAs (miRNAs) was reported to play crucial 
roles in multiple cancer processes [22]. Nevertheless, it 
remains largely unclear whether DSCAM-AS1 can 
serve as ceRNA of miRNAs to regulate CRC 
progression. 
 
In our study, analysis of DSCAM-AS1 expression in 
CRC tissues and its relationship with clinicopathologic 
characteristics of CRC patients was carried out. 
Functional roles of DSCAM-AS1 on CRC cell growth 
and metastasis were determined by numerous 
experiments. Moreover, the regulatory mechanism of 
DSCAM-AS1 in CRC was investigated by confirming 
whether it serves as a ceRNA of miRNA to modulate 
CRC progression. 
 
RESULTS 
 
Upregulation of DSCAM-AS1 and its correlation 
with poor prognosis in patients with CRC 
 
The expression of DSCAM-AS1 in 56 CRC tissues and 
adjacent normal tissues was detected, and we found a 
significant increase in its expression in CRC tissues 
(Figure 1A). We also detected the expression of 
DSCAM-AS1 in CRC cell lines and found that in 4 
CRC-derived cell lines (LOVO, PKO, SW480 and 
HT29) DSCAM-AS1 expression was significantly 
higher than in the normal human colon epithelial cell 
line NCM460 (Figure 1B).  

To investigate the correlation between DSCAM-AS1 
and clinicopathological features of patients with CRC, 
the 56 patients were split into two groups based on the 
median value: DSCAM-AS1 high group and DSCAM-
AS1-low group. As shown in Table 1, high DSCAM-
AS1 group was associated with advanced clinical stage 
and lymph node metastasis. In addition, Kaplan-Meier 
curve and log rank test showed that overall survival 
(OS) was significantly shorter in the high DSCAM-AS1 
expression group relative to low DSCAM-AS1 group 
(Figure 1C). 
 
DSCAM-AS1 knockdown inhibited proliferation of 
CRC cells  
 
To study the role of DSCAM-AS1 in CRC, we 
performed loss-of-function experiment by 
downregulating the expression of DSCAM-AS1 in 
LOVO and HT29 cells using sh-DSCAM-AS1#1, sh-
DSCAM-AS1#2 and sh-DSCAM-AS1#3. As seen in 
Figure 2A, the three shRNAs significantly inhibited 
DSCAM-AS1 expression in LOVO and HT29 cells. Due 
to the efficiency of knockdown, we chose sh-DSCAM-
AS1#1 as the DSCAM-AS1 down-regulation for 
subsequent studies, and named as: sh-DSCAM-AS1. 
CCK8 assay indicated that DSCAM-AS1 knockdown 
resulted in a significant inhibition of proliferation of 
LOVO and HT29 cells (Figure 2B). Consistent with this 
result, depletion of DSCAM-AS1 obviously decreased 
colony formation of LOVO and HT29 cells (Figure 2C). 
 
DSCAM-AS1 knockdown inhibited migration and 
invasion of CRC cells  
 
The effect of DSCAM-AS1 knockdown on cell invasion 
was studied using transwell assay and its effect on 
migration was determined by the wound healing assay.

 

 
 

Figure 1. DSCAM-AS1 was upregulated and correlated with poor prognosis in patients with CRC. (A) qRT-PCR shows the lncRNA 
DSCAM-AS1 expression level in 56 pairs CRC tissues and non-tumor tissues. (B) qRT-PCR shows the lncRNA DSCAM-AS1 expression level in a 
normal human colon epithelial cell line NCM460 and four human CRC cell lines (LOVO, PKO, SW480 and HT29).(C) 56 patients with CRC were 
divided into two groups based on a median DSCAM-AS1 value and the association of DSCAM-AS1 expression with overall survival was 
analyzed with a Kaplan–Meier plot. P < 0.05, **P < 0.01. 
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Table 1. Association of DSCAM-AS1 expression with clinicopathologic factors of 56 patients with CRC. 

Variables No. of cases 
DSCAM-AS1 expression 

P value 
High Low  

Age(years)    P=0.4139 
<50 22 10 12  
≥50 34 20 14  

Gender    P=0.2836 
Male 29 18 11  
Female 27 12 15  

TNM stage    P=0.0126 
I-II 43 19 24  
III-IV 13 11 2  

Location    P=0.1766 
Colon  24 10 14  
Rectal 32 20 12  

Lymph node metastasis    P=0.0003 
No 41 16 25  
Yes 15 14 1  

Statistical significant results (in bold) 
 

As seen in Figure 3A, down-regulation of DSCAM-AS1 
markedly decreased cell migration ability of LOVO and 
HT29 cells. DSCAM-AS1 depletion also inhibited the 
cell invasion ability when compared to sh-NC group 
(Figure 3B). These indicated that downregulation of 
DSCAM-AS1 suppressed CRC cell metastasis. 
 
DSCAM-AS1 is a sponge for miR-384 
 
Emerging studies reveal lncRNA could directly bind to 
miRNAs and function as a molecular sponge during 
tumorigenesis [19, 20]. We further investigated the 
regulatory mechanism of DSCAM-AS1 in CRC. 
Through bioinformatics analysis using starBase V2 tool, 
we found that there are miR-384 binding sites in the 
DSCAM-AS1 sequence (Figure 4A). To test this 
predication, luciferase reporter assay was carried out 
and we found that miR-384 over-expression resulted in 
a significant suppression of the activity of WT-
DSCAM-AS1 reporter plasmid in LOVO and HT29 
cells (Figure4B). Furthermore, RIP assay demonstrated 
that DSCAM-AS1 and miR-384 were remarkably 
clustered in Ago2 immunoprecipitate in comparison 
with the IgG-pellet, indicating they enriched in the same 
RNA-induced silencing complex (RISC) (Figure 4C). 
Furthermore, qRT-PCR analysis showed that DSCAM-
AS1 knockdown increased miR-384 expression in 
LOVO and HT29 cells (Figure4D), while 
overexpression of miR-384 inhibited DSCAM-AS1 
expression in LOVO and HT29 cells (Figure 4E). 
Moreover, we discovered that there was a 
downregulation of miR-384 expression in CRC tissues 
(Figure 4F), and there was negative correlation with 
DSCAM-AS1 in CRC tissues (Figure 4G).  

DSCAM-AS1 knockdown inhibited the progression 
of CRC cells by regulating miR-384/AKT3 axis 
 
Growing evidence suggested that lncRNAs can function 
as molecular sponges to modulate expression of specific 
genes by sponging target miRNAs [19, 20]. Studies 
show that AKT3 is targeted by miR-384 in CRC cells 
[23]. Here, we investigate whether DSCAM-AS1 could 
regulate miR-384 expression in CRC cells by sponging 
miR-384. Our results revealed that DSCAM-AS1 
depletion significantly decreased AKT3 expression in 
LOVO and HT29 (Figure 5A and 5B), while miR-384 
inhibitor reversed this trend. In addition, we found that 
AKT3 expression was increased in CRC tissues (Figure 
5C), and its expression was positive correlated with 
DSCAM-AS1(r=0.561; P<0.001) (Figure5D), and 
negative correlated with miR-384(r=-0.365; P=0.006) 
(Figure 5E). 
 
Considering the close correlation between miR-384, 
AKT3 and DSCAM-AS1, we next evaluated whether the 
miR-384/AKT3 axis implicates in biological effects by 
DSCAM-AS1 in CRC cells. To this end, LOVO and 
HT29 cells were transfected with sh-NC, sh-DSCAM-
AS1, sh-DSCAM-AS1+miR-384 inhibitor or sh-DSCAM-
AS1+AKT3 overexpression plasmid. Rescue experiments 
showed that overexpression of AKT3 reversed the effect 
caused by DSCAM-AS1 knockdown on proliferation, 
migration and invasion (Figure 5F–5H). Similarly, miR-
384 inhibitor partially reversed the inhibitory effect caused 
by DSCAM-AS1 knockdown in CRC cells (Figure 5F–
5H). In summary, these findings suggested that DSCAM-
AS1 promoted CRC progression via modulation of AKT3 
by acting as a ceRNA of miR-384. 
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Knockdown of DSCAM-AS1 impeded CRC tumor 
growth in nude mice 
 
The tumor xenograft assay was done to study the impact 
of DSCAM-AS1 knockdown on CRC tumor growth in 
vivo. As seen in Figure 6A–6C, nude mice injected with 
sh-DSCAM-AS1/LOVO cells had smaller tumors, both 
in volume and weight, when compared to mice injected 

with sh-NC/LOVO cells. Moreover, we found that the 
Ki-67 positive cells were significantly decreased in sh-
DSCAM-AS1/LOVO group when compared to sh-
NC/LOVO group (Figure 6D). We also found that 
DSCAM-AS1 and AKT3 expression was downregulated, 
while miR-384 was upregulated in xenograft tumor of sh-
DSCAM-AS1/LOVO group when compared to sh-
NC/LOVO group (Figure 6E–6H). The in vivo  

 

 
 

Figure 2. DSCAM-AS1 knockdown inhibits the proliferation of CRC cells. (A) The knockdown efficiencies of three shRNA against DSCAM-
AS1 (sh-DSCAM-AS1#1, sh-DSCAM-AS1#2 and sh-DSCAM-AS1#3) in LOVO and HT29 cells were detected by qRT-PCR analysis. (B and C) Cell 
proliferation and colony formation were determined in LOVO and HT29 cells transfected with sh-NC or sh-DSCAM-AS1. P< 0.05, **P < 0.01. 
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Figure 3. Knockdown of DSCAM-AS1 inhibits migration and invasion of CRC cells. (A) Cell migration was examined in LOVO and 
HT29 cells transfected with sh-NC or sh-DSCAM-AS1 by wound healing assay. (B) Cell invasion was examined in LOVO and HT29 cells 
transfected with sh-NC or sh-DSCAM-AS1 by transwell invasion assay. P < 0.05, **P < 0.01. 

 

 
 

Figure 4. DSCAM-AS1 acted as a sponge for miR-384. (A) The predicted binding sites of miR-384 on the sequence of DSCAM-AS1(WT-
DSCAM-AS1). The target sequences of the DSCAM-AS1 were mutated (MT-DSCAM-AS1). (B) Luciferase activity was examined in LOVO and 
HT29 cells co-transfected with miR-384 mimics or miR-NC, and luciferase reporter vector containing WT-DSCAM-AS1 or MT-DSCAM-AS1. WT: 
wild-type; MT: mutant-type. (C) The interaction between miR-384 and DSCAM-AS1 was determined in LOVO and HT29 cells with RIP assay. 
(D) The expression of miR-384 in LOVO and HT29 cells cells transfected with sh-NC or sh-DSCAM-AS1 was determined by qRT-PCR. (E) The 
expression of DSCAM-AS1 in LOVO and HT29 cells transfected with miR-NC or miR-384 mimic was determined by qRT-PCR. (F) qRT-PCR shows 
the miR-384 expression level in 56 pairs CRC tissues and non-tumor tissues. (G) Pearson's correlation analysis between miR-384 expression 
and DSCAM-AS1 expression in 56 CRC tissues. P< 0.05, **P< 0.01. 
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data therefore complemented the description about 
biological role of DSCAM-AS1. 
 
DISCUSSION 
 
In recent decades, evidence has highlighted that the 
dysregulation of lncRNAs on CRC could be a leading 
cause for tumor process [8, 9]. Studies show that 
DSCAM-AS1 has a role in progression of several 
cancers, and that it can function as an oncogenic 
lncRNA in these cancers [10–16]. Although recently 
studies demonstrated that DSCAM-AS1 expression was 

upregulated and played a crucial role in CRC, the 
functional roles and underlying mechanism of DSCAM-
AS1 in CRC cells remains largely unknown [17, 18]. 
We discovered that there is an upregulation of DSCAM-
AS1 in CRC tissues and cell lines. Increased DSCAM-
AS1 had a positive correlation with advanced clinical 
stage, lymph node metastasis and poor overall survival, 
indicating that it may act as an oncogene. Results of 
loss-of-function experiments revealed that the 
knockdown of DSCAM-AS1 in CRC cells can inhibit 
migration, cell proliferation, and invasion in vitro, as 
well as cause suppression of tumor growth in vivo, 

 

 
 

Figure 5. DSCAM-AS1 knockdown inhibited the progression of CRC cells by regulating miR-384/AKT3 axis. (A, B) The expression 
of AKT3 on mRNA and protein levels was measured in LOVO and HT29 cells after transfection with sh-NC, sh-DSCAM-AS1,sh-DSCAM-
AS1+miR-384inhibitor(anti-miR-384)andsh-DSCAM-AS1+overexpression AKT3 plasmid(AKT3). (C). RT-PCR shows the AKT3 mRNA expression 
level in 56 pairs CRC tissues and non-tumor tissues. (D) Pearson's correlation analysis between AKT3 expression and DSCAM-AS1 expression 
in 56 CRC tissue. (E) Pearson's correlation analysis between AKT3 expression and miR-384 expression in 56 CRC tissue. (F–H) Cell proliferation, 
migration and invasion were determined in LOVO and HT29 cells after transfection with sh-NC, sh-DSCAM-AS1, sh-DSCAM-AS1+anti-miR-384 
and sh-DSCAM-AS1+AKT3. P < 0.05, **P < 0.01. 
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which suggests that DSCAM-AS1 function is required 
for CRC progression. 
 
It is well known that lncRNAs function as ceRNAs and 
interact with miRNAs [19, 20]. DSCAM-AS1 was 
reported to serve as a ceRNA for sponging several 
miRNAs to regulate the development of tumors [10, 13, 
15, 17]. For example, it was reported that DSCAM-
AS1 promotes proliferation and decreases apoptosis of 
breast cancers cells by regulating miR-204-5p/RRM2 axis 
[15]. Huang et al. revealed the association between 
DSCAM-AS1 and poor clinical prognosis, and that it 
contributes to promoting melanoma progression by 
sponging miR-136 [13]. Ma et al. indicated that DSCAM-
AS1 served as a ceRNA of miR-137 and caused 
regulation of EPS8, bringing about promotion of cell 
reproduction and suppression of cell apoptosis in 
tamoxifen resistance breast cancer cells [24]. Through 
bioinformatics analysis, miR-384 was found to be a 
potential target of DSCAM-AS1. Previous studies 
reported that miR-384 functioned as a tumor suppressor in 

multiple human malignancies [25–27]. In CRC, miR-384 
expression was significantly downregulated, and 
overexpression of miR-384 suppressed the CRC growth 
and metastasis [23, 28]. Our study exhibited the 
regulatory relationship between DSCAM-AS1 and miR-
384 through luciferase reporter activity and RIP assays. 
Our study also indicated that miR-384 expression was 
decreased in CRC tissues, which was consistent with 
previous results [23, 28]. In addition, there was a negative 
correlation between miR-384 expression and DSCAM-
AS1 in CRC. It is important to note that miR-384 
inhibitor partially reversed the inhibitory effect caused by 
DSCAM-AS1 knockdown in CRC cells. Therefore we 
suggest that DSCAM-AS1 promoted CRC progression by 
sponging for miR-384. Previous studies showed that 
DSCAM-AS1 could sponge miR-216b and miR-144-5p 
in CRC [17, 18]. Linked with our results, DSCAM-AS1 
could sponge multiple miRNAs in CRC progression.  
 
Various examples in literature have demonstrated that 
lncRNA functioned as a ceRNA of miRNA that brings 

 

 
 

Figure 6. Knockdown of DSCAM-AS1 suppressed tumor growth in vivo. (A) Tumor growth curves were calculated in nude mice after 
subcutaneously injection of DSCAM-AS1-depletion LOVO cells. (B) Representative image of isolated tumor from nude mice. (C) The tumor 
weights were examined in isolated tumor from nude mice. (D) The expression of Ki-67 was measured in tumors derived from mice by 
immunostaining. (E, F) The expression of DSCAM-AS1 and miR-384 were examined in xenografted tumor by qRT-PCR. (G, H) The expression of 
AKT3 on mRNA and protein levels was measured in xenografted tumor. P< 0.05, **P < 0.01. 
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about modulation of depression of miRNA's target gene 
expression [29]. Previous study showed that AKT3 is 
targeted by miR-384 in CRC cells [23]. Here, we 
showed that in CRC cells, down-regulation of DSCAM-
AS1 significantly reduced AKT3 expression, while 
overexpression of AKT3 or downregulation of miR-384 
could reserve this trend. Furthermore, AKT3 expression 
was upregulated, and its expression was positive 
correlated with DSCAM-AS1 and negative correlated 
with miR-384 in CRC tissues. Overexpression of AKT3 
in CRC cells reversed the effect caused by knockdown 
of DSCAM-AS1 on proliferation and invasion. These 
results implied that DSCAM-AS1 acts as a ceRNA of 
miR-384, bringing about modulation of AKT3 
expression, thereby promoting the progression of CRC.  
 
In summary, we identified that lncRNA DSCAM-AS1 
is linked to tumor metastasis and poor OS of CRC 
patients. DSCAM-AS1 promoted the progression of 
CRC by playing the role of a ceRNA of miR-384 to 
modulate AKT3 expression. Thus, DSCAM-AS1 has 
the potential to be a diagnosis marker as well as a 
therapeutic target for CRC. 
 
MATERIALS AND METHODS 
 
Clinical tissues 
 
Harvesting of 56 clinical CRC samples and adjoining 
normal tissues were carried out at Department of 
Gastrointestinal Colorectal and Anal Surgery, China-
Japan Union Hospital of Jilin University between the 
time period January 2011 to January 2012. None of the 
patients had received any anti-tumor therapy before 
surgery. Written informed consent was acquired from 
the patients. Research approval was got from “Ethics 
Committee of Jilin University (Changchun, China).  
 
Cell culture and transfection 
 
Normal human colon epithelial cell line NCM460 and 
four human CRC cell lines (LOVO, PKO, SW480 and 
HT29) were bought from American Type Culture 
Collection (ATCC; Manassas, VA, USA). Along with 
supplementation of 10% fetal bovine serum (FBS, 
Gibco; MA, USA), cells were grown in Dulbecco's 
modified Eagle's medium (DMEM; Gibco) containing 
with 100 U/ml penicillin (Invitrogen, CA, USA) and 1 
μg/ml streptomycin (Invitrogen). All cells were 
maintained in a humidified incubator at 37 °C with 5% 
CO2. 
 
Mimics and inhibitors of miR-384, as well as 
corresponding negative controls were bought from Gene 
Pharma (Shanghai, China). CRC cells were transiently 
transfected with 100 nM miR-384 mimics or inhibitors 

by lipofectamine 3000 (Invitrogen, USA). Synthesis of 
three short hairpin (sh)RNA that targeted DSCAM-AS1 
(sh-DSCAM-AS1#1, sh-DSCAM-AS1#2 and sh-
DSCAM-AS1#3) and the scramble negative control (sh-
NC) was done by GenePharma (Shanghai, China), 
followed by cloning in pGreenPuro™ Vector (System 
Biosciences, CA, USA) 100 ng shRNA plasmids were 
transfected into CRC cells by lipofectamine 3000 
(Invitrogen, USA) as per company protocol. The 
selection of stable transfectants was done with G418 
(500 mg/ml, Invitrogen). Sequences of shRNAs were 
presented as listed Table 2. 
 
AKT3 overexpression plasmid (pCDNA-3.1) was 
granted from Dr Li (Jilin University) was transfected 
into CRC cells using lipofectamine 3000 (Invitrogen) as 
per company protocol. Transfection efficiency was 
examined using real time quantitative PCR (qRT-PCR) 
at 48 h after transfection.  
 
RNA extraction, reverse transcription and 
quantitative PCR 
 
Total RNA was extracted with TRIzol reagent 
(Invitrogen) from CRC tissues and cell lines. The 
quality and concentration of RNA were assessed at 
260/280 nm by the use of a Nanodrop 
Spectrophotometer (ND-2000, Thermo, USA). With a 
Prime Script Kit, reverse-transcription of RNA 
samples(1μg) into cDNA was carried out (Takara, 
China). Quantitative PCR reactions were done with 
SYBR Green PCR Kit (Roche, Germany) under the 
ABI Prism 7500 system (Applied Biosystems, USA). 
GAPDH was used for normalization of DSCAM-AS1 
and AKT3 mRNA, while U6 was used for 
normalization of miR-384. All primers sequences are 
shown in Table 2 [12, 23]. 2−ΔΔCt method was used to 
examine gene expression levels [30].  
 
Cell proliferation assay 
 
CRC cells proliferating ability was estimated with Cell 
Counting Kit-8 (CCK-8; Dojindo, Japan). 100 μl of 
transfected cells (5 × 103 cells per well) were seeded 
into 96-well plates and cultured at 37 °C in a humidified 
incubator with 5% CO2. After the following incubation 
times (24 h, 48 h, 72 h and 96 h), addition of 20 μl 
CCK-8 solution was carried out followed by incubation 
for 4 hours. With a microplate reader, the optical 
density at 450 nm was determined (Multiscan MK3; 
Thermo Fisher Scientific, MA). 
 
Wound healing assay 
 
Cell migration determination was carried out by this 
assay according to a previous a study [31]. Briefly, 
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Table 2. Sequences of shRNAs and primers. 

Name Sequence(5’-3’) 
Sequence of shRNAs  

sh-DSCAM-AS1#1 GGAGATCACAGCCAAGGAA 
Sh-DSCAM-AS1-#2 CAAAACCACAACAACAACA 
sh-DSCAM-AS1#3 GTTAACATTTGGTGTAATTTG 
sh-NC TTCTCCGAACGTGTCACGTTT 

Primers used for qRT-PCR  
DSCAM-AS1 Forward  CCAGGAACCAATCCTTACTC 
DSCAM-AS1 Reverse ’CCCTAGGGATGTGACCGAAGGA 
AKT3 Forward  ATACACGCAAATACACTCC 
AKT3 Reverse ’CCCTAGGGATGTGACCGAAGGA 
GAPDH Forward GGGCTGCTTTTAACTCTGGTAAAG 
GAPDH Reverse CCATGGGTGGAATCATATTGG 
miR-384 Forward TGTTAAATCAGGAATTTTAA 
miR-384 Reverse TGTTACAGGCATTATGAA 
U6 Forward CTCGCTTCGGCAGCACA 
U6 Reverse AACGCTTCACGAATTTGCGT 

 

transfected cells (1 × 104 cells per well) were seeded 
into 6-well culture plates and grew until full confluence. 
The wound area was made by scratching cell monolayer 
with a 100 μl Eppendorf tip. After scratching, the wells 
were gently washed twice with PBS to remove the 
detached cells and residual serum, and were cultured in 
free-serum medium for 24 h. Scratch wounds were 
imaged the same position at 0 h and 24 h using an 
Olympus microscope (Tokyo, Japan). 
 
Transwell invasion assay 
 
Following trypsinization, cells were seeded with 
Matrigel-coated (BD Biosciences, USA) transwell 
filters in a 24-well plate (50,000 cells/well) in serum-
free medium. The lower chambers contained medium 
with 20% FBS. Following 24h incubation, fixation of 
invaded CRC cells were carried out with methanol for 
30 min followed by staining for a duration of 15 min 
with 0.1% crystal violet. The number of invasive cells 
was determined by counting the stained cells at five 
fields selected by random with an inverted microscope 
(Olympus, Japan) at 200 × magnification. 
 
Bioinformatic analysis and luciferase reporter assay 
 
StarBase2.0 was used to predict the potential binding sites 
of miRNAs on DSCAM-AS1 [32]. Generation of Wild-
type (WT) DSCAM-AS1 with potential miR-384 binding 
sites were inserted into a luciferase reporter vector psi-
CHECK-2 (Promega, USA). In addition, a site-directed 
mutagenesis kit (Tiangen, Beijing, China) was used to 
generate a mutated form of this vector termed MT-
DSCAM-AS1.Co-transfection of CRC cells with 
luciferase plasmids and miR-384 mimics or miR-NC were 

carried out followed by  culturing for 48 h. Dual-
Luciferase Reporter Assay System (Promega) was used to 
determine the luciferase activities, following the 
manufacturer’s instructions.  
 
RNA immunoprecipitation (RIP) assay  
 
RNA-Binding Protein Immunoprecipitation Kit 
(Millipore, USA) was used as per manufacturer’s 
instructions. LOVO and HT29 cells were lysed and 
treated with RIP buffer with magnetic beads that had 
undergone conjugation with human anti-human 
argonaute 2 (Ago2) antibody (Millipore, USA). Mouse 
IgG (Millipore) was used for negative control. 
Immunoprecipitated RNA was extracted using TRIzol 
reagent after the protein was digested using Proteinase 
K buffer. qRT-PCR was carried out for detection of 
DSCAM-AS1 and miR-384 as above-mentioned. 
 
Western blot analysis 
 
Total proteins were extracted from tissues or cultured 
cells by a radio immunoprecipitation assay buffer (Sigma, 
St. Louis, MO, USA). Samples were separated in  
10% sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis (SDS-PAGE), and transferred onto a  a 
0.22μm polyvinylidene difluoride (PVDF) membrane 
(Merck Millipore, Billerica, MA, USA). Then membrane 
was incubated with primary antibodies of AKT3 (1:500 
dilution; ab32505, Abcam, Cambridge, MA, UK) and 
GAPDH (1:5000 dilution, ab8245, Abcam), followed by 
incubation with secondary antibody (1:8000 dilution; 
Abcam, ab6721). The protein expression was observed 
using the ECL (electrochemiluminescence) kit (Millipore, 
Billerica, MA, USA). 
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Established of xenograft model  
 
All animal experimental protocols and surgical 
procedures were approved by the “Animal Care and Use 
Committee of Jilin University (Changchun, China)”. 
Ten male athymic nude mice (5-week-old, 18-20g) were 
obtained from the “Laboratory Animal Center of Jilin 
University (Changchun, China)”. A total of 2 × 106 
LOVO cells that had been stably transfected using 
either sh-DSCAM-AS1 or sh-NC were implanted 
subcutaneously into 5-week old nude BALB/c mice (n = 
5/group). Using the formula below, tumor volumes 
were determined every 5 days: Tumor volume = 
(Length × Width2)/2. The mice were sacrificed after a 
duration of 30 days and the tumors were removed and 
weighed for further studies. 
 
Immunohistochemistry (IHC) 
 
The tumors tissues were fixed with 10% neutral 
buffered formalin and embedded in paraffin. Then Par-
affin-embedded tissue sections (4-μm) were 
deparaffinized, rehydrated and immunostained for 
detection of Ki-67 (a proliferation marker) expression 
levels. Staining of slides with Ki-67 antibody (1:400 
dilution; ab16667, Abcam) was carried out. EnVision 
FLEX High pH 9.0 Visualization System (DAKO) was 
then used, followed by incubating with streptavidin 
horseradish peroxidase (LSAB kit; Dako, Denmark) and 
staining with 3, 3-diaminobenzidine (DAB). Staining of 
sections with hematoxylin was then done after which it 
was dehydrated, mounted, and photographed with a 
light microscope (Olympus). 
 
Statistics analysis 
 
SPSS 19.0 (Armonk, USA) and GraphPad Prism 
software 5.01 (La Jolla, USA) was used for statistical 
analysis. To analyze the differences, Student’s t-test 
and one-way ANOVA was carried out. A P value less 
than 0.05 were considered as significance. 
Correlations between DSCAM-AS1, AKT3 and miR-
384 were conducted by Pearson’s correlation. Kaplan-
Meier curve and log rank test was utilized to 
determine survival rate. All data was shown as mean 
± standard deviation (SD) with at least 3 replicates 
measurements. 
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