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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is the most prevalent 

pathological subtype of non small cell lung cancer 

(NSCLC), which accounts for approximately 40% of 

lung cancer worldwide [1, 2]. The average 5-year 

survival rate of patients with LUAD is only 18%, 

although comprehensive treatments such as surgery and 

targeted therapies have improved clinical therapies [3]. 

Recently, immunotherapy strategies have exhibited an 

unexpected antitumor effect in LUAD [4, 5]. However, 

fewer patients respond to this therapy, and there is no 

clearly molecular stratification of the patients [6, 7]. 

Thus, deeply understanding of immune molecular 

mechanisms and underlying subtypes of LUAD is of 

great significance for more effective treatment options. 
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ABSTRACT 
 

Long non-coding RNAs (lncRNAs) play an important role in various biological processes of lung adenocarcinoma 
(LUAD), such as immune response regulation, tumor microenvironment remodeling and genomic alteration. 
Nevertheless, immune-related lncRNAs and their immune and genomic alterations characteristics in LUAD 
samples still remain unreported. Here, using various public databases, statistic and software tools, we 
constructed two immune-related lncRNA clusters with different immune and genomic alterations 
characteristics. Notably, cluster 1 had a stronger immunosuppressive tumor microenvironment (TME) and a 
higher mutation frequency than cluster 2, especially the mutant genes, such as Kelch-like ECH-associated 
protein 1 (KEAP1) and Toll-like receptor 4 (TLR4). In cluster 1, both the amplified and deleted portions of copy 
number variation (CNV) segments were enriched and cyclin dependent kinase inhibitor 2A (CDKN2A) was 
significantly deleted. GSVA analysis revealed that these immune-related lncRNAs may be involved in stem cell 
and EMT functions. Furthermore, cluster 1 was related to worse prognosis of LUAD patients. Therefore, we 
constructed two immune-related and prognostic lncRNA clusters and identified their immune and genomic 
alterations characteristics in LUAD samples, which could well divide LUAD patients into different immune 
phenotypes and help to understand immune molecular mechanisms of LUAD. 
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Long non-coding RNAs (lncRNAs) are non-coding 

RNAs without protein-coding capacity and are >200 

nucleotides (nt) long [8]. LncRNA functions have been 

discovered in chromatin interactions, transcriptional 

regulation, RNA processing, mRNA stability or 

translation, and signal cascade regulation [9–14]. 

Increasing evidence shows that lncRNAs can regulate not 

only the innate immune response but also the more 

sophisticated adaptive immune response as well as 

immune cell development [15–18]. Moreover, lncRNAs 

may be pivotal regulators in remodeling the tumor 

microenvironment (TME) [17, 19, 20], which forms 

complex and heterogeneous environments consisting of 

multiple cells, such as infiltrating immune cells and 

stromal cells [21]. For instance, lnc-EGFR also acts as an 

immune-suppressor by promoting regulatory T cells 

differentiation in hepatocellular carcinoma [22]. NF-κB 

interacting NKILA (an lncRNA) enhances T cell 

sensitivity to activation-induced cell death by 

mechanically inhibiting NF-κB signaling [23]. Lymph 

node metastasis associated transcript 1 (LNMAT1), also 

a new lncRNA, is involved in the regulation of C-C motif 

chemokine ligand 2 (CCL2) recruiting macrophages into 

the tumor [24]. The involvement of lncRNAs in immune 

regulation is complicated, and many key immune 

regulatory lncRNAs have not yet been identified. Hence, 

it is urgent needed to identify new immune-related 

lncRNAs and elucidate their interactions with immune 

system in TME. 

 

The development and progression of cancer involve 

various types of genomic alterations, including somatic 

mutations, copy number variation (CNV), and other 

changes in gene expression [25]. Somatic mutations are 

considered the initiator of cancer by altering genetic and 

epigenetic mechanisms [26]. CNVs can cause 

heterogeneity of genomic and molecular phenotypes, 

leading to the occurrence and development of complex 

diseases including cancer [27, 28]. Multidimensional 

genomics data provide more extensive insights into the 

genomic alterations affected by lncRNAs through 

various effects [29, 30]. For instance, the prognostic in 

lung adenocarcinoma LncRNA1 (PILAR1), a new 

prognostic lncRNA, is associated with a high mutation 

rate of Kelch-like ECH-associated protein 1(KEAP1) 

[31]. LOC101927151, LINC00861 and LEMD1-AS1 

are LncRNAs with transcriptional dysregulation caused 

by CNV abnormality and are prognostic biomarkers in 

ovarian cancer [28]. Although several lncRNAs have 

been shown to be involved in genomic alterations, the 

relationship between immune-related lncRNA and 

genomic alterations in LUAD still remain unreported. 

 

In this study, we firstly generated the co-expression 

network of the immune-related mRNAs and lncRNAs to 

obtain 147 immune-related and prognostic lncRNAs. 

Then we constructed two immune-related lncRNA 

clusters in LUAD samples. Further, we analyzed the 

characteristics of immune microenvironment and 

genomic alterations, including somatic mutations, CNVs 

in different immune-related lncRNA clusters. Finally, 

we investigated whether immune-related lncRNA 

clusters could predict the prognosis of the patients. 

 

RESULTS 
 

Identification of immune-related lncRNAs and 

mRNAs 
 

To screen for immune-related mRNAs, we firstly 

compared the mRNA data of TCGA database and 

ImmPort database and took the intersection to obtain the 

immune-related mRNA (1679 immune-related mRNAs). 

Later, we compared the lncRNAs data of TCGA and 

GEO database with Ensembl database and took the 

intersection. Thus, about 4472 annotation lncRNAs were 

obtained. Finally, we sorted lncRNAs according to the 

number of co-expressed lncRNAs and immune-related 

mRNAs (degree) to obtain immune-related lncRNAs 

(Supplementary Table 1). The flow chart of this study 

was shown in Figure 1. 

 

To screen for immune-related lncRNAs, we calculated 

Co-expression analysis and generated the co-expression 

network map between immune-related lncRNAs and 

mRNAs. The correlation analysis was determined by 

Pearson’s correlation. LncRNAs with correlation 

coefficient > 0.5 and P< 0.05 were used for further 

analysis. Cytoscape software version 3.6.0 was used to 

visualize the resulting network. As shown in Figure 2, 

Blue is immune-related mRNA and red is co-expressed 

lncRNA. 

 

Identification of prognostic value of immune-related 

lncRNAs 

 

In order to find the immune-related lncRNAs related to 

the prognosis, we annotated the above lncRNAs and 

clinic information and performed the influence of each 

lncRNA on prognosis. Prognostic analysis was 

performed on lncRNAs by univariate Cox regression. 

The threshold value was set at P< 0.05, and 147 immune-

related lncRNAs with significant prognostic value were 

eventually obtained (Supplementary Table 2). 

 

Construction immune-related lncRNA clusters 
 

To separate LUAD samples into tumor clusters with 

different immune phenotypes based on immune-related 

lncRNA, we mapped 147 immune-related lncRNAs to 

the expression profile of LUAD samples to perform 

consistent clustering using CCP tool. The maximum 
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number of clusters was set to 6 (Figure 3A). CCP 

analysis revealed the most stable results when divided 

into two tumor clusters, which were named cluster 1  

and cluster 2 (Figure 3B, 3C). Figure 3D showed the 

expression of immune-related lncRNA in two clusters. 

Red is high expression and green is low expression. 

Yellow represents cluster 1 and blue represents cluster 2. 

 

Comparison of composition and immune cells 

infiltration of TME in different immune-related 

lncRNA clusters 
 

ESTIMATE algorithm was used to calculate immune 

score, stromal score and tumor purity (estimate score) 

according to the gene expression profiles data of 500 

LUAD samples. Then we analyzed the disparities of 

immune score, stromal score, and tumor purity (estimate 

score) in different immune-related lncRNA clusters. The 

cluster 2 had higher immune score, and lower tumor 

purity than the cluster 1 (Figure 4A, P<0.001; Figure 4C, 

P<0.001). Similarly, the cluster 2 also had higher 

stromal score, although these differences were not 

statistically significant (Figure 4B, P=0.468). 

The CIBERSORT method was used to estimate the 

immune cell composition of 500 LUAD samples and 

quantify the relative levels of different cell types in a 

mixed cell population. All results were normalized 

relative proportions by cell type. Heat map showed the 

relative levels comparison of different immune cell 

types in LUAD samples (Figure 4D, left). There were 

differences in 5 types of immune cells. The relative 

levels of immune cell types in cluster 1 were higher 

than the cluster 2, such as Macrophages M0 (P=0.002), 

Macrophages M2 (P=0.003), Mast cells activated 

(P=0.002), Neutrophils (P<0.001), apart from B cells 

memory (P=0.004), which was lower in cluster 1 

(Figure 4D, right). 

 

Pathways enrichment analysis 
 

We performed GSVA analysis on different genes in 

different immune-related lncRNA clusters to obtain the 

changes of related pathways. Heat map showed the 

change of different samples in cluster 1 and cluster 2 

(Figure 4E). The color changes from green to red, 

indicating an increase in the value of the enriched score. 

 

 
 

Figure 1. The flow chart of this study. 
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Yellow represents cluster 1 and blue represents cluster 

2. Unsupervised clustering of the average gene set score 

could clearly separate the cluster 1 and cluster 2. GSVA 

analysis showed that differential pathways were related 

to stem cell biology and EMT. 

 

Comparison of somatic mutations associated with 

immune activation in different immune-related 

lncRNA clusters 

 

To identify the disparities of mutated genes in different 

immune-related lncRNA clusters, we selected the top 20 

mutated genes with the highest number from each 

cluster to generate different mutation spectrum. As 

shown in Figure 5A, significant disparities could be 

found in these mutant genes between cluster 1 and 

cluster 2, such as, KEAP1 (21% vs 12%) and TLR4 

(13% vs 7%). Figure 5B showed the mutation 

characteristics of the genes in cluster 1. The results 

showed the variant classification, variant type, and SNV 

class in cluster 1 (Figure 5B, above) and variants per 

sample, variant classification summary, and top ten 

mutated genes (Figure 5B, below). Figure 5C showed 

similar results for cluster 2, but with some differences. 

 

 
 

Figure 2. The co-expression network map between immune-related mRNAs and lncRNAs in LUAD. Blue represents immune-
related mRNA and red represents co-expressed lncRNA. lncRNA: long non-coding RNA; LUAD: lung adenocarcinoma. 
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The number of each SNV class in cluster 1 were more 

than cluster 2. The top 10 mutant genes in cluster 1 

were TTN(49%), MUC16(41%), CSMD3(39%), RYR2 

(38%), LRP1B(32%), TP53(48%), USH2A(33%), 

ZFHX4(32%), SPTA1(27%), and KRAS(28%). While 

the top 10 mutant genes in cluster 2 were TTN(38%), 

MUC16(35%), RYR2(32%), CSMD3(34%), LRP1B 

(32%), TP53(46%), USH2A(28%), ZFHX4(27%), 

FLG(28%), and KRAS(26%). The top 10 mutation 

genes and mutation frequencies of cluster 1 and cluster 

2 were not significantly different, except for TTN 

(different frequencies), SPTA1 and FLG (different 

genes). 

Comparison of CNVs profile in different immune-

related lncRNA clusters 

 

We analyzed CNVs data of 497 LUAD samples and 

extracted the copy number spectrum of lncRNA. As 

shown in Figure 5D, the disparities of CNV segments 

between cluster 1 and cluster 2 were identified, and both 

the amplified and deleted portions were enriched in 

cluster 1. In addition, we used a GISTIC algorithm to 

identify frequently changing areas in LUAD genome. 

Many areas were found with significant copy 

amplification and deletion of lncRNAs (Figure 5E, 

Figure 5F). 

 

 
 

Figure 3. Unsupervised clustering of LUAD using immune-related lncRNA expression data. (A) Consensus CDF plot and consensus 
index for k =2 to 6 are represented. X axis represents consensus index, Y axis represents CDF. (B) Cumulative distribution function graph of 
the consistency matrix at K = 2. The blue and white heatmap displays sample consensus. (C) Delta area score map. X-axis represents the 
number of clusters and Y-axis represents the relative increase in cluster stability. (D) Heat map represents the expression of immune-related 
lncRNA in cluster 1 and cluster 2. Red represents high expression and green represents low expression. CDF: Cumulative Distribution 
Function. 
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Identification of prognostic value of immune-related 

lncRNA clusters in the training and validation group 

 

To investigate the prognostic of immune-related lncRNA 

clusters, the dataset from TCGA, including 500 LUAD 

samples was used as a training group. All patients of 

training group were classified into cluster 1 and cluster 2 

according to immune-related lncRNAs. Kaplan-Meier 

survival curves showed that cluster 1 has shorter overall 

survival (OS) than cluster 2 (Figure 6A, P=0.005). 

 

Two independent validation datasets GSE31210 and 

GSE50081 were applied to verify the reliability of the 

immune-related lncRNA clusters impact on the 

prognosis of the patients. Kaplan-Meier survival curves 

based on the immune-related lncRNA cluster were both 

 

 
 

Figure 4. Comparison of composition and immune cells infiltration of the tumor immune microenvironment in LUAD 
samples and GSVA pathways analysis with differential enrichment. (A–C) Comparison of composition of TME (immune score, 
stromal score, and tumor purity) between cluster 1 and cluster 2. (D, left) Heat map represents the relative levels comparison of different 
immune cell types. The darker the blue, the higher the expression. (D, right) Comparison of immune cells infiltration (Macrophages M0, 
Macrophages M2, Mast cells activated, Neutrophils, B cells memory). (E) Heat map represents the the changes of related pathways in cluster 
1 and cluster 2. The color changes from green to red, indicating an increase in the value of the enriched score. Yellow represents cluster 1 and 
blue represents cluster 2. TME: tumor microenvironment; GSVA: Gene Set Variation Analysis. 
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significantly different in validation datasets GSE31210 

and GSE50081 (Figure 6B, P=0.028; Figure 6C, 

P=0.031). Similarly, the survival rates for cluster 1 were 

both lower than that of cluster 2 throughout the follow-

up time. 

DISCUSSION 
 

With the development of large-scale sequencing 

technology and bioinformatics methods, lncRNAs have 

been revealed to be involved in carcinogenesis and 

 

 
 

Figure 5. Comparison of mutant genes associated with immune activation and CNVs profile. (A) Mutation spectrum of the top 20 
mutated genes with the highest number in cluster 1 and cluster 2. (B, C, above) The variant classification, variant type, and SNV class in 
cluster 1 and cluster 2. (B, C, below). Variants per sample, variant classification summary, and top ten mutated genes. (D) Comparison of 
CNVs profile (amplification and deletion) in cluster 1 and cluster 2. Yellow represents cluster 1 and blue represents cluster 2. Red represents 
the amplified portions and green represents deleted portions. (E, F) Areas with significant copy amplification and deletion of lncRNAs. G-
scores (left) are normalized values of the amplification/ deletion signals and indicate the degree of gene amplification/ deletion. The larger 
the G-scores, the greater the degree of gene amplification/ deletion. The Q value (right) is the significance level of the amplification/ deletion, 
and the green line represents the threshold value of the significance level with Q value = 0.25. CNVs: copy number variations; SNV: single 
nucleotide variant. 
 

 
 

Figure 6. The prognostic of immune-related lncRNA cluster in the training and validation group. (A) Kaplan–Meier survival curves 
for overall survival in TCGA (training group). (B, C) Kaplan–Meier survival curves for overall survival in GSE31210 and GSE50081 (validation 
group). TCGA: The Cancer Genome Atlas. 
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cancer development [13, 29, 32]. Accumulating studies 

have also demonstrated the significance of lncRNAs in 

LUAD, including roles as drivers of tumor-suppressive 

and oncogenic functions, micro-RNA competitors,  

and diagnostic biomarkers [33–35]. Recently, the 

involvement of lncRNAs in immune regulation have 

been widely reported [15–18]. Therefore, immune-related 

lncRNAs may be used to explore different immune 

stratification and analyze their mechanism characteristics 

in LUAD. In our study, we obtained 147 immune-related 

and prognostic lncRNAs and constructed two immune-

related lncRNA clusters group using 500 LUAD samples 

from TCGA. 

 

Interestingly, we found two clusters of LUAD samples 

based on immune-related lncRNAs with significant 

differences in immune microenvironment and genomic 

alterations. Infiltrating immune cells are an integral 

component of TME and play an important role in 

shaping the TME [36, 37]. Previous reports have 

provided elegant analysis how lncRNAs involve innate 

and adaptive immune responses by modulating the 

functional status of immune cells [15–18, 22–24]. We 

analyzed composition and immune cell types of the 

TME in different immune-related lncRNA clusters. The 

results showed that the cluster 1 had lower immune 

score, and higher tumor purity than the cluster 2. 

Simultaneously, there were differences in 5 types of 

immune cells. The relative levels of immune cell types 

in cluster 1 were higher than the cluster 2, such as 

Macrophages M0 (P=0.002), Macrophages M2 

(P=0.003), Mast cells activated (P=0.002), Neutrophils 

(P<0.001), apart from B cells memory(P=0.004), which 

was lower in cluster 1. The 5 types of immune cells are 

thought to be involved in the regulation of innate and 

adaptive immune responses and play an important role 

in anti-tumor immunity. M2 macrophages play a 

suppressive role in immune function. Our result showed 

that the immune score in cluster 1 was low, and the 

components of most macrophages (M0 and M2) were 

relatively high, indicating a stronger immunosuppressive 

response in cluster1. The above results suggested that 

cluster 1 had a stronger immunosuppressive TME than 

cluster 2 in LUAD samples. 

 

To further characterize the relationship between 

immune-related lncRNA clusters and cancer cell 

phenotypes, genes from the MsigDB gene set related 

to EMT, stem cells, hypoxia, and proliferation were 

used [38]. GSVA analysis on the differential genes 

between cluster 1 and cluster 2 was also performed to 

obtain the changes of related pathways. The result 

showed that differential pathways were related to stem 

cell biology and EMT. The cluster 1 and cluster 2  

were clearly separated using the GSVA method.  

These results revealed that these immune-related 

lncRNA clusters may be involved in stem cell and 

EMT functions. 

 

The majority of work to date have confirmed the somatic 

mutations were an essentiality of carcinogenesis  

and cancer development [26, 29, 39]. A recent study 

comprehensively evaluated the properties of lncRNAs 

from different cancer types in an attempt to to  

explore the associations between somatic mutations and 

lncRNA expression [29]. LncRNAs were commonly 

downregulated and carried low mutation frequencies and 

non-silent mutations in most cancer types and were 

determined with several conserved and cancer specific 

functions. In our study, we identified the characteristics 

of mutation spectrum in different immune-related 

lncRNA clusters. The results showed that KEAP1 (21% 

vs 12%), and TLR4 (13% vs 7%) had significant 

differences between cluster 1 and cluster 2. Studies had 

shown that activation of the Nrf2 protein and its 

regulatory signaling pathways caused by KEAP1 

mutations is conducive to the survival of lung cancer 

cells and resistance to chemotherapy drugs [40]. Toll-

like receptors (TLRs) are highly conserved during 

evolution, are widely expressed in immune cells, and 

play an important role in triggering inflammatory 

responses in the innate immune system [41]. Evading 

immune destruction is an important sign of cancer 

development. There is a definitive link between chronic 

inflammation and cancer, where TLRs play an important 

role in the immune response against tumor cells. 

Recently, TLRs were found on tumor cells, and their 

activation may coordinate downstream signaling 

pathways that play a vital role in tumorigenesis and 

tumor progression [42]. As a lung cancer cell sensor, 

TLR4 regulate lung cancer progression in terms of cell 

growth, invasion, angiogenesis, and tumor stem cell 

behavior [43]. The above results suggested that there 

was a difference in the mutation spectrum of cluster 1 

and cluster 2, and cluster 1 had a higher mutation 

frequency than cluster 2, especially the mutant genes, 

such as KEAP1 and TLR4, that played a key role in the 

progression of lung cancer. 

 

CNVs can lead to different degrees of differential gene 

expression, and multiple CNVs in the genome can cause 

heterogeneity of genomic and molecular phenotypes, 

leading to the occurrence and development of complex 

diseases including cancer [27, 28]. We analyzed CNVs 

data of 497 LUAD and extracted the copy number 

spectrum of lncRNA. The disparities of CNV segments 

between cluster 1 and cluster 2 were identified, and both 

the amplified and deleted portions were enriched in 

cluster 1. A query revealed that the tumor suppressor 

gene CDKN2A (cyclin dependent kinase inhibitor 2A) 

was significantly deleted in cluster 1 in the 9p21.3 

region. CDKN2A is frequently inactivated in many 
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malignant tumors, and is closely related to lung cancer 

progression. The above results suggested that there was 

a difference in the CNV segments of cluster 1 and 

cluster 2, and immune-related lncRNA may be 

associated with the occurrence and development of 

LUAD. 

 

Finally, we investigated whether immune-related 

lncRNA clusters could predict the prognosis of the 

LUAD patients. Immune-related lncRNA clusterization 

analysis can well divide LUAD patients into cluster 1 

and cluster 2 in the training and validating group, and 

cluster 1 was related to worse prognosis of LUAD 

patients. The above finding confirmed that the immune-

related lncRNA cluster had reliable prognostic value. 

 

In conclusion, we constructed two immune-related and 

prognostic lncRNA clusters with significant differences 

in immune microenvironment and genomic alterations 

in LUAD samples. The immune-related lncRNA 

clusterization analysis of LUAD samples provided a 

new insight into the stratification of patients with 

different immune phenotypes as well as in-depth 

understanding of immune molecular mechanisms in 

LUAD. This study also has certain limitations. Firstly, 

this study only analyzed the immune-related lncRNA 

and genetic data in LUAD samples, but not the normal 

paired lung tissue. Secondly, this study is a 

bioinformatic and retrospective research. Due to lack or 

inconsistency of clinical data, multivariate regression 

analyses of immune-related clusters cannot be 

performed uniformly. 

 

MATERIALS AND METHODS 
 

Data source and processing 
 

All RNA sequencing (RNA-seq) profiling data, 

including 500 LUAD samples were downloaded from 

The Cancer Genome Atlas (TCGA, https://tcga-

data.nci.nih.gov/tcga/;LUAD). All the clinical 

information related to these samples was also  

obtained. Two independent validation datasets 

GSE31210 and GSE50081 were downloaded from  

GEO (Gene Expression Omnibus) database 

(https://www.ncbi.nlm.nih.gov/geo/). In total, 226 lung 

samples were included in the GES31210 dataset, and 

127 lung samples were included in the GES50081 

dataset. 

 

The list of immunoregulatory genes were downloaded 

from the immune-related ImmPort database 

(https://immport.niaid.nih.gov). We also download 

lncRNAs data from the ensembl database 

(https://asia.ensembl.org/index.html). Since the GEO 

database contains data from the u133plus2.0 platform, 

the probe is re-annotated to the ensembl database, and 

the data of lncRNAs is filtered out by the annotation of 

lncRNAs. The study was approved by the ethics 

committee of the Shandong Cancer Hospital. 

 

Unsupervised clustering analysis 

 

To analyze the expression of immune-related lncRNA 

in different tumor clusters, the R software package of 

Consensus Cluster Plus (CCP) [44] was applied to 

perform a tumor cluster classification. The algorithm 

began by subsampling a proportion of items and a 

proportion of features from a data matrix. Each 

subsample was then partitioned into up to k groups by a 

user-specified clustering algorithm. The maximum 

number of clusters was set to 6, and the optimal number 

of clusters was determined according to the consensus 

index and Cumulative Distribution Function (CDF). 

Heat map clustering of the immune-related lncRNAs 

were drawn using the R software plots package. 

 

ESTIMATE analysis 

 

An ‘Estimation of Stromal and Immune cells in 

Malignant Tumours using Expression data’ 

(ESTIMATE) algorithm is applicated to infer the levels 

of infiltrating stromal and immune cells and estimate 

tumour purity in tumour samples using gene expression 

data [45]. The algorithm is publicly available through the 

SourceForge software repository (https://sourceforge.net/ 

projects/estimateproject/). The algorithm is based on 

single-sample gene set enrichment analysis and generates 

three scores: 1) stromal score (the presence of matrix in 

tumor tissue); 2) immune score (the infiltration of 

immune cells in tumor tissue); 3) estimate score (the 

inference of tumor purity). 

 

CIBERSORT analysis 

 

To estimate the immune cell composition in the  

sample, the analytical platform CIBERSORT 

(https://cibersort.stanford.edu/) is used to quantify the 

relative levels of distinct immune cell types within a 

complex gene expression mixture [46]. CIBERSORT's 

deconvolution of gene expression data provides valuable 

information about the composition of immune cells in a 

sample. 

 

Gene set variation analysis (GSVA) 
 

GSVA, a pathway enrichment method, was used to 

estimate variation of pathway activity over a sample 

population. The R software package of GSVA was 

downloaded at http://www.bioconductor.org [47]. The 

prediction of the pathway under different disease states 

was made by the signal value of the gene and the 

https://tcga-data.nci.nih.gov/tcga/;LUAD
https://tcga-data.nci.nih.gov/tcga/;LUAD
https://www.ncbi.nlm.nih.gov/geo/
https://immport.niaid.nih.gov/
https://asia.ensembl.org/index.html
https://sourceforge.net/projects/estimateproject/
https://sourceforge.net/projects/estimateproject/
https://cibersort.stanford.edu/
http://www.bioconductor.org/
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pathway in which the gene was located. The enriched 

score value of each sample was predicted by the signal 

value of the gene, and the pathway with differential 

enrichment in the two groups was obtained. The 

screening standard P<0.05, and the FDR<0.05. 

 

Somatic mutations analysis 
 

All gene somatic mutations of 500 samples were also 

downloaded from the TCGA. Fisher's exact test was 

used to identify differential genes with different 

immunotypes (P <0.05), and the mutated genes with the 

highest number from different clusters were compared 

to generate different mutation spectrum. Moreover, we 

also showed the variant classification, variant type, and 

SNV class in each cluster. Similarly, variants per 

sample, variant classification summary, and top ten 

mutated genes were all analyzed. 

 

CNVs analysis 

 

The CNVs of all samples from TCGA LUAD were 

downloaded. Genomic Identification of Significant 

Targets in Cancer (GISTIC) [48] was used to visualize 

regions in the genome to show amplification and 

deletion in the samples. The CNV data of 497 LUAD 

samples downloaded from TCGA using GISTIC 2.0 

software was analyzed and the CNV spectrum of 

lncRNA was extracted. Taking the number of copies 

greater than 1 as the threshold of copy amplification and 

less than -1 as the threshold of copy deletion, we 

calculated the ratio of copy amplification and deletion 

for each lncRNA. Finally, we identified the disparities 

of CNV segments in different immune-related lncRNA 

clusters using Fisher’s exact test. 

 

Statistical analysis 
 

Using survival package of R language, survival analysis 

was used to compare the survival curves of different 

immune-related lncRNA clusters. The Cox proportional 

hazard regression analysis was performed prognostic 

analysis. The correlation analysis was determined by 

Pearson's correlation. In addition, t-test, Pearson's Chi-

square test or Fisher’s exact probability test was used to 

estimated statistical significance. P < 0.05 was 

considered statistically significant. 
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Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. The list of immune-related lncRNAs according to the number of co-expressed lncRNAs 
and immune-related mRNAs (degree). 

 

Supplementary Table 2. The list of 147 immune-related lncRNAs with significant prognostic value (P < 0.05). 


