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ABSTRACT

Considerable evidence suggests that metabolic abnormalities are associated with neurodegenerative
diseases. This study aimed to conduct a systematic metabolic analysis of Alzheimer’s disease (AD),
Parkinson’s disease (PD) and Huntington’s disease (HD). Human and mouse model microarray datasets were
downloaded from the Gene Expression Omnibus database. The metabolic genes and pathways were
collected from the Recon 3D human metabolic model. Drug and target information was obtained from the
DrugBank database. This study identified ATP1A1, ATP6V1G2, GOT1, HPRT1, MAP2K1, PCMT1 and PLK2 as
key metabolic genes that were downregulated in AD, PD and HD. We screened 57 drugs that target these
genes, such as digoxin, ouabain and diazoxide. This study constructed multigene diagnostic models for AD,
PD and HD by using metabolic gene expression profiles in blood, all models showed high accuracy (AUC >
0.8) both in the experimental and validation sets. Furthermore, analysis of animal models showed that
there was almost no consistency among the metabolic changes between mouse models and human
diseases. This study systematically revealed the metabolic damage among AD, PD, and HD and uncovered
the differences between animal models and human diseases. This information may be helpful for
understanding the metabolic mechanisms and drug development for neurodegenerative diseases.

INTRODUCTION spinal cord neurons [1]. Common neurodegenerative

diseases include Alzheimer's disease (AD), Parkinson's
Neurodegenerative  disease is characterized by disease (PD), and Huntington's disease (HD). With the
progressive loss of structures and functions in brain and increase in global aging, the burden of these diseases
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is increasing rapidly worldwide [2]. AD is the most
serious neurodegenerative disease, affecting approxi-
mately 0.6% of the global population [2]. The
pathological features of AD include amyloid B and tau
protein aggregation, mitochondrial dysfunction and
synaptic injury [3, 4]. PD is the second most common
neurodegenerative disease characterized by muscle
stiffness, bradykinesia and uncontrollable tremors, and
its severity causes gradual deterioration [5]. The main
pathological anatomy of PD is the loss of large
numbers of dopaminergic neurons in the substantia
nigra [6]. HD is an autosomal dominant neuro-
degenerative disease, and the pathological feature is
gradual degeneration of the striatal neurons, which
affects muscle coordination and causes mental decline
and psychopathological problems [7]. Mutations in the
huntingtin (HTT) gene is the main cause of HD onset

[8].

Multiple neurodegenerative diseases show severe
metabolic abnormalities [9]. Damage from oxidative
phosphorylation promotes AD, and it has been shown
that oxidative damage occurs before AB deposition in
APP transgenic mouse. The expression of energy
metabolism-related genes is also affected in PD and
HD [10]. Glutamate metabolism plays a crucial role in
learning and memory, synaptic plasticity and neuronal
development [11]. Abnormal glutamate metabolism
causes neuronal dysfunction and degeneration in
chronic neurodegenerative diseases [12]. Disorders of
lipid metabolism are associated with AD and other
neurodegenerative diseases. Impaired cholesterol
metabolism will promote the processing of AP and
lead to AP aggregation [13]. The citric acid cycle is a
key link between sugar, lipid and amino acid
metabolism and is an important process in energy
metabolism. Studies have shown that damage to the
citric acid cycle correlates with neurodegenerative
disease pathology [14-16]. Lysosomal metabolic
abnormalities can lead to decreased energy
metabolism and a decreased clearance rate of cellular
macromolecules, and studies have shown that dys-
function of lysosomal metabolism is correlated with
AD, PD and HD [17].

The above evidence suggests that neurodegenerative
diseases may share common metabolic damage.
Therefore, the purpose of this study was to explore the
common and differential metabolic damage in different
brain regions among AD, PD and HD and to screen
potential drugs that target the identified key metabolic
genes. Furthermore, this study constructed multigene
diagnostic models by using the expression profiles of
metabolic genes in the blood. We also compared the
metabolic differences between mouse models and
human diseases.

RESULTS
Overall metabolic change in AD, PD and HD

Human brain transcriptome datasets of GSE5281 (AD)
[18], GSE20295 (PD) [19] and GSE3790 (HD) [20]
were collected for our reanalysis (Supplementary
Table 1). There were no sex differences in any brain
regions between cases and controls in these datasets.
The age distribution in patients and controls showed
no difference in most brain regions except for the PUT
and SN in PD (Table 1). We mapped the metabolic
genes from the Recon 3D human metabolism model
[21] to the above datasets and performed differential
expression gene analysis. The ratio of deregulated
metabolic genes to total deregulated genes was higher
than the ratio of mapped metabolic genes to all genes
in most brain regions in the whole cohort, male and
female groups, and in all brain regions in the elderly
group (Supplementary Figure 1). This finding suggests
that deregulated metabolic genes play important roles
in these diseases. Through unsupervised clustering of
all metabolic gene expression profiles, female patients
and controls in the AD and PD datasets were mainly
divided into two categories, and the other groups did
not achieve the desired classification effect
(Supplementary Figures 2-5). Interestingly, three brain
regions in HD were divided into distinct classes,
whereas there were no significant differences among
brain regions in AD or PD in any groups. This
indicates that the expression of metabolic genes in HD
is brain-region specific.

Damaged metabolic pathways in AD, PD and HD

Metabolic pathway enrichment results showed that there
were more impaired metabolic pathways in multiple
brain regions in AD, whereas they were relatively less
affected in PD and HD in the whole cohort (Figure 1).
Alanine and aspartate  metabolism, oxidative
phosphorylation, extracellular transport and lysosomal
transport were significantly enriched in multiple brain
regions in all three diseases. Furthermore, most amino
acid  metabolism  pathways and carbohydrate
metabolism pathways were downregulated in at least
one brain region in AD and PD (especially in the HIP
and PC in AD and the SN in PD), whereas only a few of
these metabolic pathways were affected in HD. We also
observed a relatively consistent trend of metabolic
pathway changes in the male, female and elderly groups
(Supplementary Figures 6-8). Notably, male patients
showed multiple downregulated metabolic pathways,
whereas these pathways were nearly unaffected in the
SN in female patients with PD. Pearson correlation
analysis showed that there were strong positive
correlations among pathways in amino acid metabolism,
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Table 1. Sex and age information of neurodegenerative disease patients and controls.

Sex (male/female)

Age (years)!

Neurodegenerative diseases

Case Control p? Case Control p3

Alzheimer's Disease

Entorhinal Cortex 4/6 10/3 0.102 85.6 £6.3 80.3+9.2 0.118
Hippocampus 6/4 10/3 0.650 77.8+5.7 79.6+£9.4 0.574
Medial Temporal Gyrus 10/6 8/4 1.000 79.1+6.4 80.1+9.8 0.771
Posterior Cingulate 6/3 9/4 1.000 776+6.5 79.8+9.4 0.522
Superior Frontal Gyrus 13/10 7/4 1.000 79.2+75 79.3+10.2 0.977
Primary Visual Cortex 11/8 9/3 0.452 80.2+6.7 77.9+6.9 0.385
Parkinson's Disease

Prefrontal Cortex 8/6 10/5 0.710 77.0+6.3 71.2+11.1 0.095
Putamen 9/6 15/5 0.467 76.7£6.2 66.4 £ 13.8 0.006
Substantia Nigra 6/5 13/5 0.432 755+5.38 66.8 + 14.4 0.033
Huntington's Disease

Caudate Nucleus 23/15 23/9 0.449 59.0 + 14.9 58.4+18.1 0.877
Frontal Cortex 22/15 19/9 0.606 56.6 + 15.5 56.1+17.5 0.914
Cerebellum 23/16 16/11 1.000 58.3+ 15.6 59.1+17.5 0.849

1 Data are presented as the mean * standard deviation.

ZFisher's exact test was used to compare population sex in the two groups.
3 Welch two sample t-test was used to compare population age in the two groups.

carbohydrate metabolism, nucleotide metabolism and
protein metabolism, whereas pathways in energy
metabolism, glycan biosynthesis and metabolism and
lipid metabolism showed no or negative correlations
with the above pathways in all brain regions
(Supplementary Figure 9).

Deregulated metabolic genes shared by multiple
brain regions

We compared the commonly and heterogeneous
deregulated metabolic genes for the three diseases.
There were hundreds of deregulated metabolic genes
in AD and relatively few deregulated metabolic genes
in PD and HD. Most of these genes were
downregulated in more than one brain region, and few
upregulated genes were expressed in multiple brain
regions (Figure 2). Deregulated metabolic genes
shared by multiple brain regions were mostly enriched
in amino acid metabolism, signaling transduction,
carbohydrate metabolism, energy metabolism and
several neurodegenerative disease-related pathways.
This finding indicates that deregulated metabolic
genes shared by multiple brain regions can accurately
reflect the common characteristics of neuro-
degenerative diseases. Approximately one-third of
these metabolic genes were deregulated only in one
brain region, and these genes were enriched in
relatively specific pathways. Furthermore, there were
92 heterogeneous deregulated genes (upregulated in
one brain region and downregulated in another brain

region), and most of these genes were found in AD
(Supplementary Figure 10).

Key metabolic genes in AD, PD and HD

There were 40 deregulated metabolic genes shared by
the three neurodegenerative diseases, most of which
were consistently up- or downregulated in multiple
brain regions (Supplementary Figure 11). The gene
coexpression  network showed that ATP1A1,
ATP6V1G2, GOT1, HPRT1, MAP2K1, PCMT1 and
PLK2 were significantly correlated with many other
metabolic genes in AD, PD and HD (Supplementary
Figure 12-14). Furthermore, the average degree of these
metabolic genes was higher than 100 (Supplementary
Figure 15). Therefore, we defined these genes as key
metabolic genes. All of these genes were downregulated
in multiple brain regions in AD and PD and in the CN
in HD (Figure 3). A brain-specific network showed that
these genes were mainly involved in nucleotide
metabolic processes (Supplementary Figure 16). In
recent years, the anti-aging gene SIRT1 has been
identified as an important metabolic gene that is critical
to prevent metabolic diseases [22-25] and
neurodegenerative diseases [26-28]. In this study,
SIRT1 was upregulated in the MTG and downregulated
in the PC in AD whereas no difference in PD or HD
(Supplementary Figure 17). Furthermore, there were
strong positive correlations between SIRT1 and key
metabolic genes in the PVC in AD, and negative
correlations between SIRT1 and key metabolic genes in
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the MTG in AD, and the CN and the FC in HD
(Supplementary Figure 17).

Network of brain regions, metabolic pathways, key
metabolic genes and drugs

Using the drug and target information from the
DrugBank database [29], we constructed a composite
network including brain regions, metabolic pathways,
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key metabolic genes and drugs (Figure 4). In this
network, ATP1A1 was involved in extracellular
transport, and there were 27 drugs targeting ATP1AL.
ATP6V1G2 is involved in lysosomal transport, and there
were 5 drugs targeting ATP6V1G2. GOT1 is involved in
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were 6 drugs targeting GOT1. Furthermore, there were
7 drugs targeting HPRT1, 10 drugs targeting MAP2K1,
1 drug targeting PCMT1 and 1 drug targeting PLK2. No
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Figure 1. Metabolic pathway enrichment results in three neurodegenerative diseases in the whole cohort. The red box
represents the metabolic pathway that is upregulated, and the blue box represents the metabolic pathway that is downregulated. The yellow
circle indicates that the metabolic pathway is significantly enriched.
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Figure 2. Expression profiles of metabolic genes and their functions. The figure shows metabolic genes with absolute logFC values
higher than log2(1.5) in 12 brain regions. The figure shows 1164 unique metabolic genes. The orange color indicates that the gene is
upregulated, and the cyan color indicates that the gene is downregulated. The rainbow color bar shows the commonly deregulated genes in
multiple brain regions and their correlated metabolic pathways. Enriched metabolic pathways of brain region-specific deregulated genes are
shown in colored boxes. Deregulated genes in two brain regions and deregulated genes only in the EC and the PC in AD, and the PFC in PD
showed no significant enriched pathways.
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drug targeted multiple genes. Forty drugs were
approved, and the others were experimental, investi-
gational or nutraceutical drugs. Among these drugs,
DB00114 is an activator of GOT1, and most of the other
drugs are inhibitors of ATP1A1l, ATP6V1G2, HPRT1,
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several drugs targeting HPRT1 and MAP2K1 are used
for the treatment of immune-related disease and cancer
(Supplementary Table 3).

Multigene diagnostic models for AD, PD and HD

Expression profiles of metabolic genes in human blood
transcriptome datasets (Supplementary Table 2) were
used to construct multigene diagnostic models for AD,
PD and HD. Multigene diagnosis models were built
using the metabolic genes in the experimental set, and
tested in the validation set. The optimal model for AD is
the combination of 20 metabolic genes (Figure 5A),
which had the highest AUC of 0.997 in the
experimental set and a high AUC of 0.822 in the
validation set (Figure 5B). The optimal model for PD is
the combination of 20 metabolic genes (Figure 5C),
which had the highest AUC of 0.879 in the
experimental set and a high AUC of 0.817 in the
validation set (Figure 5D). The optimal model for HD is
the combination of 15 metabolic genes (Figure 5E),
which reached the maximum AUC of 1.000 in both the
experimental and validation sets (Figure 5F). The MCC
values were high than 0.9 in AD experimental set, HD
experimental and validation sets. KEGG enrichment
results showed that genes in these diagnostic models
were correlated with multiple neurodegenerative
disease-related pathways (Figure 5G-5I). These results
suggest that the expression profiles of metabolic genes
in blood can be used for the highly accurate diagnosis of
AD, PD and HD.

Metabolic gene and pathway changes in mouse
models

There were 720, 1327 and 1024 metabolic genes that
showed consistent expression trends in all brain regions
in AD, PD and HD, respectively. We compared the
metabolic changes between human diseases and mouse
models  (Supplementary Table 4). Deregulated
metabolic genes were filtered in at least one brain
region in each disease, and only 102, 14, and 32
metabolic genes showed the same expression trends in
APP transgenic mouse, MPTP-treated mouse and Hdh
CAG knock-in  mouse models (Figure 6A-6C).
However, almost all these genes showed no expression
changes in mouse models. The functions of these
metabolic genes were correlated with oxidative
phosphorylation, GABAergic synapses and other
neurodegenerative disease-related pathways in PD but
not in AD or HD (Figure 6D-6F). Furthermore,
metabolic pathway enrichment results showed that
amino acid metabolism, carbohydrate metabolism,
energy metabolism and other metabolic pathways that
were severely impaired in human patients were only
slightly affected in mouse models (Supplementary

Figure 18). The expression of key metabolic genes in
mouse  models also showed no difference
(Supplementary Figure 19). These results suggest that
mouse models cannot accurately reflect human
metabolic characteristics in neurodegenerative diseases.

DISCUSSION

Although there were different degrees of metabolic
damage in AD, PD and HD, most metabolic genes and
pathways showed consistent downregulated trends in
these three diseases, and fewer genes were expressed
inconsistently in different brain regions. This study
identified ATP1Al, ATP6V1G2, GOT1l, HPRTL,
MAP2K1, PCMT1 and PLK2 as key metabolic genes in
AD, PD and HD. ATP1A1 encodes subunit alpha 1 of
Na*/K*-ATPase, which is crucial for establishing and
maintaining the electrochemical gradients of Na and K
ions across the plasma membrane. Decreased levels of
Na*/K*-ATPase cause energy deficiency in multiple
neurodegenerative diseases [30]. ATP6V1G2 encodes
subunit G2 of vacuolar ATPase (V-ATPase), which
transports protons from the cytoplasm into the lysosome
and maintains lysosomal acidification. V-ATPase
deficiency can lead to central nervous system (CNS)
diseases such as AD and PD [31, 32]. GOT1 encodes
glutamic oxaloacetic transaminase in the cytoplasm, and
downregulated GOT1 was found both in the elderly
population and AD patients [33]. HPRT1 encodes
hypoxanthine phosphoribosyltransferase 1, and mutated
HPRT1 affects amyloid precursor protein (APP) gene
expression in AD and amyotrophic lateral sclerosis
(ALS) [34]. MAP2K1 regulates a wide variety of extra-
and intracellular signals. The compromised MAPK
signaling pathways contribute to the pathology of
diverse human diseases, including cancer and
neurodegenerative disorders such as AD, PD and ALS
[35]. PCMT1 plays a role in protein repair; down-
regulated PCMT1 expression makes it difficult to repair
proteins involved in apoptosis and could contribute to
the neuronal cell death observed in PD [36]. PLK2 is a
homeostatic repressor of neuronal overexcitation, which
promotes APP B-processing in AD [37] and catalyzes a-
synuclein in PD [38].

This study identified 57 drugs that target the above key
metabolic genes. Digoxin (DB00390) is an endogenous
inhibitor of membrane Na*/K*-ATPase, which is used
to treat chronic atrial fibrillation and mild to moderate
heart failure. Molecular docking showed that digoxin
may regulate metabolic functions in AD by combining
with G protein-coupled receptors [39]. A previous
clinical trial showed that digoxin has a good effect on
the treatment of PD [40]. Furthermore, serum digoxin
can regulate neutral amino acid transport and
mitochondrial functions in HD patients [41]. Ouabain
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(DB01092) is able to inhibit Na*/K*-ATPase activity in
multiple brain regions [42]. Animal experiments have
shown that ouabain induces downstream autophagy-
lysosomal gene expression and cellular restorative
properties and reduces the accumulation of abnormal

toxic tau protein [43]. Diazoxide (DB01119) is mainly
used to treat hyperinsulinemic hypoglycemia, and
animal experiments have shown that diazoxide can also
be used in the treatment of PD [44]. There was no report
on the treatment of neurodegenerative diseases for most
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Figure 5. Screening of the optimal multigene diagnostic model for three diseases. (A) Stepwise screened multigene prediction
models in AD. (B) Receiver operating characteristic (ROC) curves of the screened optimal diagnostic model in AD. (C) Stepwise screened
multigene prediction models in PD. (D) ROC curves of the screened optimal diagnostic model in PD. (E) Stepwise screened multigene
prediction models in HD. (F) ROC curves of the screened optimal diagnostic model in HD. For panels A, C and E, from left to right on the x-axis
(stepwise screened genes), each additional gene corresponds to a model (for example, in panel A, NDUFA1 represents model 1, which
contains one gene, NDUFA1; COX7C represents model 2, which contains two genes including NDUFA1 and COX7C). The red arrow shows the
optimal model for each disease. Area under the curve (AUC) and Matthews correlation coefficient (MCC) were shown in the ROC curve.
Details of the experimental set and validation set are provided in Supplementary Table 2. (G) Enriched KEGG pathway analysis of genes in the
optimal diagnostic model for AD. (H) Enriched KEGG pathway analysis of genes in the optimal diagnostic model for PD. (I) Enriched KEGG
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Figure 6. Deregulated metabolic genes with consistent expression between human patients and mouse models. (A) Heatmap
of consistently expressed deregulated genes in AD human samples and the APP transgenic mouse model. (B) Heatmap of consistently
expressed deregulated genes in PD human samples and the MPTP mouse model. (C) Heatmap of consistently expressed deregulated genes in
HD human samples and the Hdh CAG knock-in mouse model. The orange color indicates that the gene is upregulated, the blue color indicates
that the gene is downregulated, and black squares indicate statistical significance. (D) Enriched metabolic pathway of consistently expressed
deregulated genes in AD. (E) Enriched metabolic pathway of consistently expressed deregulated genes in PD. (F) Enriched metabolic pathway

of consistently expressed deregulated genes in HD.
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of the drugs screened in this study. Therefore, further
investigation of these drugs for the treatment of AD, PD
and HD is worthwhile.

There are still tremendous difficulties in building
reliable and reproducible diagnostic models for
neurodegenerative  diseases.  Increasing  research
suggests that the blood transcriptome signature may
enable accurate diagnosis of these diseases. A recent
study showed that the combination of a multitissue
RNA signature can accurately diagnose AD and other
aging-related diseases [45]. Many studies have reported
that blood-based biomarkers could be potential
predictors for PD, such as a-synuclein, DJ-1, and uric
acid [46], and blood-based gene signatures also showed
high accuracy in PD diagnosis [47]. Furthermore,
previous studies showed that the gene signature in
peripheral blood can be used for accurate diagnosis of
HD [48, 49]. This study constructed multigene
diagnostic models for AD, PD and HD by using
metabolic gene expression profiles in blood. All models
showed high accuracy both in the experimental set and
validation set. Therefore, the diagnosis of neuro-
degenerative diseases using metabolic gene signatures
in blood may be an effective method.

The mouse model is the most widely used animal model
in neurodegenerative disease studies and can partially
reflect the behavioral, pathological and genetic
characteristics of human diseases [50]. Rodents do not
develop AD, and the existing AD transgenic mouse
models can only reflect limited human disease
characteristics [51]. There are large differences in gene
expression signatures in neuroimmune and neuro-
degenerative pathways between human and APP
transgenic mouse models [52]. The gene expression
profiles of microglial activation states in AD patients
are not apparent in mouse models [53]. Furthermore, a
meta-analysis including 33 microarray studies of PD
shows that consistent features in human datasets are not
shown in mouse models [54]. Fortunately, the HD
mouse model is relatively successful and can model
early-onset states in humans [55]. This study revealed
almost no consistency of metabolic changes between
human neurodegenerative disease patients and mouse
models. Therefore, we speculate that mouse models
may not be suitable for studying the metabolic
mechanisms of neurodegenerative diseases.

In conclusion, there was severe metabolic damage in
AD, PD and HD. Most metabolic damage, such as
amino acid metabolism, carbohydrate metabolism,
energy metabolism and multiple transport metabolism,
is common to all three diseases. We identified 7 key
metabolic genes that were downregulated in all three
diseases and screened 57 drugs that target these genes.

Some drugs have been reported to be effective in the
treatment of neurodegenerative diseases. Furthermore,
metabolic gene expression profiles in blood can be used
for the diagnosis of AD, PD and HD. This study also
found considerable metabolic differences between
mouse models and human diseases.

MATERIALS AND METHODS
Neurodegenerative disease data collection

Microarray datasets of AD, PD and HD were downloaded
from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/).  We  conducted
rigorous screening of these datasets with the following
inclusion criteria: (1) the human microarray datasets were
genome-wide; (2) samples in each study should include
cases and controls; (3) each dataset should contain
multiple brain regions; and (4) raw data or expression
matrixes were available. Because these neurodegenerative
diseases may be affected by age and sex factors, we tried
to screen the datasets without age or sex bias between
patients and controls. According to the above criteria, we
finally chose GSE5281 (AD) [18], GSE20295 (PD) [19]
and GSE3790 (HD) [20] for our reanalysis
(Supplementary Table 1). For details on data pre-
processing, see our previous reports [56, 57]. The brain
regions in the AD dataset include the entorhinal cortex
(EC), hippocampus (HIP), medial temporal gyrus (MTG),
posterior cingulate (PC), superior frontal gyrus (SFG), and
primary visual cortex (PVC). The brain regions in the PD
dataset include the prefrontal cortex (PFC), putamen
(PUT), and substantia nigra (SN). The brain regions in the
HD dataset include the caudate nucleus (CN), cerebellum
(CE) and frontal cortex (FC). Considering the potential
effects of sex and age, we analyzed the metabolic changes
in the whole cohort, male, female, and elderly (age > 60
years) groups.

Metabolic gene collection

Human metabolic genes were extracted from the Recon
3D human metabolism model [21]. This model contains
3,288 metabolic genes that belong to 105 metabolic
pathways. Due to the different analysis platforms of the
datasets we collected, we screened the metabolic genes
shared by all datasets for analysis. In total, we mapped
2455 unique metabolic genes in our datasets.

Differential expression gene analysis

Bioinformatics analysis of the microarray data was
carried out by R statistical software v3.6.1 and
Bioconductor Library. Differential gene expression
analysis was performed using the empirical Bayesian
algorithm in the limma package in R [58]. Up- and
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downregulated genes were defined as a log2
transformed fold-change (logFC) > log2(1.5) or <
log2(1/1.5) for patients compared with controls. A false
discovery rate (FDR)-corrected P value < 0.05 was
considered significant. The pheatmap package in R was
used to show the gene expression profiles, and the
clustering method was chosen as "ward.D2".

Metabolic pathway enrichment analysis

We used javaGSEA desktop application v3.0 to perform
gene set enrichment analysis (GSEA) of affected
metabolic pathways for a total of 12 brain regions in AD,
PD and HD. The extracted metabolic genes and pathways
from Recon3D were used to construct gene sets for
enrichment analysis. Gene sets with fewer than 10 genes
or more than 500 genes were excluded. The t-statistic
mean of the genes was computed for each metabolic
pathway using a permutation test with 1000 replications.
Up- and downregulated metabolic pathways were defined
as a normalized enrichment score (NES) > 0 or < 0 for
patients compared with controls. An FDR-corrected P
value < 0.05 was considered significant.

Coexpression network analysis and key metabolic
gene screen

Pearson’s correlation coefficient was calculated for each
gene-gene pair of all metabolic genes in AD, PD and
HD. Gene-gene pairs with an absolute value of
correlation coefficient higher than 0.75 and an FDR-
corrected P value < 0.05 were considered significantly
correlated. Significant gene-gene pairs were used to
construct the gene coexpression networks. The selection
criteria for key metabolic genes are as follows: (1) The
absolute of logFC of metabolic genes is higher than
log2(1.5) in at least one brain region in each disease. (2)
The average number of nodes of metabolic genes in
gene coexpression networks is higher than 100.

Brain-specific gene network analysis

Brain-specific gene network analysis was performed
using the HumanBase web server (https://
hb.flatironinstitute.org/) [59]. The screened key
metabolic genes were used as input genes to perform
the gene network analysis. The tissue option in
parameter settings was chosen as the brain, and the data
types option included coexpression, interaction, TF
binding and GSEA perturbations. The minimum
interaction confidence and the maximum number of
genes were determined using default settings. The
server generated a gene network of the queried genes
and other genes that interacted with these genes, and
GO biological process enrichment analysis of the genes
in the network was performed.

Drug discovery and composite network construction

Drugs that interact with the screened key metabolic
genes were searched from the DrugBank database
(https://www.drugbank.ca/) [29]. Information was
obtained on the ID, name, status, types, and
indication/associated conditions of the screened drugs.
Then, we constructed a composite network of 12 brain
regions in AD, PD and HD, deregulated metabolic
pathways, key metabolic genes and drugs.

Blood transcriptome analysis and multigene
diagnosis model

To investigate the effects of metabolic gene expression
profiles in disease diagnosis, we downloaded blood
transcriptome datasets of AD, PD and HD from the
GEO database. Each disease contains an experimental
dataset and a validation dataset (Supplementary Table
2). Multigene diagnosis models were built using the
metabolic genes in the experimental set, and the
validation set was used to test the predictive accuracy of
the model. A univariate logistic regression model was
used to calculate the odds ratios of the metabolic genes
in each disease. The receiver operating characteristic
(ROC) curve and the area under the curve (AUC) of the
single metabolic genes were calculated using the pROC
package in R. The model with the largest AUC was
defined as the optimal model. A stepwise modeling
strategy was used to screen the optimal multigene
combination models for each disease. The maximum
number of metabolic genes in the model is set to 20.
First, the gene with the largest AUC was selected. Then,
we used a multivariate logistic regression model to
generate the combined effect of the selected gene and
each of the remaining genes. Next, we selected the best
two-gene model with the highest AUC and repeated the
previous steps. Finally, we selected the optimal model
with the highest AUC in each multigene combination
model. Matthews correlation coefficient (MCC) [60]
was calculated for each optimal model.

Mouse model analysis

Since mouse models are widely used in the study of
neurodegenerative diseases, we analyzed the changes in
metabolic genes and pathways in three mouse models
(APP transgenic mouse for AD, MPTP-treated mouse
for PD and Hdh CAG knock-in mouse for HD) and
compared them with human disease. Datasets of mouse
models were downloaded from the GEO database. Each
mouse model contains transcriptome data for multiple
brain regions (Supplementary Table 4). We screened
metabolic genes with consistent expression trends in all
brain regions in each disease and compared the
expression changes of these genes in mouse models.
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Supplementary Figure 1. The percentage of deregulated metabolized genes to total deregulated genes in whole cohort. (A),
male group (B), female group (C) and elderly group (D). The elderly group was defined as the age > 60 years. The dashed line indicates the

percentage of metabolic genes in total genes. Each color represents a brain region.
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Supplementary Figure 2. Metabolic genes clustering of three neurodegenerative diseases in whole cohort. A total of 2455

metabolic genes were included in the heatmap. All gene expression values were z-score converted. The clustering method was chosen as
ward.D2”.
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Supplementary Figure 3. Metabolic genes clustering of three neurodegenerative diseases in male group. A total of 2455

metabolic genes were included in the heatmap. All gene expression values were z-score converted. The clustering method was chosen as
ward.D2”.
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Supplementary Figure 4. Metabolic genes clustering of three neurodegenerative diseases in female group. A total of 2455

metabolic genes were included in the heatmap. All gene expression values were z-score converted. The clustering method was chosen as
ward.D2”.
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Supplementary Figure 5. Metabolic genes clustering of three neurodegenerative diseases in elderly group. The elderly group

was defined as the age > 60 years. A total of 2455 metabolic genes were included in the heatmap. All gene expression values were z-score
converted. The clustering method was chosen as “ward.D2”.
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Supplementary Figure 6. Metabolic pathway enrichment results in three neurodegenerative diseases in male group. The red
box represents the metabolic pathway is up-regulated and the blue box represents the metabolic pathway is down-regulated. The yellow
circle indicates the metabolic pathway is significantly enriched.
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Supplementary Figure 7. Metabolic pathway enrichment results in three neurodegenerative diseases in female group. The
red box represents the metabolic pathway is up-regulated and the blue box represents the metabolic pathway is down-regulated. The yellow
circle indicates the metabolic pathway is significantly enriched.
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Supplementary Figure 8. Metabolic pathway enrichment results in three neurodegenerative diseases in elderly group. The
elderly group was defined as the age > 60 years. The red box represents the metabolic pathway is up-regulated and the blue box represents
the metabolic pathway is down-regulated. The yellow circle indicates the metabolic pathway is significantly enriched.
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Supplementary Figure 9. Correlation of metabolic pathway changes in three neurodegenerative diseases. Pearson's correlation
coefficient was calculated using normalized enrichment scores of metabolic pathways in all brain regions. The positive correlation indicates
consistent changes in metabolic pathways and the negative correlation indicates opposite changes in metabolic pathways.
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Supplementary Figure 10. Expression of heterogeneous deregulated genes in three neurodegenerative diseases. The figure
showed 92 metabolic genes. Genes that are upregulated in one brain region and downregulated in another brain region are defined as
heterogeneous deregulated genes. The heatmap showed genes with the absolute value of logFC higher than log2(1.5). Genes with logFC
below threshold are not shown the expression profiles.
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Supplementary Figure 11. Expression of deregulated genes shared by three neurodegenerative diseases. The heatmap showed
genes with the absolute value of logFC higher than log2(1.5) in at least one brain region in each disease. Genes with logFC below threshold
are not shown the expression profiles.
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Supplementary Figure 12. Co-expression network of metabolic genes in Alzheimer’s disease. The red circle represents
deregulated gene shared by three neurodegenerative diseases and the cyan circle represents other metabolic genes.
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Supplementary Figure 13. Co-expression network of metabolic genes in Parkinson’s disease. The green circle represents
deregulated gene shared by three neurodegenerative diseases and the cyan circle represents other metabolic genes.
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Supplementary Figure 14. Co-expression network of metabolic genes in Huntington’s disease. The blue circle represents
deregulated gene shared by three neurodegenerative diseases and the cyan circle represents other metabolic genes.
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Supplementary Figure 16. Brain specific network of key metabolic genes. (A) Network of key metabolic genes and correlated genes.
(B) Enriched GO biological process of genes in the network.
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Supplementary Figure 17. Expression of SIRT1 in different brain regions (A) and its correlation with key metabolic genes (B). The color bar
indicates the Pearson’s correlation coefficient between SIRT1 and key metabolic genes. Statistical significance: * P < 0.05, ** P < 0.01, ***
P <0.001.
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Supplementary Figure 18. Metabolic pathway enrichment results in three neurodegenerative diseases in mouse models. The
red box represents the metabolic pathway is up-regulated and the blue box represents the metabolic pathway is down-regulated. The yellow
circle indicates the metabolic pathway is significantly enriched.
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Supplementary Figure 19. Expression of key metabolic genes in mouse models. The heatmap showed the logFC of key metabolic
genes in each brain region in mouse models. No Hrrt1 gene in mouse models datasets.
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Supplementary Tables

Supplementary Table 1. Information on the human brain transcriptome datasets of AD, PD and HD.!

GEO ID Samples

Brain region

Platform Mean PMI

87 cases
GSE5281 (AD) 74 controls

4
GSE20295 (PD) 53%823635

114
GSE3790 (HD) 47 co?ﬁ?ce)fs

Entorhinal cortex
Hippocampus
Medial temporal gyrus
Posterior cingulate
Superior frontal gyrus
Primary visual cortex
Prefrontal cortex
Putamen
Substantia nigra
Caudate nucleus
Cerebellum
Frontal cortex

Affymetrix Human Genome U133 Plus 2.0

Affymetrix Human Genome U133A Array

Array All: 25h

Case: 14.0h
Control: 17.1 h

Affymetrix Human Genome U133A Array ~ No information

L All datasets were conducted whole genome microarray expression test using postmortem brain tissues.
Abbreviations: AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s disease, PMI: postmortem interval.

Supplementary Table 2. Information on the human blood transcriptome datasets of AD, PD and HD.

GEOID Samples Tissue Platform

Experimental dataset

GSE63060 (AD) 1(%25(:&611??&5 Blood Illumina HumanHT-12 V3.0 expression beadchip

GSE99039 (PD) pag0 CAses Blood Affymetrix Human Genome U133 Plus 2.0 Array

91 cases Illumina Genome Analyzer I1x (Homo sapiens)

GSE51799 (HD) 33 controls Blood Ilumina HiSeq 2000 (Homo sapiens)

Validation dataset

GSE63061 140 cases . . .
(AD) 134 controls Blood IHlumina HumanHT-12 V4.0 expression beadchip

GSE57475 (PD) 483083??3'5 Blood IHlumina HumanHT-12 V3.0 expression beadchip

GSE1751 (HD) 1izcgr§§fgls Blood Affymetrix Human Genome U133A Array

Abbreviations: AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s disease.

Please browse Full Text version to see the data of Supplementary Table 3.

Supplementary Table 3. Name and indication information of the screened 57 drugs.

Supplementary Table 4. Information on the mouse brain transcriptome datasets of AD, PD and HD.

GEO ID Samples Brain region Platform Animal model

16 cases Entorhinal cortex Affymetrix Mouse Genome L
GSE14499 (AD) 10 controls Hippocampus 430 2.0 Array APP transgenic mice

Frontal cortex .

GSE7707 (PD) 9 cases Midbrain Affymetrix Mouse Genome v yprp_yreated mice

9 controls - 430 2.0 Array

Striatum

12 cases Cerebellum Affymetrix Mouse Genome L

GSE9038 (HD) 12 controls Striatum 430 2.0 Array Hdh CAG knock-in mice

Abbreviations: AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s disease.
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