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INTRODUCTION 
 

Melanoma is characterized by rapid progression and 

poor survival [1]. Early-stage localized melanoma 

patients could be effectively treated through surgical 

resection, but survival outcome for patients with 

distant metastases is always less favorable [2]. 

Recently, kinase inhibitors (e.g., vemurafenib, 

dabrafenib and trametinib) that target specific 

pathways have been approved by the Food and Drug 

Administration (FDA) [3]. Although the noteworthy 

improvement of antitumor response to these agents has 

been observed, they are rarely durable [2]. 

 

Owing to the emergence of immunotherapy, especially 

immune checkpoint inhibitor (ICI) therapy, prognosis for 

melanoma patients has dramatically improved [4–6]. 

However, only a subset of patients could demonstrate a 

remarkable response to ICI therapy. The pivotal point of 

this problem is the lack of effective indicators to identify 

patients who are more responsive to immunotherapy 

agents. The current broadly used biomarker of immune 

treatment response is tumor mutation load (TML). Other 

multiple microenvironment-based factors, such as 

immune checkpoints expression, proportion of tumor 

infiltration lymphocytes (TIL), and interferon gamma 

(IFNγ) signature, also play vital roles in response to 
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immunotherapy. Patients who harbor fewer markers may 

benefit less from such treatment. This raises the question 

whether there exist other factors that simultaneously affect 

more than one of the above listed biomarkers, which 

could provide better predictive value for immunotherapy. 

 

MUC16, which is a member of the mucin family and 

encodes cancer antigen 125 (CA125). MUC16 was 

determined as the monitor indicator for diagnosis of 

gynecological cancer [7–9]. Several recent studies have 

reported that MUC16 could inhibit antitumor immune 

responses by attenuating natural killer (NK) cells and 

promoting regulatory T cells activity [10–12]. 

Meanwhile, other studies demonstrated that MUC16 

may be implicated in enhancing the activity of pro-

inflammatory pathways in tumor [13, 14]. Our previous 

study reported the association of MUC16 mutations 

with high TML and favorable outcome in gastric cancer 

(GC). Furthermore, our results revealed that mutated 

MUC16 has important implications for immunotherapy 

[15]. However, owing to the limited number of GC 

samples from patients who received immune treatment, 

we could not validate the relevance of these results. To 

our knowledge, the effect of MUC16 mutations on 

melanoma TML, microenvironment, prognosis, and 

immunotherapeutic efficacy has not yet been 

investigated. 

In this study, we explored whether the presence of MUC16 

mutations was associated with TML, tumor-immune 

microenvironment, survival outcome, and ICI treatment 

efficacy in melanoma. Evidence derived from our study 

would have implications for guiding immunotherapy. 
 

RESULTS 
 

MUC16 mutational status of melanoma 
 

MUC16 was one of the most frequently mutated genes 

in melanoma. Of the 467 samples in the Cancer 

Genome Atlas (TCGA) cohort, 341 (73.1%) harbored 

MUC16 mutations. Plenty of frequently mutated genes 

were correlated with TML in TCGA, and presence of 

MUC16 mutations showed the most significant 

correlation (P = 2.25E-44; Supplementary Figure 1). 

We found that patients with mutated MUC16 had a 

significantly higher TML than those without it (Figure 

1A). Mutation distribution of MUC16 and its family 

members in relation to genomic integrity maintenance 

genes was illustrated in Figure 1B. Waterfall plot 

showed that patients who harbored MUC16 mutations 

also had some mutations in genome repair genes (145 of 

341, 42.5%; Figure 1B). Consistent results and 

mutational patterns of mucin family members and 

genome repair genes in the International Cancer 

 

 
 

Figure 1. Mutational patterns of MUC16 and mucin family members in relation to DNA repair-related genes in the TCGA 
cohort. (A) Numbers of mutations per megabase in each sample. (B) Representation for mutation patterns of mucin and DNA repair genes. 
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Genome Consortium (ICGC) cohort were exhibited in 

Supplementary Figure 2. 

 

The difference in TML between the 2 cohorts was not 

statistically significant (median TML: TCGA cohort 

3.78 vs. ICGC cohort 4.27; Wilcoxon rank sum test, P = 

0.11; Supplementary Figure 3). 

 

MUC16 mutations are associated with high TML in 

both cohorts 
 

In the TCGA cohort, melanoma patients with MUC16 

mutations had a significantly higher TML than those 

without MUC16 mutations (median TML: 4.19 vs. 1.25; 

Wilcoxon rank sum test, P < 0.001; Figure 2A). In 

MUC16 mutated patients, we found that BRCA1/2 (56 

[16.4%] patients with mutations), TP53 (57 [16.7%] 

patients with mutations), POLE (44 [12.9%] patients 

with mutations), and MMR genes (total 49 [14.4%] 

patients with mutations) were significantly co-mutated 

(Fisher exact test, all P < 0.01; Supplementary Table 1). 

Mutations in these genes caused a significantly higher 

mutation load (OR > 3, P < 0.01; Figure 2C). TML 

could be suitably divided into high and low subgroups 

with a cutoff value of 4.22 (Supplementary Figure 4). 

To rule out the possibility that higher TML was 

generated by mutations in genome repair genes rather 

than directly by MUC16 mutations, we performed 

multivariate logistic regression model with mutations in 

DDR and MMR genes, and clinical confounding factors 

taken into consideration. Association of MUC16 

mutations with higher TML was still statistically 

significant after adjusting for these confounding 

variables (OR: 15.61, 95% CI: 6.15-52.87, P < 0.001; 

Figure 2C). 

 

Additionally, high TML was also observed in tumor 

samples with MUC16 mutations of other immune 

activated tumor types (e.g., cancers of the lung, 

colorectal, kidney, bladder, and head and neck) in the 

TCGA cohort (Wilcoxon rank sum test, all P < 0.001; 

Supplementary Figure 5). 

 

Of the 183 melanoma patients in the ICGC cohort, the 

significantly high TML was also observed in patients 

with MUC16 mutations (median TML: 4.63 vs. 1.01; 

Wilcoxon rank sum test, P < 0.001; Figure 2B). 

Genomic integrity maintenance genes, including 

BRCA1/2 (26 [19.7%] samples with mutations), TP53 

(27 [20.5%] samples with mutations), POLE (16 

[12.1%] samples with mutations), and MMR genes 

(total 22 [16.7%] samples with mutations) were also 

significantly co-mutated in these MUC16 mutated 

patients (Fisher exact test, all P < 0.01; Supplementary 

Table 1). Multivariate logistic regression model that 

included these gene mutations and clinical variables 

was performed to control confounders. In this model, 

the association between MUC16 mutation and high 

TML was still statistically significant (OR: 29.31, 95% 

CI: 7.69-195.69, P < 0.001; Figure 2D). 

 

In addition to association of MUC16 mutation status 

with TML, we also discovered that the total count of 

MUC16 mutations was associated with high TML in 

these 2 cohorts (TCGA: Spearman R = 0.85, P < 0.001; 

ICGC: Spearman R = 0.885, P < 0.001) (Supplementary 

Figure 6). 

 

MUC16 mutations are associated with immune-

active microenvironment 
 

CIBERSORT method revealed that infiltration of CD8 

T cells was significantly higher in patients with MUC16 

mutations (P < 0.05), and resting NK cells exhibited the 

opposite behavior (P < 0.05) (Figure 3A). Consistently, 

we found that patients with MUC16 mutations had 

considerably high infiltration of pro-inflammatory M1 

macrophages (P < 0.001) and low infiltration of 

immune-suppressive M2 macrophages (P < 0.01) 

(Figure 3A). 

 

Patients with MUC16 mutations had significant 

enrichment in total immune cells, immune cell subsets 

(i.e., T cells, B cells, and NK cells), and T/NK 

metagene (i.e., T cells and NK cells activity) (all P < 

0.05; Figure 3B). We also observed high enrichment in 

IFNγ signal and its related T cell-inflamed gene 

signature that were previously reported to predict 

immunotherapy response (both P < 0.01; Figure 3B) 

[16]. Besides, increased cytolytic activity, enrichment in 

cytokines and chemokines, and enhanced tertiary 

lymphoid structures (TLS) were all found in patients 

with MUC16 mutations (all P < 0.05; Figure 3B). 

 

We observed that expression of PD-L1, PD-1, and 

CTLA-4 was significantly upregulated in patients with 

MUC16 mutations (Wilcoxon rank sum test, all P < 

0.05; Figure 3C). Other checkpoints, including LAG-3, 

TIM-3, TIGIT, and IDO1 also exhibited consistent 

results (all P < 0.05; Figure 3C). 
 

Pathways significantly associated with MUC16 

mutations 
 

In gene set enrichment analysis (GSEA) analysis, 

immune response-related pathways, such as antigen 

processing and presentation, graft versus host disease, 

and allograft rejection (normalized enrichment score 

range: 2.25-2.54; all FDR = 0.001) were among the top 

enriched pathways of patients with MUC16 mutations 

based on KEGG dataset (Supplementary Figure 7A). 

Pathways for antigen processing and presentation of 
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peptide antigen, response to interferon gamma, and 

interferon gamma mediated signaling pathway 

(normalized enrichment score range: 2.46-2.52; all FDR 

= 0.002) were the top 3 enriched circuits of patients 

with MUC16 mutations based on GO dataset 

(Supplementary Figure 7B). 

 

MUC16 mutations are linked with favorable 

prognosis in 2 cohorts 

 

In the TCGA cohort, melanoma patients with MUC16 

mutations had a significantly better overall survival 

(OS) than those without it (median OS: 104.5 [95% CI, 

77.1-131.9] vs. 49.3 [95% CI, 42.6-55.9] months; Log 

rank test P < 0.001; Figure 4A). Multivariate Cox 

regression model remained statistically significant with 

confounding factors taken into account (HR: 0.44, 95% 

CI: 0.31-0.61, P < 0.001; Figure 4B). 

 

Consistently, there was a statistically correlation 

between the presence of MUC16 mutations and better 

OS in patients in the ICGC cohort (median OS: 101.6 

[95% CI, 56.1-147.3] vs. 50.2 [95% CI, 38.1-62.2] 

months; Log rank test P = 0.053; Figure 4B). The result

 

 
 

Figure 2. Correlation of MUC16 mutations with tumor mutational load in 2 cohorts. (A, B) Mutation burden of melanoma samples 
with and without MUC16 mutation (left: TCGA; right: ICGC). (C, D) Multivariate logistic regression models were conducted to explore 
association of MUC16 mutations with TML (left: TCGA; right: ICGC). 
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still remained statistically significant after adjusting for 

confounding variables (HR: 0.58, 95% CI: 0.33-1.01, P 

= 0.055; Figure 4D). 

 

MUC16 mutations were associated with better ICI 

response and survival in male patients 

 

Consistent with our results for the patients in the TCGA 

cohort, we found that the presence of MUC16 mutations 

were most significantly associated with TML in the ICI-

treated cohort (P = 5.55E-17; Supplementary Figure 

8A). Patients with MUC16 mutations had significantly 

higher TML and neoantigen load than those without 

MUC16 mutations (median TML: 4.46 vs. 1.53; median 

neoantigen load: 5.41 vs. 2.36; Wilcoxon rank sum test, 

both P < 0.001) (Supplementary Figure 8B, 8C). 

 

In the ICI-treated cohort, patients with MUC16 

mutations had a higher response rate to the therapy than 

those without MUC16 mutations in male patients 

 

 
 

Figure 3. Association of MUC16 mutations with tumor microenvironment. (A) Distinct immune cells infiltration in MUC16 mutated 
and wild-type subgroups. (B) Distribution of immune-related signatures of samples stratified by MUC16 mutational status. (C) Distinct 
expression of immune checkpoints in MUC16 mutated and wild-type samples. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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(response rate: 45.6% vs. 18.5%; Fisher exact test, P = 

0.017; Figure 5A). However, this association was not 

observed in female patients (response rate: 35.0% vs. 

50.0%; Fisher exact test, P = 0.281; Figure 5B) and 

overall patients (response rate: 41.2% vs. 32.4%; Fisher 

exact test, P = 0.361; Figure 5C). Consistent with above 

findings, we observed that responders had a 

significantly higher MUC16 mutation rate than non-

responders in male patients (mutation rate: 83.9% vs. 

58.5%; Fisher exact test, P = 0.017; Supplementary 

Figure 9A), but not in female patients (mutation rate: 

58.3% vs. 72.2%; Fisher exact test, P = 0.281; 

Supplementary Figure 9B) and overall patients 

(mutation rate: 72.8% vs. 64.0%; Fisher exact test, P = 

0.361; Supplementary Figure 9C). 

Besides, we found that male patients with MUC16 

mutations had a better OS than those without MUC16 

mutations (median OS: not calculable [the median OS 

of melanoma male patients with MUC16 mutations 

could not be calculated owing to more than half patients 

in this group were alive] vs. 20.9 [95% CI, 9.17-NA 

(not available)] months; Log rank test P = 0.042; Figure 

5D). Male patients with MUC16 mutations exhibited a 

better trend of progression-free survival (PFS) than 

those without MUC16 mutations although this 

difference did not reach statistical significance (median 

PFS: 9.07 [95% CI, 3.60-25.1] vs. 3.03  [95% CI, 2.57-

8.00] months; Log rank test P = 0.091; Figure 5G).  

In female and overall patients, OS and PFS were  

not statistically significant when stratified by MUC16

 

 
 

Figure 4. Correlation of MUC16 mutations with overall survival in 2 cohorts. (A, B) Kaplan-Meier survival analysis based on MUC16 
mutational status (left: TCGA; right: ICGC). (C, D) Forest plot representation of association of MUC16 mutations with prognosis (left: TCGA; 
right: ICGC). 
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mutational status (all Log rank test P > 0.05) (Figure 

5E, 5F, 5H, 5I). 

 

DISCUSSION 
 

Recently, multiple studies from immunotherapy 

clinical trials have shown promising findings that 

harbored a potential to predict or control tumor 

progression in melanoma [17, 18]. However, 

inconsistent conclusions of these results highlight the 

urgent need to determine a more suitable sub-

population or biomarkers for immunotherapy in 

melanoma, which becomes a momentous challenge in 

the area of immuno-oncology. 

 

 
 

Figure 5. Association of MUC16 mutations with ICI therapy efficacy. (A–C) Association of MUC16 mutations with response rate to ICI 
therapy in male, female, and overall patients. (D–F) Overall survival plot of ICI treated patients stratified by MUC16 mutational status in male, 
female, and overall patients. (G–I) Progression-free survival plot of ICI treated patients stratified by MUC16 mutational status in male, female, 
and overall patients. 
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Previous clinical trials have revealed that patients with 

high TML could benefit more from ICI agents in 

melanoma and non-small cell lung cancer (NSCLC) 

[19, 20]. However, accurately assessment of TML faces 

several limitations in clinical practice. The sampling 

approaches, distinct sequencing platforms, threshold 

definition, and costs of whole exome sequencing 

blockade the broadly implementation of TML 

evaluation [21]. Recent studies have reported that rather 

than measuring total mutation counts in exome, 

mutation status of a single specific gene could serve as a 

surrogate for evaluating TML or ICI therapy efficacy 

[15, 21–23]. From the TCGA melanoma cohort, we 

found that patients with MUC16 mutation had the most 

significant association with high TML. Noticeably, 

besides melanoma, our study showed other cancers 

benefited from immunotherapy (e.g., cancers of lung, 

colorectal, kidney, bladder, and head and neck) also 

exhibited the consistent association of MUC16 mutation 

with high TML. All these findings suggested patients 

with MUC16 mutations may be more responsive to 

immunotherapies in melanoma and other relevant 

tumors. 

 

High expression of immune checkpoints such as PD-L1 

was approved by FDA as an essential criterion for 

pembrolizumab treatment in NSCLC [24]. In our study, 

we found that the other checkpoints (e.g., PD-1, CTLA-

4, TIM-3 and LAG-3) except for PD-L1, were all 

significantly upregulated in patients with MUC16 
mutations. Several studies have reported the immune 

homeostatic effect of tumor infiltration CD8 T cells and 

macrophages in tumor-immune microenvironment [25–

27]. In this study, we found that patients with MUC16 

mutations had significantly high enrichment in CD8 T 

cells and M1 macrophages. Conversely, immune 

suppressive M2 macrophages were enriched in MUC16 

wild-type group. Patients with MUC16 mutations also 

harbored a considerably high enrichment of IFNγ and T 

cell-inflamed signal, which could accurately predict 

immunotherapeutic efficacy [16, 28]. These findings 

indicated that MUC16 mutations were related to 

immune-activated microenvironment and potentially 

high response rate to immunotherapy. 

 

Results revealed that the presence of MUC16 mutations 

was significantly associated with high ICI response rate 

and overall survival in male patients from an ICI treated 

melanoma cohort. This suggests that sex difference may 

be a potential variable in determining immunotherapeutic 

efficacy for patients with mutated MUC16. Consistent 

with our findings, a recent meta-analysis reported that 

male patients gained higher benefit from ICI therapy than 

female patients (HR: male 0.72 [95% CI, 0.65-0.79] vs. 

female 0.86 [95% CI, 0.79-0.93]; P = 0.002) [29]. In our 

study, we found that male patients harbored significantly 

higher TMB than female patients (Figure 2C), which was 

also reported in a previous study [30]. This finding 

suggested that male patients may have higher neoantigen 

and immunogenicity, which speculatively justifies 

association of MUC16 mutation with higher response rate 

and better ICB therapy outcome in male patients as 

compared with female patients. 

 

Several limitations remained in our study. Firstly, 

melanoma samples with gene expression profile were 

only acquired from one cohort. Secondly, the 

mechanisms for correlation between MUC16 mutations 

and higher mutation load are elusive, which requires 

further investigation. 

 

Our study discovered that patients with MUC16 

mutations had significantly high TML, immune-

activated tumor microenvironment and favorable 

survival outcome. Importantly, the presence of MUC16 

mutations was significantly associated with better 

immunotherapeutic efficacy in male patients. Therefore, 

MUC16 mutations may serve as a surrogate for 

predicting efficacy of immune checkpoints based 

therapies, and future clinical trials are needed to validate 

our findings. 

 

MATERIALS AND METHODS 
 

Genomic and clinical information of melanoma 

patients 
 

Somatic mutation data of 467 melanoma samples in the 

Cancer Genome Atlas (TCGA) cohort were acquired 

from Genome Data Commons (https://portal.gdc. 

cancer.gov). The validation dataset contained 183 

samples and was obtained from International Cancer 

Genome Consortium (ICGC) (https://dcc.icgc.org). 

Gene expression profiles of 465 patients were obtained 

from TCGA cohort. 
 

The ICI therapy cohort was obtained from the study by 

Liu et al. [31], which is the largest publicly available 

melanoma ICI-treated patient cohort. This cohort 

contained 144 patients treated with either anti-PD-1 or 

anti-CTLA-4 agents. In this study, patients with 

complete or partial response were considered 

responders; other statuses (i.e., progressive disease, 

stable disease, and mixed response) were considered 

non-responders. 
 

MUC16 mutation versus TML 
 

Genomic instability or high mutation load is largely 

correlated with mutations in DNA damage repair 

(DDR) and mismatch repair (MMR) related genes [32]. 

In addition to univariate analysis of association of 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
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MUC16 mutations with TML, we performed 

multivariate logistic regression with mutations in DDR 

genes (e.g., BRCA1/2, TP53, and POLE) and MMR 

genes (i.e., MLH1, MSH2, MSH6, and PMS2), and 

clinical factors as confounding variables to eliminate 

the false positive possibility. TML was defined as log2 

transformation of mutation counts per megabase. We 

applied a univariate clustering approach (i.e., 

Ckmeans.1d.dp algorithm) available from R package 

Ckmeans.1d.dp (version 4.2.2) [33] to determine the 

optimal cutoff value of high versus low TML followed 

by recently broadly used value (i.e., 17 mutation counts 

per megabase, log2 transformed level [4.09]). 

 

Microenvironment-based cellular and immune-

related signatures 
 

Estimation of tumor infiltration immune cells was 

performed using CIBERSORT algorithm with the 

LM22 signature [34]. In this study, we analyzed only 17 

immune cell types owing to the less enrichment of the 

other 5 cell types (i.e., naive CD4 T cell, gamma delta T 

cells, activated mast cells, eosinophils, and neutrophils).  

 

Previously reported representative immune-related 

signatures that indicated distinct immune cells and 

statuses were curated as follows: 1) immune cells 

enrichment, which indicates total immune cells 

infiltration in tumor microenvironment [35]; 2) immune 

cell subsets, enrichment of T cells, B cells and NK cells 

[2]; 3) T/NK metagene, which reflects the activity of T 

cells and NK cells [36]; 4) IFNγ signature, a signal 

located in the central site of antitumor immune response 

and that correlates with immunotherapy response [37]; 

5) T cell-inflamed signature, which is comprised of 18 

inflammatory genes associated with immune response 

[28]; 6) immune cytolytic activity [38]; 7) immune 

signaling molecules [2]; 8) cytokines and chemokines 

[2]; and 9) TLS, the ectopic lymphoid formations 

associated with inflammation response [39]. 

 

Immune checkpoints in melanoma primarily include 

PD-L1, PD-1, and CTLA-4 [40, 41]. Additional 

checkpoints, for example, LAG-3, TIM-3, TIGIT, and 

IDO1, are being tested in clinical trials and play crucial 

roles in immunotherapy [42–45]. We therefore 

compared differential expression of these genes 

according to MUC16 mutational status. 

 

Gene set enrichment analysis 
 

We applied single sample gene set enrichment analysis 

(ssGSEA) approach embedded in R package GSVA 

(version 1.32.0) to evaluate overall enrichment of 

specific immune signatures of each sample [46]. GSEA 

was implemented by fgsea package (version 1.10.0). 

Signaling pathways in Kyoto Encyclopedia of Genes 

and Genomes (KEGG) and Gene Ontology (GO) were 

used as the background database. 
 

Statistical analyses 
 

R software (version 3.6.1) was used in this study to 

perform relevant statistical analyses. Mutation patterns 

were presented via GenVisR package (version 1.16.0) 

[47]. We drew and compared survival curves using 

Kaplan-Meier approach and Log rank test respectively 

with R survival (version 2.44-1.1) and survminer 

(version 0.4.5) packages. Multivariate logistic and Cox 

regression models were built using forestmodel package 

(version 0.5.0). Associations of MUC16 mutations with 

continuous and categorical variables were estimated 

with Wilcoxon rank sum test and Chi-square test, 

separately. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. The top 15 significant association of single gene mutation with mutation load in TCGA cohort. 

 

 

 

Supplementary Figure 2. Mutational patterns of MUC16 and mucin family members in relation to DNA repair-related genes 
in ICGC cohort. (A) Numbers of mutations per megabase in each sample. (B) Representation for mutation  patterns of mucin and DNA 
repair genes. 
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Supplementary Figure 3. Comparison of TML between TCGA and ICGC cohorts. 
 

 
 

Supplementary Figure 4. Univariate k-means clustering of TML. 
 

 
 

Supplementary Figure 5. Differences of TML in patients with and without MUC16 mutations in other 5 immunotherapy 
susceptible cancers in TCGA. 
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Supplementary Figure 6. Association of MUC16 mutation numbers with TML in 2 melanoma cohorts (left: TCGA; right: ICGC). 
 

 

 

 
 

Supplementary Figure 7. Top enriched pathways of patients with MUC16 mutations in (A) KEGG and (B) GO. 
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Supplementary Figure 8. Association of MUC16 mutation with TML and neoantigen load in the ICI treated cohort. (A) Top 15 
significant association of single gene mutation with TML. (B) Association of MUC16 mutation with TML. (C) Association of MUC16 mutation 
with neoantigen load. 

 

 
 

Supplementary Figure 9. Differences of MUC16 mutation rate between responders and non-responders in (A) male patients, (B) female 
patients and (C) overall patients. 
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Supplementary Table 
 

Supplementary Table 1. Cooccurrent mutation of MUC16 and DNA repair genes. 

 TCGA cohort  ICGC cohort 

 MUC16  MUC16 

 Mutated Wild-type  Mutated Wild-type 

TP53        

  Mutated 57 (16.7%) 7 (5.6%)  27 (20.5%) 2 (3.9%) 

  Wild-type 284 (83.3%) 119 (94.4%)  105 (70.5%) 49 (96.1%) 

POLE        

  Mutated 44 (12.9%) 1 (0.8%)  16 (12.1%) 0 (0.0%) 

  Wild-type 297 (87.1%) 125 (99.2%)  116 (87.9%) 51 (100.0%) 

BRCA1/2        

  Mutated 56 (16.4%) 5 (4.0%)  26 (19.7%) 2 (3.9%) 

  Wild-type 285 (83.6%) 121 (96.0%)  106 (80.3%) 49 (96.1%) 

MMR genes        

  Mutated 49 (14.4%) 2 (1.6%)  22 (16.7%) 0 (0.0%) 

  Wild-type 292 (85.6%) 124 (98.4%)  110 (83.3%) 51 (100.0%) 

 

 

 

 


