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ABSTRACT

Agerelated declines in physical performance predict cognitive impairment, disability, chronic diseast
exacerbation,and mortality. We conducted a metabolomewide associationstudy of physical performance
among BogalusaHeart Study participants. Bonferroni corrected multivariate-adjusted linear regressionwas
employed to examine crosssectional associations between single metabolites and baseline gait speec
(N=1,227)nd grip strength (N=1,164)In a sub-sampleof participantswith repeatedassessmentsf gait speec
(N=282)and grip strength (N=201),significant metabolites from the crosssectional analyseswere tested for
associationwith changein physicalperformanceover 2.9 yearsof follow-up. Thirty-five and sevenmetabolites
associatedwith baseline gait speedand grip strength respectively,including six metabolites that associatet
with both phenotypes. Three metabolites associatedwith preservation or improvement in gait speed over
follow-up, including: sphingomyelin (40:2) (P=2.6x10% and behenoyl sphingomyelin (d18:1/22:0) and
ergothioneine (both P<0.05). Seven metabolites associated with declines in gait speed, including: 1-
carboxyethylphenylalaningP=8.8x10°), and N-acetylaspartate N-formylmethionine, Sadenosylhomocysteine
N-acetylneuraminate, N2, N2-dimethylguanosine, and gammaglutamylphenylalanine (all P<0.05). Two
metabolite modules reflecting sphingolipid and bile acid metabolism associatedwith physical performance
(minimum P=7.6x10). Theseresults add to the accumulatingevidence suggestingan important role of the
human metabolome in physical performance and specifically implicate lipid, nucleotide, and amino acid
metabolismin early physicalperformancedecline.
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INTRODUCTI ON

Age related declines in physical performance are
common among older adulf&] and robustly predict
frailty, sarcopenia, disability, fracture, falls, cognitive
impairment, reduced quality of life, comorbid chronic
health conditions, and atiause mortality[1i 3]. Gait
speed and hand grip strength are simple and non
invasive measuresf physical performance in aging
adults. Although reduced gait speed and grip strength
have been established as risk factors for adverse health
outcomes, their underlying biological pathways remain
largely unknown. Examination of the human
metabolome, wiuh reflects endogenous and exogenous
processes and their interactigd$, provides a unique
opportunity to identify small molecule biomarkers of
physical performance. Identified metabolites may serve
as clinically relevant biomarkers and prognostic
indicaors of future physical performance decline.

Metabolomics has previously been used to examine
aging and frailty. A previous study that compared
centenarians to elderly individuals identified phospho/
sphingolipids as markers of healthy agiff]. A
longitudinal analysis conducted among Framingham
Heart Study participants found that some longevity
related metabolomic pathways associate with risk of
common causes of deafB]. Findings from patients
with breast cancer included fraigssociated changes
in amino acid and phospholipid metabolisfi].
Additionally, research in elderly participants identified
15 markers associated with frailty and suggested that
oxidative stress could be implicated in the development
of frailty [8].

Physical performance metlbmics studies have also
been conducted. Previous research has identified
metabolites associated with gait spg@idL2], other gait
parameterd10], grip strength[11], combined muscle
mass and strength outcomdg$3, 14], and Short
Physical Performance Bary (SPPB) score[ll].
Although these findings are promising, limitations of
past work include the sole use of cross sectional
examination without longitudinal follow U0, 11, 13i

16], sole use of targeted metabolomics approaches
which are restrictetpathways of presumed biological
relevancg10i 12, 14i 16], small numbers of metabolites
tested[10i 16], small sample sizd4.3i 16], and lack of
adjustment for multiple comparisof$0, 11, 14, 16].
Thus, there is a compelling need for research on the
relaionship between serum metabolites and physical
performance that takes advantage of longitudinal data
and utilizes agnostic metabolomic methods.

Our study was designed to fill this gap in knowledge by
first examining the cross sectional relationships keetw

serum metabolites identified through untargeted
metabolomics and physical performance measures
while utilizing stringent control for multiple testing. We
next examined the relationships between identified
metabolites and prospective declines in physica
performance observed at a subsequent study visit. The
Bogalusa Heart Study (BHS) was selected as the
study population to increase generalizability and
reproducibility of study findings through the use of a
large, ethnically diverse, communibased sanig and

to identify metabolites that are relevant in middle age,
prior to onset of age related sarcopenia or mobility
disability.

RESULTS
Participant characteristics

The BHS is a communitpased longerm study
investigating the natural history of CVD ang a multi
ancestry sample (35% black and 65% white) of
residents from Bogalusa, Louisiafd7]. The current
BHS population includes 1,298 participants born
between 1959 and 1979 who were screened at least two
times during childhood and two times durirduéhood.
Participant characteristics are presented in Table 1.
Participants were mostly middle aged adults (mean age:
48.2 and obese [mean body mass index (BMI)>30].
Over 60% were hypertensiveyhile fewer than 20%

had diabetes. Approximately 3% hatironic kidney
disease. As was expected for the age and health status
of the study participants, the cohort overall had high
physical function at baseline, with a mean SPPB score
of over 11 out of 12. Baseline gait speed and grip
strength were modestly core | at ed (3} =0. 3,
The distributions of baseline gait speed and grip
strength presented in Supplementary Figures 1, 2.
Participants of the longitudinal study were similar to the
entire cohort with respect to important prognostic
indicators Supplenentary Table L

Metabolomics

Untargeted metabolomics resulted in the detection
and relative quantification of 1,466 metabolites.
These included 1,073 known biochemical compounds
(Metabolomics Standards Initiative [MSI] levelsor 2)

in pathways related to amino acids (n=201),
carbohydrates (n=25), cofactors and vitamins (n=35),
energy (n=9), lipids (n=435), nucleotides (n=42),
peptides (n=52), and xenobiotics (n=256). An additional
18 partially characterized molecules (MSI|éé8) and
393 unnamed compounds (MSI level 4) were also
detected. The unnamed compounds may be identified
upon the eventual acquisition of a matching purified
standard (or via classical structural analysis). Of the
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Table 1. Characteristics of Big&ticipants.

Female Male
Overall
(N=1,239) Black White Black White
(n=267) (n=463) (n=160) (n=349)

Age, years, mean (SD) 48.2 (5.3) 47.6 (5.4) 48.2 (5.1) 47.2 (6.0) 49 (5.0)
Posthigh school education, n (%) 609 (49.2) 106 (39.7) 278 (60.0) 45 (28.1) 180 (51.6)
Smoking, n (%)

Never 633 (51.1) 156 (58.4) 249 (53.8) 55 (34.4) 173 (49.6)

Former 362 (29.2) 67 (25.1) 138 (29.8) 48 (30.0) 109 (31.2)

Current 244 (19.7) 44 (16.5) 76 (16.4) 57 (35.6) 67 (19.2)
Drinking, n (%)

Never 153 (12.4) 59 (22.1) 60 (13.0) 19 (11.9) 15 (4.3)

Former 395 (31.9) 81 (30.3) 149 (32.2) 49 (30.6) 116 (33.2)

Current 691 (55.8) 127 (47.6) 254 (54.9) 92 (57.5) 218 (62.5)
BMI, kg/m?, mean (SD) 31.5(7.8) 34.9 (8.8) 30.2 (7.4) 31.2(8.7) 30.5 (6.0)
SBP, mmHg, mean (SD) 123.3 (16.8) 125.6 (20.9) 117.3 (14.4) 131.2 (15.7) 125.8 (13.9)
Hypertension*, n (%) 771 (62.3) 196 (73.4) 225 (48.6) 127 (79.4) 223 (64.1)
Glucose, mg/dL, mean (SD) 107.6 (38.3) 108.3(42.5) 105.2 (38.3) 110.5 (45.1) 109 (30.7)
DiabetesA, n (%) 207 (16.8) 47 (17.6) 73 (15.9) 29 (18.4) 58 (16.8)
eGFR, mL/min/1.73 m2, mean (SD) 93.7 (17.0) 101.1 (18.4) 92 (14.2) 95.3 (20.3) 89.5 (15.7)
CKD (GFRyYy <60 mL/ mi 39(3.2) 7 (2.6) 14 (3.0) 6 (3.8) 12 (3.4)
SPPB score 11.1 (1.4) 10.7 (1.6) 11.2 (1.3) 10.8 (1.6) 11.2 (1.3)
Six-minute walk distance (m) 424.7 (86.1) 383.7 (72.6) 431.4 (81.7) 411.4 (81.5) 451.8 (90.8)
Gait speed (m/s) 1.2 (0.2) 1.1(0.2) 1.2(0.2) 1.1(0.2) 1.3(0.3)
Grip strength (kg) 35.1(11.9) 28.6 (7.1) 27.2 (5.8) 44.9 (9.7) 46.1 (9.6)

Note. BHS=Bogalusa Heart Study, BMI=body mass index, CKD=chronic kidney disease, DBP=diastolic blood pressure,
eGFR=glomerular filtration rat&BP=systolic blood pressure, SD=standard deviation, SPPB=short physical performance
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metabolites examined, 1,202 metabolites passed rigorous
quality control standards.

Baselineoverall analyses

Multivariable linear regression models were used to
analyze associations between each metabolite and each
baseline physical performance measure, after adjustment
for age, gender, race, BMI, estimated glomerular
filtration rate (eGFR), education, cigarest@oking, and
alcohol drinking. Results of baseline multivariate
adjusted linear regression models for gait speed and
grip strength respectively are presented graphically
as the magnitudes of -\Rlues versus effect sizes
(Supplementary Figure) 3Significant direct and inverse
associations of metabolites with gait speed were
identified, while significant metabolite associations with
grip strength were all in the inverse direction.
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Baselinegait speed metabolite associations

In the crosssectional analysjs35 metabolites were
robustly associated with gait speed, including 30 from the
amino acid, carbohydrate, cofactor and vitamin, lipid,
nucleotide, peptide, and xenobiotic pathways, and 5
unnamed compounds (Figurg Metabolites associated
with gait speed, that internally replicated across sex or
race are shown in Supplementary Figuries. Results of

a sensitivity analysis with additional adjustment for
clinical covariates were generally consistent with our
main findings for gait speed (Supplementaaple 2).

There were notable correlations between groups of
metabolites associated with gait speed (Figure 2). Most
of the metabolites in the lipid pathway had positive

associations with gait speed. The 3 metabolite signals in
the sphingolipid pathway we modestly to highly
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correl at ed rafgpa ifromw 0.4 do 0y7). N-formylmethionine, Nacetylalanine, Pseudouridine,
Additionally, oxalate from the cofactors and vitamins  5,6-dihydrouridine, Sadenosylhomocysteine, N6
pathway and tartronate from the xenobiotics pathway carbamoylthreonyladenosine,  -dB/cosyltryptophan,

were highly correlated (} =N-ac8t@neuramivatesN2 Ndmethylguaresine, aridXr p a
of metabolites positely associated with gait speed had 24513 (m/z=149.05558, RI=1148)]. With some
| ower correlations (4 <0 . 3 exceptichsnbpidgand kehobiotic methbelites tendeédets

negatively associate with gait speed, a group of 10 were display mo&st negative correlations with the amino

highly correlated [ pair wi s acid,jcarbolyydrage, nuageotitle; amarpeide énStabdlites. 0 .
Gait Speed Overall
Pathway Metabolite P-Value
Amino Acid
Alanine and Aspartate Metabolism N-acetylalanine |—.—| 3.3e-07
N-acetylaspartate (NAA) |—.—| 1.2e-07
Glutathione Metabolism 2-aminobutyrate |—.-| 2.8e-06
Leucine, Isoleucine and Valine Metabolism Isovalerate (i5:0) |-.-| 6.5e-07
Methionine, Cysteine, SAM and Taurine Metabolism N-formylmethionine |—.—| 6.4e-08
S-adenosylhomocysteine (SAH) - 1.4e-05
Phenylalanine Metabolism 1-carboxyethylphenylalanine - 2.4e-08
Polyamine Metabolism N-acetyl-isoputreanine® H 1.5e-06
Tryptophan Metabolism C-glycosyltryptophan M 1.9e-05
Carbohydrate
Aminosugar Metabolism N-acetylneuraminate {-.-| 4.5e-08
Cofactors and Vitamins
Ascorbate and Aldarate Metabolism Oxalate Ill 4.8e-09
Lipid
Fatty Acid Metabolism{Acyl Carnitine) Suberoylcarnitine (C8-DC) “ 1.4e-07
Lysophospholipid 1-linoleoyl-GPC (18:2) - 5.66-09
Plasmalogen 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4)* |-.-| 5.7e-06
Sphingolipid Metabolism Behenoyl sphingomyelin (d18:1/22:0)* I—.—{ 1.1e-08
Sphingomyelin (40:2)" - 1.4e-07
Sphingomyelin (43:1)* H 1.6e-10
Nucleotide
Purine Metabalism, Adenine containing N1-methyladenosine |—.—| 2.5e-12
N6-carbamoylthreonyladenosine |-.-{ 1.8e-05
Purine Metabelism, Guanine containing 7-methylguanine |—.—| 1.6e-09
N2,N2-dimethylguanosine |—.—| 1.2e-07
Pyrimidine Metabolism, Cytidine containing N4-acetylcytidine _l 6.4e-11
Pyrimidine Metabolism, Uracil containing 5,6-dihydrouridine m 6.2e-11
Pseudouridine |—.-| 8.5e-09
Uridine o 1.30-06
Peptide
Gamma-glutamyl Amino Acid Gamma-glutamylphenylalanine l—.—' 5.5e-07
Xenobiotics
Bacterial/Fungal Tartronate H 5.5e-10
Chemical 4-hydroxychlorothalonil |--| 3.2e-07
Food Component/Plant Ergothioneine |'.'| 9.4e-08
Phytanate ] 7.7e-08
Unnamed
X - 11315 (m/z=128.07154, RI=1157) I-.—{ 2.1e-10
X - 18914 (m/z=266.88894, RI=4503) I-.-l 4.1e-08
X - 21471 (m/z=295.11196, RI=4039) - 4.9e-07
X - 24337 (m/z=239.07858, RI=1980) _ 4.5e-07
X - 24513 (m/z=149.05558, RI=1148) |-.-{ 2.5e-05
I T T T T T 1
-0.5 04 03 -02 -041 0.1 0.2 0.3

Figure 1. Metabolites significantly associated with gait spe&dlis forest plot depicts the beta estimate and 95% confidertegvial

for significant metabolites from both seand racestratified analyses. 6 unknown metabolites are not shown. * indicates compounds with

Metabolomics Standards Initiative confidence level 2.
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Baselinegrip strength metabolite associations had pair wi se -glycosyt@ptophan, ( C
N-acetylneuraminate, Nfnethylinosine, Nésuccinyt

Crosssectional study also identified 7 metabolites that  adenosine, 5;6ihydrouridine, and Pseudouriding@igure

were robustly associated with grip strength and included 2). Metabolites associated with grip strength, that

those from the amino acid, carbohydrate, and nucleotide internally replicated across sex or race are shown in

(Figure 3). Six of these metabolites were also associated Supplementary Figures 91. A sensitivity analysis with

with baseline gait speed (&@lycosyltryptophan, additional adjustment for clinical covariates generally

N-acetylneuraminate, Ninethyladenosine, Nécetyt produced results consistent with our main findings for

cytidine, 5,6dihydrouridine, and Pseudouridine) asid grip strength (Supplementary Table 3).

4-hydroxychlorothalonil .
X - 18914 (m/z=266.88894, RI=4503) . 051
Phytanate . 032 026
Tartronate 006 0.12
Oxalate 0.05 0.12
X - 11315 (m/z=128.07154, RI=1157) 011 015
Sphingomyelin (40:2)* 007 01
Behenoyl sphingomyelin (d18:1/22:0)* Pearson 0.13 005
Sphingomyelin (43:1)* Correlation 0298 0.8
1-linoleoyl-GPC (18:2) - - 0.07 006
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4)" -1.0 -05 00 05 1.0 001 012
Isovalerate (i5:0) 019 0 013 004 -008 0.14 024 021 01 021 009
Ergothioneine 02 023 004 022 01 003 018 005 001 013 022 019
2-aminobutyrate 039 037 027 -003 0.27 044 01 0.1 042 008 017 027 02
Uridine .nu 027 017 016 -004 0.23 024 019 D15 016 014 016 024 016
Gamma-glutamylphenylalanine <017 -0.01 -0.07 013 -004 004 0.01 -01 02 0 -02 -023 002 0.06 -0.04
5-methylthioadenosine (MTA) .l 016 0 -001 012 0 -0.11 -0.05 -0.11 -0.21 -0.03 -0.01 -0.04 -0.01 -0.05 -0.08
1-carboxyethylphenylalanine .Ma 045 -0.24 -0.07 -0.07 0.02 -0.01 -0.09 -0.00 -0.11 -0.25 -0.17 -0.18 -0.2 -0.04 -0.07 -0.11
N4-acetylcytidine 036 045 039 -0.11 012 -042 0 -0.19 -0.41 -0.07 -0.07 -0.16 -0.11 -0.11 -0.18 -0.04 -0.06 -0.06
X - 24337 (m/z=239.07856, RI=1980) .E 038 032 04 -0.26 026 -0.17 -0.08 -0.05 -0.08 -0.16 -0.12 -0.23 -0.15 -0.32 -0.33 -0.12 -0.18 -0.18
7-methylguanine . 029 027 024 029 04 -0.23 -0.15 -0.18 -0.02 -0.1 -007 -022 03 031 0.02 -02 -02 041 -01 -0.07

N1-methyladenosine
X -24513 (m/z=149.05558, RI=1148)

.n.ls 0.32 039 033 048 042 -0.06 -0.1 -0.11 -0.01 -0.15 -0.09 -0.08 -0.13 -0.18 -0.05 -0.16 -0.17 -0.05 -0.03 -0.02

015 049 045 03 053 047 -0.15 -0.13 -0.15 0.02 -0.12 011 -0.03 -0.06 -0.04 -0.12 -0.06 0.09 -0.06 -0.13 0.1
C-glycosyltryptophan 013 0AT 047 027 049 043 -0.12 -0.14 -0.16 0.04 -0.15 -0.1 -0.03 -0.06 0.03 -0.12 -0.06 -0.09 -0.05 -0.13 -0.1
N6-carbamoylthreonyladenosine 021 048 049 0.32 052 047 -0.14 -0.13 -015 001 -0.41 -01 -0.07 -0.12 01 .04 -0.05 -0.09 -0.04 -0.1 -0.08
S-adenosylhomocysteine (SAH) 0.7 046 045 033 054 049 -0.17 -0.1 -0.12 0.03 -0.05 -0.07 -0.06 0.1 -01 -0.08 -0.06 -0.08 -0.05 -0.13 -0.15
N-acetylneuraminate 014 048 045 035 0.48 043 -0.14 -0.16 -0.17 001 01 -0.1 -0.08 -0.00 -0.08 -0.13 -0.08 0.1 -0.08 -0.18 -0.17
N2,N2-dimethylguanosine 027 |05 047 0.3 054 046 -0.13 -0.14 -0.14 0.06 -0.1 014 -0.1 -0.11 -0.09 011 -0.08 -0.12 -0.05 -0.12 -0.08
Pseudouridine

5,6-dihydrouridine

028 043 057 031 056 05 -0.12 -0.14 -0.14 0 -0.14 -0.08 -0.08 -0.12 -0.11 -0.05 -0.07 -0.12 004 0.1 -0.12
028 n.m.n,al 051 048 -0.15 02 -0.19 -0.07 023 -0.07 -0.07 -0.1 -0.08 -0.05 0.1 -0.14 -0.06 0.1 -0.1
N-formylmethionine 0.38 048 044 045 053 053|.0.17 -0.06 -0.09 0.06 -0.06 0.01 -0.1 -0.13 -0.15 -0.01 -0.11 0.15 002 0.1 -0.11

N-acetylalanine 0.33 048 048 037 0.53 085 -0.09 -0.07 -0.17 0.03 -0.11 -0.13 -0.05 -0.08 -0.09 -0.06 -0.09 -0.12 -0.04 -0.09 -0.11

N-acetyl-isoputreanine* 0.49 149 049 0.51 051 048 041 044 03 037 02 037 038 -0.13 -0.11 -0.13 -0.04 -0.07 -0.07 -0.14 -025 -0.19 0.1 -0.04 -0.06 -0.1 -0.21 -0.09
N-acetylaspartate (NAA) 042 044 048 04 048 045 042 041 041 04 04 034 0.43 026 025 0.19 020 036 -032 -0.12 -0.17 -0.05 -0.08 002 047 019 0.1 0 -02 -0.21 -0.06 -0.1 -0.08
Suberoylcarnitine (C8-DC) .u,zs 03 039 036 045 052 039 045 045 045 046 043 025 013 015 032 015 0.34 023 -012 0.06 -014 0 -0.17 -0.08 -0.01 -0.04 -0.03 -007 002 -0.01 003 -0.09 -0.09

X -21471 (m/z=295.11196, RI=4039) .uzs 027 02 012 013 014 021 014 0.11 014 0.5 0.11 009 02 037 006 019 027 0.27 029 -0.17 -0.05 -0.11 0.02 -0.05 -0.17 -0.13 -0.18 -0.23 -0.05 -0.13 -0.1 -0.05 -0.03 -0.05
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Figure 2. Pairwise Pearson correlations between metabolites significantly associated with either gait speed or grip strength
in cross sectional analysis/etabolites are ordered according to correlation coefficient. Correlations between each pair of metabolites
are displayed in the cells of the heatmap. Cells are color coded with colors ranging from blue to red to depict carmaagimg from1 to

1. RI=retention index. * indicates compounds with Metabolomics Standards Initiative confidence level 2.
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Longitudinal metabolite associations

After a mean (SD) follow up time of 2.9 (0.5) years,
mean (SD) gaispeed declined by 0.04 (0.20) meters per
second. Mean (SD) grip strength declined by 0.6 (4.9)
kg. Changes in gait speed and grip strength were not
correlated (}=0.1,
(out of the 35 from the baseline analysis) wasse
ciated with longitudinal change in gait speed atBbe-
ferroni corrected significance level (0.05/35=1.0%).
Despite the limited follow up time, 8 additional
metabolites were nominally associated with change in
gait speed (P<0.05) (Table 2), andfthe metabolites
identified longitudinally had effect directions that were
consistent with the baseline analysis (Supplementary
Table 4). None of the 7 metabolites tested for association
with longitudinal change in grip strength met nominal
statistical significance thresholds. Even among null
findings, effect directions for longitudinal change in gait
speed and grip strength were generally consistent with
effect directions identified in the cresectional analysis
(Supplementary Table 5).

Overlap with kidney function metabolites

The metabolites inversely associated with physical
performance were all also associated with kidney
function in our previous study in the BHS, with

consistent effect directiofil8]. These metabolites are

presented irsupplementary Table 6, along with lookups
of their associations with aging, inflammation, and
mortality in previous research.

Metabolite module associations

The 9 metabolite modules identified among BHS
participants are shown in Figure 4. A module, with

P=0.13)

sphingolipids as top metabolites, was positively
associated with gait speed (p=718%). Another

module, with top metabolites in the primary and
secondary bile metabolism pathways (top metabolite:
glycochenodeoxycholate), was negatively associated
with both gait speed (p=1440% and grip strength

(p=1d0>f ound that 2 metabol

DISCUSSION

This study examined crosectional and longitudinal
associations of untargeted serum metabolites with two
measures of physical performance, gait speed and grip
strength. Thirtyfive and 7 metabolites robustly
associated with gait speed and grip strength,
respectively. Six of these metabolites associated with
both phenotypes, suggesting both common and
disparate biological mechanisms underlying these
physical performance phenotypesfdet directions in
longitudinal analyses were generally consistent with
those of the crossectional study, with 2 metabolites
achieving significant associations with change in gait
speed after adjusting for baseline measures. No
metabolites  achieved  sidisiant  longitudinal
associations with grip strength. We additionally
identified two metabolite modules associated with
physical performance measures. Many of the identified
metabolites represent novel findings in physical
performance metabolomics literagur and implicate
lipids, amino acids, and nucleotides in the physiologic
processes related to this complex phenotype.

Lipid metabolites
Sphingolipids, and a metabolite module with top

metabolites in the sphingolipids pathway, wer
positively associated with gait speed in the current

Grip Strength Overall

Pathway Metabolite P-Value
Amino Acid
Polyamine Metabolism 5.methylthioadenosine (MTA) —a— 2.5e-08
Tryptophan Metabolism C-glycosyltryptophan |—I—| 7.9e-06
Carbohydrate
Aminosugar Metabolism N-acetylneuraminate I—.—| 4.5e-06
Nucleotide
Purine Metabolism, Adenine containing N1-methyladenosine I i I 3.8e-11
Pyrimidine Metabolism, Cytidine containing MN4-acetylcytidine |—.—| 9.0e-06
Pyrimidine Metabolism, Uracil containing 5,6-dihydrouridine I—.—| 2.4e-08
Pseudouridine I—.—{ 1.1e-07
T T 1 T T 1T T T T T 1T T 1 1T T 1
-1%5 -14 13 12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 0 1

Figure 3. Metabolites significantly associated with grip strengtrhis forest plot depicts the beta estimate and 95% confidence
interval for significant metabolites from both seand racestratified analyses.
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Table 2. Associations with longitudinal change in gait spe

ed between baseline and follow up.

Pathway Metabolite Beta (SE) P-Value
Positive in CrossSectional Analysis
Lipid
Sphingolipid Metabolism Behenoyl sphingomyelin (d18:1/22:0) 0.15 (0.06)  0.02
Sphingomyelin (40:2)* 0.26 (0.07) 2.6x10*
Xenobiotics
Food Component/Plant Ergothioneine -0.05(0.02) 9.6x10°
Negative in Cros§ectional Analysis
Amino Acid
Alanine and Aspartate Metabolism N-acetylaspartate (NAA) -0.13(0.06) 0.04
Methionine, Cysteine, SAM and Taurine Metabolit N-formylmethionine -0.12 (0.05) 0.01
S-adenosylhomocysteine (SAH) -0.03 (0.01) 0.02
Phenylalanine Metabolism 1-carboxyethylphenylalanine -0.09 (0.02) 8.8x10°
Carbohydrate
Aminosugar Metabolism N-acetylneuraminate -0.05 (0.03) 0.04
Nucleotide
Purine Metabolism, Guanirentaining N2,N2-dimethylguanosine -0.05 (0.03) 0.05
Peptide
Gammaglutamyl Amino Acid Gammaglutamylphenylalanine -0.12 (0.05) 0.03

* Indicates compounds with Metabolomics Standards Initiative confidence level 2.

2 unnamed metabolites are nshown.

study. The three metabolite signals in this pathway
identified in our study, behenoyl sphingomyelin
(d18:1/22:0),sphingomyelin (40:2and sphingomyelin
(43:1), represent novel findings. Other sphingolipids,
however, have gviously been shown to associate with
gait speed[10, 11] and other physical performance
measure$l1], adding credence to the robustness of our
findings. Sphingolipids levels have also been shown to
be decreased in multiple sclerogi$9], a disease
charaterized by demyelination, leading to axonal and
neuronal losq20] reductions in gait speef21], and
other gait abnormalitied21]. Previous research in
older adults posits that sphingolipid metabolism may
relate to physical performance similarly, thgbuthe
insulation of nerve cell axons by myelin sheaths, thus
influencing nerve conduction signdlkl]. Additionally,
sphingolipids have been previously associated with
aging [22], neurodegeneratiorf23], and cognitive
decline [24]. Further research iseeded to elucidate
whether decreased serum sphingolipid levels represent a
potential novel clinical biomarker of demyelination in
the general population that can be used to predict
incident reductions in physical performance.

Nucleotide metabolites

We identified severamodified nucleosides with known
relationships to whole body RNA degradation, including

N2,N2-dimethylguanosing?5], 5,6-dihydrouridine[26],
7-methylguanine [25], N4-acetylcytidine [27], and
pseudouridine [25]. The higher levels of these
metabolites found in participants in our study with lower
physical performance mirror the elevated levels of these
metabolites in serum from human patients with
pulmonary arterial hypertensi¢a8] and end stage renal
diseasd27], urine from those withancer[29], AIDS

[29], and recent surgical stref30], as well as urine
from tree shrews with increased social str¢3§].
Modified nucleosides enter circulation during stress
[32], accelerated cell proliferatid29], and rapid tissue
breakdowr29]. Ore potential hypothesis explaining the
elevated levels of these metabolites in serum of
participants with lower and declining physical
performance is that the metabolites and lower physical
performance measures are both markers of increased
stress and tisseu breakdown. While the modified
nucleoside, pseudouridine, was inversely associated with
gait speed (at baseline and longitudinally) and grip
strength, its nucleoside precursor, uridine was directly
associated baseline gait speed. Similarly to a
metabolomis study of esophageal adenocarcinoma that
found higher levels of pseudouridine and lower levels of
uridine in cases compared to contrid8], one potential
explanation is that participants with slower gait speed
could have a higher rate of conversion wfdine to
pseudouridine than those with faster gait speed. Further
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study is needed to examine whether these metabolites, also inversely associated with kidney function in the BHS
along with reductions in physical performance, represent [18]. Many of these metabolites were also associated

early biomarkers of future declines in health status. with kidney function in other populatior[27, 34i 37]. In
prior study of a population with chronic kidney disease
Kidney function and aging (CKD), CKD severity was associated with poor physical

performance and frailty in a graded fashi¢88];
Interestingly, all of the metabolites with inverse however, the biological mechanisms leading twuced
associations with physical performance measures were physical function in CKD patients remain unknown. It is

Gait Speed Grip Strength

Top 5§ Named Metabolites in Module r (P) r (P)

sphingomyelin (d18:2/21:0, d16:2/23:0)*;
sphingomyelin (d18:2/23:1);

sphingomyelin (d18:1/19:0, d19:1/18:0)*; 010 {7 Ba-04) 0.03 (0.35)
sphingomyelin (d18:1/22-1, d18:2/22:0, d16:1/24:1)*;
sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)°

oleoylchaling;
palmitoylchaoline;
stearoylchalineg®; 0.05 (0.09) -0.01 {0.72)
limoleoylchaoline®;
dihomo-linolenoyl-choline

glycochenodeoxycholate;
taurochenodeoxycholate;
taurocholate; -0.09 {1 4a-03) -0.09 (1.9e-03)
glycocholate;
glycohyocholate

glucuronide of piperine metabolite C1THZINOI (4)*;
glucuronide of piperine metabolite C1THZINO3 (3)*;

glucuronide of piperine matabolite C17TH21MO03 (5)%; 0.02 (0.44) 0.03 (0.34)
glucuronide of piperine metabolite C17TH21NO3 (5)*;
pipering Pearsan
Cormelation
androsterone sulfate; . 10
epiandrosterone sulfate; 05
Salpha-androstan-3alpha, 1 7keta-dicl monosulfate {1); 0.06 {0.05) -0.01 {0.76) :
Salpha-androstan-3alpha. 1 7alpha-diol monosulfate; 0.0
androstenediol (3alpha, 17alpha) monosulfate (3)
-5
androstanedicd (3beta, 17heta) disulfate (2); A0
21-hydroxypregnenclone disulfate; )
pregnen-diol disulfate C21H340852*; -0.02 (0.51) -0.03 (0.23)

pregnenefriol disulfate®;
pragnenatriol sulfate®

2, 3-dihydroxy-5-methyithio-4-pentencate (DMTPA)®;
S-adenosylhomocysteine (SAH);

ME-carbamoyvithrecnyladenosine; -0.08 (6.3e-03) -0.08 (7 4e-03)
3-{3-amino-3-carboxypropyljuridine®;
4-acetamidobutancate

10-nonadecencate (19:1n9);
oleate/vaccenate (18:1);
palmitate {16:0); -0.03 (0.35) -0.02 (0.59)
dihomo-lincleate (20:2n6);
sicosenocate (20:1)

1-stearoyl-GPE (18:0);
1-stearoyl-2-olecyl-GPE (18:0/18:1);
1-palmitoyl-2-olecyl-GPE (16:0/18:1); -0.07 (0.02) -0.08 (6.4e-03)
1-stearoyl-2-linclecyl-GPE {18:0/18:2)*;
1-palmitoyl-GPE (16:0)

Figure 4. Correlations of metabolite modules with physical performan€elors represent correlation strength, ranging from blue
(-1)to red (1). * indicates compounds with Metabolomics Standards Initiative confidence level 2.
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well known that small molecules accumulate in serum as
kidney function declinef39]. One theory on the relation
between kidney functioma physical performance is that
this accumulation of small molecules has a detrimental
effect on other systems in the bdd{], including those
that govern physical performande that declines in
kidney function lead to declines in physical performance
through serum metabolites. In support of this theory, two
recent papers posit a relation between declines in kidney
function and sarcopenia through serum metabolites
[41, 42]; however, the extent to which these findings
apply to other physical performanceasures is unclear.
An alternative theory is that declines in kidney function
and declines in physical performance are both governed
by a common O6accel d38Jaadana d
that identified common metabolites may be markers of
accelerated agindn our study, this theory is supported
by the very low prevalence of CKD among the BHS
population and the significance of the identified
metabolites after adjustment for eGFR. This theory is
additionally supported by shared risk factors between
physical grformance decline and CKD, such as lower
socioeconomic status, lower physical activity, and
increased rates of cardiovascular disease and cerebro
vascular disease, chronic layrade inflammation, and
hyperglycemia[9]. In further support of this theory,
several of our findings, that associated with both physical
performance and kidney function, are also associated
with aging[43i 48], inflammation[49, 50], and mortality
[51i 55]. Additional research is warranted to examine the
role of the identified metabités in the relationship
between reduced kidney function and declines in physical
performance.

Strengthsand limitations

This study has several important strengths. The
longitudinal design allowed us to identify metabolites
that associated with future ahges in physical
performance, while adjusting for baseline performance
variables. Metabolites identified longitudinally are more
likely to be relevant to the development of physical
performance declines than metabolites identified solely
through cross séonal analysis. To our knowledge, this
study had a larger baseline sample size than prior
physical performance metabolomics research, increasing
the power to detect metaboliphenotype associations.
Additionally, metabolites were detected using an
untargeted approach, thus increasing the likelihood of
finding novel signals. To reduce the likelihood of false
positive associations and increase the generalizability of
the findings, only signals that achieved significance in
the overall sample and one genderrace group, with
consistency in effect direction and nominal significance
in the other gender or race group, were reported here.
While this method should minimize spurious signals, it

also prohibits the identification of gendeor race
specific finding. One notable limitation is that
metabolites measured in mideige could reflect the
result of early life influences rather than directly
influencing the aging process. Our study lacked external
replication, however, we replicated our findings
internally across gender or race. Other limitations
include the relatively short mean follow up time of less
than three years, use of a subset of the baseline sample
for the longitudinal analysis, and the unknown clinical
significance of the unnamed metabolites tded.
Although these limitations reduced our power to detect
longitudinal associations, several compelling temporal
relationships were detected. Due to the age and overall

ehigh forgtioning btatus oft thepstudy participants, we

were unable to examine phgal performance using the
SPPB, however, baseline SPPB information has been
collected on these participants and changes in scores
may be available for future studies in this population.

CONCLUSIONS

In summary, we identified 36 metabolites cross
sectiondly associated with physical performance
measures, including 35 for gait speed and 7 for grip
strength. Of these metabolites, 2 were longitudinally
associated with declines in gait speed. These findings
suggest important roles for sphingolipid metabolisioh an
whole body RNA breakdown in declining physical
performance in a middlaged population.

MATERIALS AND METHODS

Participants

The BHS is a longerm study investigating
cardiovascular health over the Héeurse. From 1973 to
2016, 7 surveys were conducted in children and
adolescents aged 4 to 17 years, and 10 surveys were
conducted among adults aged 18 to 51 years who had
been @amined previously as children. The BHS has
been described in detail elsewhefEr]. Data and
specimens collected in the recent 2013 to 2016 visit
cycle were leveraged in our cressctional analysis and
served as the baseline measures for longitudindly stu
of physical performance decline. Those missing
baseline metabolomics (n=37), grip strength (n=17),
gait speed (n=80) or covariable (n=17) data were
excluded from all analyses. A total of 1,227 and
1,164 participants remained for the cresstional
metbolomics study of grip strength and gait speed,
respectively. The longitudinal study included 282 and
201 of these participants with repeated measures of grip
strength and gait speed, respectively, which were
collected an average of 2.9 years following tiaseline
examination.

www.agingus.com 11922

AGING



Infformed consent was obtained from all study
participants after detailed explanation of the study. This
study was conducted according to the principles
expressed in the Declaration of Helsinki and was
approved by the Tulane Univessilnstitutional Review
Board.

Metabolomics

Untargeted, ultrahigh performance liquid
chromatograpmyandem mass spectroscopy (URLC
MS/MS) of BHS serum samples was conducted by
Metabolon Inc. (Durham, Ndp6] using samples that
were stored at80°C sincethe 2013 to 2016 visit.
Rigorous quality assurance was conducted, which
included the use of blanks, blind duplicates (5% of
samples), and standard biochemical compounds which
were integrated into every run. Batch effects were
assessed using principal coomgnts analysis, which
revealed no evidence of clustering of metabolite data
by rundays. A complete list of the metabolites
examined and their properties is presented as
Supplementary Data

Similar to previous analyse$57], data filtering
excluded 213 etabolites that were below the
detection threshold in more than 80% of samples and
51 metabolites with a reliability coefficient <0.3 based
on blind duplicate analysis. Among the 1,202
metabolites passing quality control, 167 metabolites
were below the dettion threshold in 50% to 80% of
the samples, and were analyzed as ordinal variables
after categorization into one of three mutually
exclusive groups: 1) belothedetectionlimit; 2)
below the median of measured values; or 3) greater
than or equal to themedian. The remaining 1,035
metabolites, which were above the detection threshold
in more than 50% of samples, were analyzed as
continuous variables, scaled to set the median of
detected values for each metabolite equal to 1, where
the minimum observed l@e was imputed for
metabolites with belovthe-detectionlimit values.

Outcomes andcovariables

Among BHS participants, phenotype and covariable
data were collected following stringent protoc{88].

Gait speed, in meters per second, was determined by
dividing six-minute walking distance by 360 seconds.
Grip strength was measured using a Jamar hand held

dynamometer and was averaged across both hands.

Questionnaires were administered to obtain information
on demographic characteristics, lifestyle risktdas,

and personal medical history. Anthropometric measures
were obtained by trained staff with participants in light
clothing without shoes. During each visit, body weight

and height were measured twice to the nearest 0.1 kg
and 0.1 cm, respectively. Tineean values of height and
weight were used to estimate BMI, which was
calculated as weight in kilograms divided by height in
meters squared. BHS participants were instructed to fast
for 12 hours prior to blood sample collection. Serum
creatinine level was measured by Laboratory
Corporation of America (LabCorp, Burlington, NC)
using the kinetic Jaffe method. Estimated glomerular
filtration rate (eGFR) was calculated using the 2009
CKD-EPI equationf59].

Statistical analysis

Characteristics of BHS participts were presented as
means and standard deviations (SDs) for continuous
variables and as percentages for categorical variables.

Association of single metabolites with physical
performance phenotypes

The two physical performance measures studied were
gait speed and grip strength. Multivariable linear
regression models (using SAS [version 9.4; SAS
Institute, Cary, NC] function PROC GLM) were
employed to analyze associations between each
metabolite and each untransformed baseline physical
performance measurafter adjustment for age, BMI,
eGFR, education, cigarette smoking, and alcohol
drinking. Analyses were performed according to gender
and race, and in an overall analysis after additional
adjustment for gender and race. All analyses accounted
for multiple testing using the Bonferroni method. To
further reduce false positive findings, we relied on
internal replication across gender or race. Metabolites
were considered robustly significant if they were
significant in the overall analysis, and significant in
either gender or race with a consistent effect direction
and nominal significance (p<0.05) in the other gender
or rae@. Pairwise Pearson correlations were calculated
between significant metabolites for each physical
performance measure, and heatmaps werated using

the ggplot2 and reshape R (version 3.4.3) packages. To
account for potential confounding by clinical factors,
we conducted a sensitivity analysis with adjustment for
fasting glucose, systolic blood pressure, and di@nsity
lipoprotein, in addion to the covariates from the main
analysis. We additionally examined the overlap in
significant findings between this study and the findings
of our previous kidney function metabolomics
publication in the BH$18].

Longitudinal changes in gait speeddagrip strength
were calculated by subtracting baseline measures from
follow up measures. Multivariable linear regression
models (using SAS function PROC GLM) were also
employed to analyze the associations between each
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metabolite that was robustly sigmifint in overall cross
sectional analysis and change in each physical
performance measure, after adjustment for the
appropriate baseline physical performance measure,
follow up time, age, gender, race BMI, eGFR,
education, cigarette smoking, and alcohohkirig. Due

to the small sample size and criteria of consistency of
associations across ra@ gendergroups in cross
sectional analyses, longitudinal analyses were not
stratified by gender or race.

Association of metabolite modules with physical
performance phenotypes

We used weighted correlation network analysis
(WGCNA) [60] to identify networks of highly
correlated metabolites. WGCNA is an unsupervised
data reduction technique that allows for dependency
between components, which may represent the
biologcal pathways of identified metabolites more
accurately than principal components analy8@® 61].
The use of WGCNA and its application
metabolomics studies has been previously rep{s2id
In brief, the metabolite network was constructed as an
adjacency matrix based on the weighted pairwise
correlations of all metabolitd63]. Modules, defined as
densely interconnected metabolites, were then identified
from the network using an unsuperds hierarchical
clustering approach[64]. For each module, an

to

eigenmetabolite was generated. This measure represents

t he modul eds first princi
interpreted as its weighted average metabolite value.
Metabolite modules were constructasing metabolite
data for the 1,202 metabolites passing quality control
among all study participants.

Adjusted physical performance measures were created
using the residual values generated by regressing each
raw physical performance phenotype on gendzce,
age, BMI, eGFR, education, cigarette smoking, and
alcohol drinking. The correlations between each
module (eigenmetabolite) and the adjusted physical
performance phenotypes were then estimated. We
employed a Bonferroni corrected alpha threshold of
5.56x10° (0.05/9) to account for testing 9 metabolite
modules. WGCNA analysis was performed using the
WGCNA R package. The figure depicting the
WGCNA results was created using the ggplot2 R
package.
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Supplementary Figure 1. Distribution of Baseline Gait Speed.
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Supplementary Figure 2. Distribution of Baseline Grip Strength.

Supplementary Figure 3.-Palues vs. effect sizes for grip strength and gait speed among BHS participants.

Www.agingus.com 11930 AGING



