## SUPPLEMENTARY FIGURES



**Supplementary Figure 1. Distribution of CD4<sup>+</sup> and CD8<sup>+</sup> T cell subsets from different age groups.** Distribution of  $T_{N}$ ,  $T_{CM}$ ,  $T_{EM}$ , and  $T_{EMRA}$  in CD4<sup>+</sup> and CD8<sup>+</sup> T cells from different age groups. Representative flow data (**A**, **C**) and box plots (**B**, **D**) of the percentage of each subset in different age groups are shown (n = 34-56 each group). Data are shown as the median  $\pm$  95% confidence interval (CI). The *p*-values were obtained by Kruskal-Wallis test followed by Dunn's multiple comparisons test [ $T_{CM}$ ,  $T_{EM}$  (CD4<sup>+</sup> T cells),  $T_{EMRA}$ ] or one-way ANOVA test followed by Tukey's multiple comparisons test [ $T_{N}$ ,  $T_{EM}$  (CD8<sup>+</sup> T cells)]. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001.



**Supplementary Figure 2. Elevated immune activation and decreased co-stimulatory signaling on CD4<sup>+</sup> and CD8<sup>+</sup>CD70<sup>+</sup> T cells.** (A–C) Flow cytometry analysis of the percentage of HLA-DR<sup>+</sup>CD38<sup>hi</sup> cells (A), expression of CD28 (B) and CD27 (C) on CD70<sup>-</sup> vs. CD70<sup>+</sup>CD4<sup>+</sup> and CD8<sup>+</sup> T cells from young and middle-aged adults (21-40 years old for young, n = 31; 41-60 years old for middle-aged, n = 24). Each bar represents median  $\pm$  95% confidence interval, CI. The *p*-values were obtained by Kruskal–Wallis test followed by Dunn's multiple comparisons test. (D–F) Correlation analysis of CD70 and percentage of HLA-DR<sup>+</sup>CD38<sup>hi</sup> cells (D), expression of CD28 (E) and CD27 (F) on CD4<sup>+</sup> T cells (left) and CD8<sup>+</sup> T cells (right). Spearman's non-parametric test was used for correlation analysis. \*\*\**p* < 0.001.



Supplementary Figure 3. CD70 expression is associated with certain inhibitory receptors on CD4<sup>+</sup> and CD8<sup>+</sup> T cells. (A–D) Flow cytometry analysis of the expression of PD-1 (A), 2B4 (B), CD160 (C) and LAG-3 (D) on CD70<sup>-</sup> vs. CD70<sup>+</sup> CD4<sup>+</sup> and CD8<sup>+</sup> T cells from young and middle-aged groups (n = 24-63 each group). Data are represented as median  $\pm$  95%CI [PD-1, 2B4, CD160 (CD4<sup>+</sup> T cells), LAG-3] or mean  $\pm$  SEM [CD160 (CD8<sup>+</sup> T cells)]. The *p*-values were obtained by Kruskal–Wallis test followed by Dunn's multiple comparisons test [PD-1, 2B4, CD160 (CD4<sup>+</sup> T cells)]. LAG-3] or one-way ANOVA test followed by Tukey's multiple comparisons test [CD160 (CD8<sup>+</sup> T cells)]. (E–H) Correlation analysis of CD70 and expression of PD-1 (E), 2B4 (F), CD160 (G) and LAG-3 (H). Spearman's non-parametric test was used to test for correlations. \* *p* <0.05, \*\*\* *p* < 0.001.



**Supplementary Figure 4. Expression levels of TIGIT and TIM-3 on CD70<sup>+</sup> T cells from elderly individuals.** Flow cytometry analysis of the expression of TIGIT (**A**–**B**) and TIM-3 (**C**–**D**) on CD70<sup>+</sup> vs.  $CD70^+CD4^+$  and  $CD8^+$  T cells from the elderly (61–80 years old, n = 34 [TIGIT], n = 17 [TIM-3]). Representative histograms (left) and plots (right) display the expression of the above receptors on CD70<sup>-</sup> vs.  $CD70^+$  cells. The *p*-values were obtained by Wilcoxon matched-pairs signed rank test.



**Supplementary Figure 5. CD70<sup>+</sup> T cells from different age groups exhibit high susceptibility to apoptosis.** (**A**–**B**) Flow cytometry analysis of percentage of apoptotic cells (Annexin V<sup>+</sup> 7AAD<sup>-</sup>) (**A**) and expression of CD95 (**B**) in CD70<sup>-</sup> and CD70<sup>+</sup> T cells from young and middle-aged adults ((21-40 years old for young, n = 31; 41-60 years old for middle-aged, n = 24). Data are represented as mean  $\pm$  SEM (Annexin V<sup>+</sup> 7AAD<sup>-</sup>) or median  $\pm$  95%CI (CD95). The *p*-values were obtained by Kruskal–Wallis test followed by Dunn's multiple comparisons test (CD95) or one-way ANOVA test followed by Tukey's multiple comparisons test (Annexin V<sup>+</sup> 7AAD<sup>-</sup>). (**C**–**D**) Correlation analysis of CD70 and percentage of Annexin V<sup>+</sup> 7AAD<sup>-</sup> cells (**C**) or CD95 expression (**D**) on CD4<sup>+</sup> T cells (left) and CD8<sup>+</sup> T cells (right). Spearman's non-parametric test was used for correlation analysis. \*\*\* *p* < 0.001.



Supplementary Figure 6. CD70<sup>+</sup>CD4<sup>+</sup> T cells from different age groups exhibit increased levels of inflammatory cytokines, while CD70<sup>+</sup>CD4<sup>+</sup> and CD8<sup>+</sup> T cells show increased proliferation and cytotoxicity. (A–C) Intracellular staining for TNF- $\alpha$  (A), IFN- $\gamma$  (B), and IL-2 (C) on CD70<sup>-</sup> vs. CD70<sup>+</sup>CD4<sup>+</sup> and CD8<sup>+</sup> T cells from young and middle-aged adults (21-40 years old for young, n = 24; 41-60 years old for middle-aged, n = 19) upon in vitro anti-CD3/anti-CD28 stimulation. (D–F) Expression of perforin (A), Granzyme B (B) and Ki-67 (F) in CD70<sup>-</sup> and CD70<sup>+</sup> T cells from different age groups (n = 17-31 each group). Data are shown as mean ± SEM [IL-2 (CD4<sup>+</sup> T cells), perforin (CD8<sup>+</sup> T cells), Granzyme B (CD8<sup>+</sup> T cells), Granzyme B (CD4<sup>+</sup> T cells), Ki-67]. The *p*-values were obtained by Kruskal–Wallis test followed by Dunn's multiple comparisons test [TNF- $\alpha$ , IFN- $\gamma$ , IL-2 (CD4<sup>+</sup> T cells), perforin (CD4<sup>+</sup> T cells), granzyme B (CD4<sup>+</sup> T cells), perforin (CD4<sup>+</sup> T cells), Granzyme B (CD4<sup>+</sup> T cells), perforin (CD4<sup>+</sup> T cells), granzyme B (CD4<sup>+</sup> T cells), perforin (CD4<sup>+</sup> T cells), perforin (CD4<sup>+</sup> T cells), granzyme B (CD4<sup>+</sup> T cells), perforin (CD4<sup>+</sup> T cells), granzyme B (CD4<sup>+</sup> T cells), perforin (CD