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INTRODUCTION 
 

Mechanical stretching affects many cellular functions, 

including proliferation, differentiation, and survival [1, 

2]. Furthermore, cyclic stretching promotes 

differentiation, survival, and migration in mesenchymal 

stem cells [3, 4]. Bin Fang et al. showed that cyclic 

stretch promoted survival, proliferation, adhesion, and 

migration, while prolonged stretching promoted aging, 

in adipose-derived stem cells (ADSCs) [5]. Other  

 

mechanical stimuli, including shear forces, tissue 

stiffness, and tissue stretch, affected stem cell fate and 

differentiation of human-induced pluripotent stem cells 

(hiPSCs) into cardiomyocytes [6–8]. Furthermore, in 

vitro cyclic stretching enhanced the growth of adult 

stem cells, human pluripotent cells, and cardiomyocytes 

by regulating cell contractility and sarcomere 

maturation [9]. However, increased stretching strain 

caused cardiac hypertrophy by increasing sarcomeric 

growth [10]. These data suggest that mechanical 
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ABSTRACT 
 

Although mechanical forces are involved in pressure-overloaded cardiomyopathy, their effects on gene 
transcription profiles are not fully understood. Here, we used next-generation sequencing (NGS) to investigate 
changes in genomic profiles after cyclic mechanical stretching of human cardiomyocytes. We found that 85, 87, 
32, 29, and 28 genes were differentially expressed after 1, 4, 12, 24, and 48 hours of stretching. Furthermore, 10 
of the 29 genes that were up-regulated and 11 of the 28 that were down-regulated after 24 h showed the same 
changes after 48 h. We then examined expression of the genes that encode serpin family E member 1 
(SERPINE1), DNA-binding protein inhibitor 1 (ID1), DNA-binding protein inhibitor 3 (ID3), and CCL2, a cytokine 
that acts as chemotactic factor in monocytes, in an RT-PCR experiment. The same changes were observed for all 
four genes after all cyclic stretching durations, confirming the NGS results. Taken together, these findings 
suggest that cyclical stretching can alter cardiac cell physiology by activating cardiac cell metabolism and 
impacting cholesterol biosynthesis signaling. 

mailto:cykuo863135@gmail.com
mailto:syicncu@g.ncu.edu.tw


 

www.aging-us.com 16036 AGING 

stretching plays important roles in physiology and 

pathophysiology. 

 

A previous study indicated that mechanical stretch 

induced a cardiac hypertrophic gene program in rat 

ventricular myocyte cells [11]. Here, we 

comprehensively characterized the time course of 

mechanical stretch-activated gene expression in a 

human cardiomyocyte cell line using a dynamic culture 

system. We also identified pathways enriched in genes 

that were differentially expressed after cyclic stretching. 

Finally, we confirmed NGS expression results for four 

genes associated with cholesterol biosynthesis and 

inflammatory response in an RT-PCR experiment.  

 

RESULTS 
 

Cyclic stretching alters gene expression profiles  
 

Mechanical stimulation influences cell orientation, 

which consequently affects cell growth, differentiation, 

and many cellular functions. The effect of cyclic 

stretching on gene transcription was determined by 

stretching AC16 human cardiomyocyte cells by 15% at 

a frequency of 0.5 Hz for 1, 4, 12, 24, and 48 hours. 

Among the differentially expressed genes identified in 

the 1, 4, and 12 hour stretching groups, relatively few 

that changed at least 2-fold in expression were shared 

by all three groups (Supplementary Table 2).  

 

In contrast, a larger number of genes showing a 2-fold 

or greater change in expression were shared by both the 

24 and 48 hour stretching groups (Figure 1). Expression 

of the Serpin Family E Member 1 (SERPINE1) gene, 

which encodes plasminogen activator inhibitor 1 (PAI-

1) and is involved in blood clotting, was significantly 

increased at all the time points. SERPINE1 activity is 

especially crucial in injuries in which inhibition of 

fibrinolysis is necessary to protect the body from 

excessive blood loss.  

 

Short- and long-term cyclic stretching differentially 

alter gene expression profiles 

 

Clustering and principal component analysis are useful 

techniques for analyzing gene expression data that 

 

 
 

Figure 1. Differentially expressed genes in human cardiomyocytes. Numbers of differentially expressed genes after cyclic stretching: 
(A) Genes showing an at least 2-fold difference in expression; (B) genes showing an at least 1.5-fold difference in expression. Venn diagrams 
show the overlapping genes with at least 2-fold and 1.5-fold differences in expression. 



 

www.aging-us.com 16037 AGING 

involve many complex biological networks. Principal 

component analysis revealed that cells could be 

separated into groups based on the duration of cyclic 

mechanical stretching treatment. As shown in Figure 2, 

principal component analysis revealed that human 

cardiomyocytes could be separated into long-term (12, 

24, and 48 hours) and short-term (1 and 4 hours) stretch 

effect groups. Gene expression profiles of cells treated 

with cyclic stretching for 1 and 4 hours had similar 

metrics which differed from those observed in the 

static condition (zero hour) group, which was not 

subjected to any cyclic mechanical stretching treatment 

(Figure 2).  

 

Functional and pathway analysis of differentially 

expressed genes 
 

Genes showing cyclic stretching-dependent differential 

expression (at least 2-fold difference) were further 

examined in a functional enrichment analysis using 

Ingenuity Pathway Analysis for diseases and biological 

functions. As shown in Figure 3, cyclic stretching-

associated genes were enriched in organismal injury and 

abnormalities (p = 1.92E-29), cardiovascular system 

development and function (p = 1.36E-20), and cellular 

movement (p = 6.61E-20). Cardiovascular system 

development and function included the development of 

vasculature, migration, neovascularization, and 

vascularization (Figure 3). Among the biological 

pathways, lipid metabolism was enriched in the 1-, 4-, 

and 12-hour cyclic stretching treatment groups. Genes 

that were differentially expressed response to 24 and 48 

hours of cyclic stretching were enriched in tissue 

fibrosis and the inflammation pathway. The top five 

most significantly altered biological pathways at each 

time point are shown in Figure 4. Twenty-nine cyclic 

stretching-associated genes that were significantly 

differentially expressed in at least three of the time 

point groups are shown in the heatmap in Figure 5. 

 

Validation of cyclic stretching-associated gene 

expression by real-time PCR 
 

Short-term stretching for 1, 4, and 12 h significantly 

altered expression of genes associated with cholesterol 

biosynthesis, while long-term stretching for 24 and 48 h 

 

 
 

Figure 2. Principal component analysis (PCA) of RNA-seq data. Gene expression changes were investigated after 0, 1, 4, 12, 24, and 
48 hours of cyclic stretching. PCA was performed using normalized RNA-Seq data for genes differentially expressed in one pairwise 
comparison: 0 h vs. other time points. 
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primarily affected expression of genes related to cell 

migration and enzymatic activity (Figure 4); other genes 

for which expression was altered by cyclic stretching 

are shown in Figure 5. Differentially expressed genes 

for which treatment effects differed between the short-

term and long-term stretching groups are shown in 

Supplementary Table 3. Among them, ID1 (short-term 

stretching effect), ID3 (short-term stretching effect), 

SERPINE1 (long-term stretching effect), and CCL2 

(long-term stretching effect) were selected for qPCR 

validation. The amount of strain used was relevant to 

cardiac arrhythmia; acute arrhythmia affects cholesterol 

 

 
 

Figure 3. Expression analysis heatmap for disease and functional pathways. 
 

 
 

Figure 4. Functional analysis of differentially expressed genes in human cardiomyocytes after 1, 4, 12, 24, and 48 hours of 
cyclic stretching. 
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biosynthesis and metabolism, while prolonged 

arrhythmia decreases cell viability and activates various 

cellular signaling pathways. We found that ID1 

expression increased significantly increased after 1 h of 

stretching, while ID3 expression increased significantly 

after 1, 4, 12, 24, and 48 h of stretching (Figure 6). 

CCL2, which is involved in injury-associated 

inflammatory processes in cardiac cells, decreased after 

all durations of cyclic stretching treatment (Figure 6). 

 

DISCUSSION 
 

Bone morphogenetic protein (BMP) signaling is 

involved in cyclic stretch-induced aortic valve 

calcification. Overproduction of BMP4 is pro-

inflammatory in vascular cells and has been linked to 

hypertension [12, 13] and increases ID1 expression. ID1 

expression is regulated by methylated cholesterol 

myristate, which has been linked to mesenchymal stem 

cells (MSCs) and neuronal cell survival [14, 15]. In 

addition, cyclic stretching is involved in the induction 

of lipotoxicity during atrial myocyte enlargement [16]. 

Together, these findings suggest that cyclic stretching 

greatly impacts the BMP4 signaling-dependent 

cholesterol biosynthesis pathway. Although it is 

acknowledged that disturbances in cholesterol 

biosynthesis may lead to cardiac disease [17], the 

effects of mechanical stretch on cholesterol biosynthesis 

remain unclear. 

 

The ID1 gene, which encodes DNA-binding protein 

inhibitor ID-1, is an early downstream target of BMP4 

signaling in various cells, including endothelial cells 

and embryonic stem cells [15, 18]. For example, ID1 is 

activated by Activin A receptor-like Type 1 (ALK1), 

which is a target gene of BMP [12]. Furthermore, ID1 

activity during BMP receptor II (BMPRII) transition in 

lipid rafts may lead to abnormal cell growth [19].  

 

 
 

Figure 5. Differential expression profile of 29 genes after 1, 4, 12, 24, and 48 hours of cyclical stretching in human 
cardiomyocytes. The heat map diagram shows expression changes for 29 genes that were altered in cardiac myocytes in response to at 
least three time points of mechanical stretching. 
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However, whether ID gene expression is affected by 

mechanical stretch remains unclear. In this study, we 

found that cyclic stretching was associated with changes 

in the cholesterol biosynthesis signaling pathway. 

Specifically, ID1 gene expression increased after one 

hour of cyclic stretching. Furthermore, increases in 

expression of the SERPINE1 and ID3 genes, which are 

associated with obesity, and a decrease in pro-

inflammatory CCL2 gene expression highlighted the 

impact of mechanical stretch on the cholesterol 

biosynthesis pathway. 

 

Because ID1 plays roles in cell growth, differentiation, 

and apoptosis [20, 21], mechanical stretch might also 

affect these processes by altering its expression. 

Increases in CYR61 gene expression, which affects cell 

adhesion and proliferation, after one hour of stretching 

indicate that it may impact those processes as well. 

Such increases in anti-apoptotic and pro-survival genes 

at early time points may help maintain various cellular 

functions and signaling mechanisms. In contrast, after 

24 and 48 hours of mechanical stretching, gene 

expression increases shifted from the cholesterol 

biosynthesis pathway to disease pathways, including 

acute phase response, cancer signaling, and hepatic 

fibrosis. Furthermore, no significant differences in 

genes showing differential expression were observed 

between the 24- and 48-hour mechanical stretching 

groups, indicating that 24 hours of stretching induced a 

relatively stable pro-inflammatory response that 

followed changes to the cholesterol-signaling pathway. 

 

In this study, we examined transcriptional profile 

changes in human cardiomyocytes in response to cyclic 

stretching for the first time. Expression of a gene that 

has been previously linked to BMP signaling was 

altered after one hour of short-term cyclic stretching. 

BMPs exert both paracrine and autocrine effects and 

can also bind to type 1 or type 2 receptors to trigger 

intracellular signaling [22]. Endothelial cells, 

fibroblasts, and vascular smooth muscle cells express 

BMP2 and BMP4, which are important for heart 

development in vertebrates [23, 24]. Increases in BMP4 

expression are associated with increased cholesterol 

levels, and BMP4 targets the ID1 promoter to drive 

anti-apoptotic cellular activities [25, 26]. Cholesterol 

myristate mediates ID1 activity, which promotes 

activation of B-cell lymphoma-extra large (Bcl-xL), 

leading to inhibition of cytochrome c release from 

mitochondria and decreased caspase activity [15]. In 

order to effectively promote survival, this BMP4-ID1 

signaling cascade must be activated before the pro-

inflammatory response is activated. The balance 

between cholesterol-mediated survival and pro-

inflammatory responses can therefore determine 

whether normal or disease states are maintained.  

 

 
 

Figure 6. Differentially expressed genes validated by RT-qPCR. SERPINE1, ID1, ID3, and CCL2 mRNA levels were analyzed (n = 3 in all 
groups). 
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While we examined the effects of mechanical load in 

cardiomyocytes, it also affects other cell types, including 

vascular, neuronal and bone cells, in vivo [27–30]. Our 

results highlight the crucial effects mechanical stretching 

can have on the cholesterol biosynthesis pathway as well 

as in cardiac disease. Furthermore, prolonged stretching 

could be a key cause of cardiomyopathy and various 

cardiovascular diseases. A better understanding of 

cholesterol metabolism could provide additional insights 

into the effects of mechanical stretching and the 

prevention of cardiac diseases in general.  

 

Some limitations should be considered when interpreting 

the results of this study. Although the human 

cardiomyocyte cell line we used to examine the effects of 

cyclic stretching reflects human cardiac physiology 

relatively well, the cells will eventually undergo 

spontaneous differentiation and lose their morphology 

after long-term culture. In addition, they do not undergo 

spontaneous contraction or relaxation. However, since 

they can be serially passaged in vitro and further 

differentiated when cultured under mitogen-free 

conditions, human cardiomyocytes are ideal for 

developmental and pathological studies [31, 32]. 

Nevertheless, the results in this study pertain to 

proliferating cardiomyocytes, and additional studies will 

be necessary to determine their relevance to other types of 

cardiac cells. 

 

In conclusion, in this study we describe expression 

profiles for genes that are differentially expressed in 

response to cyclic stretching in cardiomyocytes. 

Furthermore, we confirmed alterations in ID1 and 

SERPINE mRNA levels, which are likely involved in 

the cholesterol biosynthesis pathway. These results may 

improve our understanding of the cellular signaling 

pathways underlying cardiac injury. 

 

MATERIALS AND METHODS  
 

Cyclic stretching 
 

Human ventricular cardiomyocyte cells (AC16) were 

maintained in DMEM/F12 (GeneDireX Incorporation, 

Taiwan) supplemented with 10% fetal bovine serum 

(Fisher Scientific, Pittsburgh, PA, USA), 100 IU/mL 

penicillin (Sigma-Aldrich) and 100 μg/mL streptomycin 

(Sigma-Aldrich). Cells were incubated in a humidified 

atmosphere at 37°C with 5% CO2. The cells were 

passaged every 3 to 4 days, and passages 2 to 10 were 

used in this study.  

 

Stretching device 
 

The cells were stretched using a stretching device from 

ARTEMIS ATMS Boxer (TAIHOYA Corporation, 

Kaohsiung, Taiwan). Cells were seeded on 

polydimethylsiloxane (PDMS) pre-coated with collagen 

type 1 overnight. The next day, cells were stretched at 

15% strain and a frequency of 0.5 Hz for at 0, 1, 4, 12, 

24, or 48 h. 

 

RNA isolation 
 

Total RNA was isolated using Trizol (Invitrogen) 

according to the manufacturer’s instructions. Briefly, 

chloroform was added to the mixture, followed by 

thorough mixing and centrifugation at 12,000 G for 15 

min at 4°C. The clear supernatant was collected in a 

new microtube and isopropanol was added, followed by 

thorough mixing and centrifugation at 12,000 G for 15 

min at 4°C. Finally, the RNA was washed with 75% 

ethanol and centrifuged at 7000 G for 5 min at 4°C. The 

RNA pellet was air-dried, reconstituted in DEPC water, 

and stored at -80°C. 

 

RNA sequencing 
 

RNA sample quality was assessed using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific Inc.) and a 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, 

CA, USA). The total RNA was subjected to NGS 

library construction using the MGIEasy RNA Library 

Prep Set (MGI Tech Co., Ltd., China). The quality and 

the average length of the sequence library for each 

sample were assessed using either the Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA) or the 

DNA 1000 kit. The indexed samples were pooled 

equimolarly and sequenced on the BGISEQ-500 

platform (50 bases, single-end reads) (BGI, China). The 

RNAseq data are publicly available on NCBI's 

Sequence Read Archive (SRA) database. (Bio-project: 

PRJNA612764). 

 

Sequencing data analysis  
 

Clean reads were generated from raw sequencing reads, 

which were filtered to remove the adapters, unknown 

biases, and low quality reads. Clean reads were aligned 

to the reference genome build using Bowtie2 v2.2.5 

[33]. For gene expression analysis, the matched reads 

were calculated and then normalized to FPKM using 

RSEM [34]. PCA analysis was performed with all 

samples using CLC Genomics Workbench (QIAGEN 

company, Redwood City, CA, USA), and diagrams 

were drawn with ggplot2 with functions of R. The gene 

expression data are listed in Supplementary Table 1. 

 

Functional enrichment analysis  
 

Pathway enrichment was analyzed using Ingenuity 

Pathway Analysis (IPA) (QIAGEN company, Redwood 
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City, CA, USA). The core analysis was based on a 2-

fold change minimum in the gene profile. Significant 

pathways (p < .05) were identified using the database.  

 

Real-time PCR (RT-qPCR) 

 

The differentially expressed genes identified by 

RNAseq were confirmed by performing quantitative 

real-time polymerase chain reaction (RT-qPCR) for four 

selected genes – ID1, ID3, CCL2, and SERPINE1. 

First, first-strand cDNA was generated from 0.1 µg of 

RNA using a ProtoScript® II First Strand cDNA 

Synthesis Kit (New England Biolabs, Inc., USA) in the 

presence of oligo-dT primers. After cDNA 

amplification, qPCR reactions were run on an ABI™ 

StepOne™ Real-Time PCR System (Applied 

Biosystems, Foster City, CA, USA) with KAPA 

SYBR® FAST Master Mix (2X) ABI Prism™ (KAPA 

BIOSYSTEMS, Boston, Massachusetts, United States). 

Gene expression levels were normalized to the 

expression of the internal housekeeping gene GAPDH. 

Relative quantification was calculated using the 

2−ΔΔCT method. The sequences of the primers used 

are listed in Supplementary Table 1. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 

 

 

 

 

Supplementary Table 1. List of primer sequences used for real time PCR analysis in this study.  

Gene name sequence (5'- 3') 

ID1-F GTAAACGTGCTGCTCTACGACATGA 

ID1-R AGCTCCAACTGAAGGTCCCTGA 

ID3-F TCATCTCCAACGACAAAAGG 

ID3-R ACCAGGTTTAGTCTCCAGGAA 

GAPDH-F TGCACCACCAACTGCTTAGC 

GAPDH-R GGCATGGACTGTGGTCATGAG 

CCL2-F GCTCATAGCAGCCACCTTCATTC 

CCL2-R GGACACTTGCTGCTGGTGATTC 

SERPINE1-F CACAAATCAGACGGCAGCACT 

SERPINE1-R CATCGGGCGTGGTGAACTC 

F: Forward primer. R: reverse primer. 
 

Please browse Full Text version to see the data of Supplementary Tables 2 

Supplementary Table 2. The gene expression profile with a 2-fold significance at each time point.  
 

Supplementary Table 3. The consistency DEG gene  
list in the short-term and long term stretch effect in  
the human cardiomyocytes. 

Short term  Long term  
AKR1B1 AKR1B1 
COL6A3 ATP6V1G2-DDX39B 
CTD-2319I12.1 BNIP3 
DDX21 CCL2 
DHCR7 CTGF 
ERRFI1 CYR61 
F3 DUSP1 
FOSL1 DUSP5 
HIST1H2BK G0S2 
HMGCS1 HMOX1 
ID1 ID3 
ID3 MMP14 
IL11 MMP2 
MAFF NTN4 
MAFK PIM1 
ME1 RCAN1 
MOK SEMA7A 
MRPS6 SERPINE1 
MSMO1 

 
MVD 

 
NQO1 

 
ODC1 

 
RBM3 

 
RRS1 

 
SCD 

 
SDC4 

 
SERPINB2 

 
STC2 

 
TAGLN 

 
TM4SF1 

 
 


