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INTRODUCTION 
 

Necrotizing enterocolitis (NEC) is one of common 

diseases that causes death of preemies and neonates in 

neonatal intensive care unit [1]. It is noteworthy that the 

mortality of patients with NEC is about 20%-30% [2]. 

Although the exact mechanism of NEC is still unclear, 

accumulating evidence has reported that bacterial 

infection of intestine is one of the predominant factors 

contributing to pathogenesis of NEC [3, 4]. Generally, 

abnormal bacteria invade intestinal epithelial cells to 

cause cell death and inflammation, therefore aggravating 

intestinal and systemic injury. Thus, suppressing cell 

death and inflammation is a potential strategy for 

treatment of NEC. 

 

Clinical data has demonstrated that intestinal dysbiosis 

and colonization of various bacteria in intestine 

contribute to occurrence and development of NEC [5, 6]. 

Lipopolysaccharide (LPS), a component of Gram-
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ABSTRACT 
 

Aim: To explore the effects of miR-141-3p on intestinal epithelial cells in necrotizing enterocolitis and the 
underlying mechanism. 
Results: The expression of miR-141-3p was significantly downregulated in serum samples of patients with NEC and 
LPS-treated Caco-2 cells. The in vitro assays showed that miR-141-3p mimics inhibited expression of IL-6 and TNF-α 
and reduced PI positive rate of the LPS-treated Caco-2 cells. Next, receptor interacting protein kinase 1 (RIPK1) was 
identified as the downstream molecule of miR-141-3p, and RIPK1 overexpression aggravated LPS-induced Caco-2 
cell injury, which was ameliorated by miR-141-3p mimics. Finally, we found miR-141-3p mimics inhibited 
upregulation of necroptosis-related molecules and interaction of RIPK1 and RIPK3 in LPS-treated Caco-2 cells. 
Conclusion: Our research indicated that miR-141-3p protected intestinal epithelial cells from LPS damage by 
suppressing RIPK1-mediated inflammation and necroptosis, providing an alternative perspective to explore the 
pathogenesis of NEC. 
Methods: Quantitative real time-polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-
141-3p in serum samples of participants and lipopolysaccharide (LPS)-treated Caco-2 cells. Cell Counting Kit-8 
(CCK-8) assay, Propidium Iodide (PI) staining and detection of inflammatory cytokines were performed to 
evaluate the role of miR-141-3p in LPS-treated Caco-2 cells. TargetScanHuman database and luciferase reporter 
gene assay were utilized to confirm the direct downstream molecule of miR-141-3p. Western blot analysis was 
used to explore the mechanism. 
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negative bacteria, is an inducer of NEC [7]. It has been 

reported that an in vitro NEC model could be established 

by treating intestinal epithelial cells with LPS [8, 9]. A 

recent study showed that milk exosomes could inhibit 

inflammation and apoptosis of LPS-treated intestinal 

epithelial cells by suppressing nuclear factor kappa-B 

(NF-kB) and p53, respectively [10]. In addition, 

intraperitoneal injection with LPS in prenatal mice 

promoted the expression of tumor necrosis factor (TNF) 

and decreased the microvascular density in intestines of 

the neonatal mice, which facilitated the severity of NEC 

[11]. Therefore, LPS might aggravate intestinal injury 

through multiple aspects. 

 

MicroRNAs (MiRNAs) are a cluster of small molecules 

that exist abundantly in eukaryotic organisms [12]. 

Plenty of evidence has demonstrated that miRNAs could 

regulate biological functions of cells by targeting specific 

mRNAs, and targeting miRNAs is a potential therapeutic 

approach for treatment of multiple diseases [13, 14]. 

Recent studies have reported the aberrant expression of 

miRNAs exists in NEC. Xu et al [15] found that a total 

of 118 miRNAs were expressed differentially in rats with 

NEC, which potentially targeted some functional 

molecules to modulate progression of NEC. Clinical 

samples from infants with NEC showed upregulation of 

miR-1290 in plasma, which could be regarded as a 

potential biomarker of NEC [16]. An in vitro study 

revealed that miR-431 was significantly overexpressed in 

infants with NEC and LPS-treated Caco-2 cells, and 

promoted apoptosis and inflammation of Caco-2 cells 

[9]. A recent study indicated the downregulation of miR-

141-3p in newborns with NEC [17]. However, the role of 

miR-141-3p in pathogenesis of NEC is unknown. It has 

been reported that miR-141-3p facilitates cell survival. 

Zhu et al [18] found that miR-141-3p protected nasal 

epithelial cells from LPS damage. In addition, miR-141-

3p alleviates inflammatory response to protect cardio- 

myocytes [19] and microglial cells [20]. Therefore, we 

speculated the potential role of miR-141-3p in LPS-

treated intestinal epithelial cells might contribute to the 

pathogenesis of NEC. 
 

Herein, our research revealed downregulation of miR-141-

3p in NEC, and receptor-interacting protein kinase 1 

(RIPK1) functioned as the direct downstream molecule of 

miR-141-3p to aggravate intestinal epithelial cell injury by 

activating receptor-interacting protein kinase 3 (RIPK3)/ 

mixed lineage kinase domain like pseudokinase (MLKL)-

mediated necroptotic signaling pathway, which might 

contribute to the pathogenesis of NEC. 

 

RESULTS 
 

MiR-141-3p was downregulated in NEC 
 

Firstly, we detected miR-141-3p expression in clinical 

samples. The qRT-PCR result showed that serum 

samples of patients with NEC existed a lower expression 

of miR-141-3p compared with healthy controls (Figure 

1A). Next, we established the NEC cell model by treating 

Caco-2 cells with LPS. The in vitro assay showed that LPS 

induced downregulation of miR-141-3p (Figure 1B). 
 

MiR-141-3p downregulation participated in LPS-

induced Caco-2 cell injury 
 

To explore the biological role of miR-141-3p in intestinal 

epithelial cells of NEC, we conducted cell transfection in 

Caco-2 cells with miR-141-3p mimics and miR-141-3p 

inhibitor in the presence or absence of LPS. As was 

shown in Figure 2A, LPS reduced cell viability of Caco-2

 

 

 

Figure 1. MiR-141-3p was downregulated in NEC. (A) The expression of miR-141-3p in serum samples of newborns with NEC. (B) The 
expression of miR-141-3p in NEC cell model. ***p<0.001. 
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cells by measuring OD 450, which was partially reversed 

by miR-141-3p mimics. Conversely, miR-141-3p 

inhibitor could further reduce the decreased cell viability 

of LPS-treated Caco-2 cells (Figure 2B). The 

fluorescence analysis showed that LPS increased PI 

positive rate of Caco-2 cells, which was suppressed by 

miR-141-3p mimics (Figure 2C). In addition, miR-141-

3p inhibitor could further increase LPS-induced PI 

positive cells (Figure 2C). The qRT-PCR analysis 

revealed that LPS-induced upregulation of IL-6 and 

TNF-α was restrained by miR-141-3p mimics (Figure 2D 

and 2E). However, miR-141-3p inhibitor further 

facilitated upregulation of IL-6 and TNF-α in LPS-

treated Caco-2 cells (Figure 2F and 2G). The above 

results suggested that miR-141-3p reduced necrosis and 

inflammation in LPS-treated Caco-2 cells. 

 

RIPK1 functioned downstream of miR-141-3p and 

aggravated LPS-induced Caco-2 cell injury 
 

Next, TargetScanHuman 7.2 database was utilized to 

screen the target of miR-141-3p. We found RIPK1, a key 

mediator of necroptosis, was one of the potential targets 

of miR-141-3p. The luciferase reporter gene assay 

showed a remarkably lower luciferase activity in Caco-2 

cells co-transfected with wild type RIPK1 and miR-141-

3p mimics (Figure 3A). Notably, miR-141-3p mimics 

inhibited the expression of RIPK1 in Caco-2 cells (Figure 

3B). RIPK1 overexpression and knock-down were 

performed in Caco-2 cells by transfecting with 

pcDNA3.1-RIPK1 and RIPK1 siRNA, and the efficacy 

was measured by Western blot (Figure 3C). CCK-8 assay 

indicated that RIPK1 overexpression aggravated the 

decreased cell viability in LPS-treated Caco-2 cells; 

however, RIPK1 knockdown reversed the decreased cell 

viability in LPS-treated Caco-2 cells (Figure 3D and 3E). 

Moreover, we found that RIPK1 overexpression could 

increase the upregulation of IL-6 and TNF-α (Figure 3F 

and 3G); while RIPK1 siRNA suppressed the increased 

expression of IL-6 and TNF-α in LPS-treated Caco-2 

cells (Figure 3H and 3I). 

 

LPS induced RIPK1-mediated necroptosis of Caco-2 

cells 

 

Further investigation revealed that LPS-induced increase 

of PI positive cells was augmented by RIPK1 over-

expression, but suppressed by RIPK1 knockdown 

(Figure 4A). Western blot analysis showed that LPS 

facilitated the expression of RIPK1, phosphorylated 

RIPK3 (p-RIPK3) and phosphorylated MLKL (p-

MLKL) (Figure 4B), indicating the activation of 

necroptotic signaling pathway. In addition, LPS 

treatment had no influence on the expression of RIPK3 

and MLKL in Caco-2 cells (Figure 4B). We also 

performed IP assay and found that LPS treatment could 

promote the interaction of RIPK1 and RIPK3 in Caco-2 

cells (Figure 4C). These results suggested that RIPK1-

mediated necroptosis contributed to LPS-induced 

intestinal epithelial cell death. 
 

MiR-141-3p inhibited RIPK1-mediated necroptosis 

to reduce LPS-induced Caco-2 cell injury 
 

Next, the role of miR-141-3p in RIPK1-mediated Caco-

2 cell injury was explored. CCK-8 assay indicated that 

RIPK1 overexpression magnified the decreased cell 

viability of LPS-treated Caco-2 cells, which was rescued 

by miR-141-3p mimics (Figure 5A). In parallel, miR-

141-3p mimics reduced PI positive rate of LPS-treated 

Caco-2 cells in the presence of RIPK1 overexpression 

(Figure 5B). Additionally, miR-141-3p mimics inhibited 

LPS-induced elevated expression of IL-6 and TNF-α in 

pcDNA3.1-RIPK1-transfected Caco-2 cells (Figure 5C 

and 5D). Western blot analysis revealed that miR-141-3p 

mimics reversed the upregulation of RIPK1, p-RIPK3 

and p-MLKL induced by LPS (Figure 5E). Moreover, 

miR-141-3p mimics could reduce the interaction of 

RIPK1 and RIPK3 in LPS-treated Caco-2 cells (Figure 

5F), indicating miR-141-3p ameliorated intestinal 

epithelial cell injury by targeting LPS-induced RIPK1-

mediated necroptosis. 

 

DISCUSSION 
 

Our research indicated the downregulation of miR-141-

3p in serum of patients with NEC and in the in vitro NEC 

model. The in vitro assays showed that the decreased 

miR-141-3p aggravated cell death and inflammation of 

LPS-treated intestinal epithelial cells. Further 

investigation revealed that RIPK1 was the target of miR-

141-3p, and miR-141-3p alleviated LPS-induced 

intestinal epithelial cell injury by inhibiting RIPK1-

mediated necroptosis and inflammation. 

 

As a group of non-coding RNAs, miRNAs could 

participate in the occurrence and progression of multiple 

diseases by regulating functional proteins, which could 

be potential treatment targets [13, 14]. Increasing 

evidence has demonstrated that aberrant expression of 

miRNAs plays a crucial role in pathogenesis of 

inflammation-related intestinal diseases [21]. A in vivo 

study revealed that miR-21 knockout regulated the 

homeostasis of intestinal microbiota to reduce intestinal 

damage in mice with dextran sodium sulphate-induced 

colitis [22]. In inflammatory bowel diseases, miR-31 

deletion deteriorated intestinal injury by inhibiting 

intestinal epithelial cell regeneration and promoting 

inflammatory response in mice [23]. Cai et al [24] found 

that downregulation of miR-141 in ulcerative colitis 

promoted the expression of CXCL5 to aggravate 

inflammatory response of intestinal epithelial cells. 
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However, only a few studies concentrate on the effects of 

miRNAs on the pathogenesis of NEC. A recent research 

identified upregulation of miR-1290 in plasma as a 

potentially diagnostic biomarker of NEC [16]. 

Additionally, Wu et al [9] reported that miR-431 

aggravated inflammatory damage of LPS-treated 

intestinal epithelial cells by targeting FOXA1, based on 

the previous research that suggested a correlation between
 

 
 

Figure 2. MiR-141-3p downregulation participated in LPS-induced Caco-2 cell injury. Cell viability of LPS-treated Caco-2 cells in the 
presence of miR-141-3p mimics (A) or miR-141-3p inhibitor (B). (C) PI positive staining of LPS-treated Caco-2 cells with miR-141-3p mimics 
transfection or miR-141-3p inhibitor transfection. The mRNA level of IL-6 (D) and TNF-α (E) in LPS-treated Caco-2 cells with miR-141-3p mimics 
transfection. The expression of IL-6 (F) and TNF-α (G) in LPS-treated Caco-2 cells with miR-141-3p inhibitor transfection. Scale bar = 20 μm. 
**p<0.01, ***p<0.001. 
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miR-431 and FOXA1 in a potential mechanism of 

pathogenesis of NEC [25]. Herein, our study indicated 

the decreased expression of miR-141-3p in NEC, which 

coincided with the previous findings [17]. However, 

whether miR-141-3p contributes to pathogenesis of NEC 

needs to be elucidated. 

 

Accumulating evidence suggests that miR-141-3p and its 

precursor miR-141 exert protective effects on cell damage. 

A previous study showed that the decreased expression of 

miR-141-3p was detected in rats with autoimmune 

myocarditis, and miR-141-3p overexpression lessened the 

expression of inflammatory cytokines and infiltration of 

inflammatory cells by inhibiting STAT4 to improve cardiac 

function of the experimental rats [19]. In LPS-treated 

microglial cells, miR-141-3p overexpression directly 

inhibited HMGB1 to relieve inflammation [20]. In addition, 

miR-141 could target different molecules to reduce cell 

death and ameliorate inflammatory response in Crohn’s 

disease [26], lung inflammation [27] and prostatitis [28]. In 

our research, RIPK1 was identified as the direct target of 

miR-141-3p. Moreover, miR-141-3p protected Caco-2 cells 

from LPS damage by suppressing RIPK1-mediated 

necroptosis and expression of inflammatory cytokines. 

 

Necroptosis, a novel programmed cell death, is a crucial 

cellular behavior that plays an indispensable role in 

embryogenesis,  organogenesis,  and  occurrence  and

 

 
 

Figure 3. RIPK1 was the direct target of miR-141-3p and aggravated LPS-induced Caco-2 cell injury. (A) The predicted binding sites 
between miR-141-3p and RIPK1, and Luciferase reporter gene assay was performed to test the interaction between miR-141-3p and RIPK1. (B) 
The protein level of RIPK1 in miR-141-3p mimics-transfected Caco-2 cells. (C) The expression of RIPK1 in Caco-2 cells with RIPK1 overexpression 
and knockdown. Cell viability of LPS-treated Caco-2 cells with RIPK1 overexpression (D) or knockdown (E). The expression of IL-6 (F) and TNF-α 
(G) in LPS-treated Caco-2 cells with RIPK1 overexpression. The mRNA level of IL-6 (H) and TNF-α (I) in LPS-treated Caco-2 cells with RIPK1 siRNA 
transfection. *p<0.05, **p<0.01, ***p<0.001. 
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development of diseases [29, 30]. Although Necroptosis 

shares familiarity of morphological changes with 

necrosis, it could be regulated by RIPK1 [31, 32], which 

is a significantly different feature from necrosis. 

Generally, TNF-α is a classical inducer of necroptosis 

that binds to its receptor to recruit RIPK1, which interacts 

with RIPK3 to form necrosome and phosphorylate 

MLKL to mediate necroptosis in the absence of caspases-

8 [31, 33, 34]. Therefore, targeting RIPK1, RIPK3 and 

MLKL could dramatically block necroptosis [32, 34]. 

The in vitro [35] and in vivo [36] assays manifested that 

LPS could induce necroptosis of intestinal epithelial 

cells. A recent research indicated the existence of 

necroptosis in clinical samples and mouse models of 

NEC [37]. However, the exact mechanism is unclear. We 

found upregulation of RIPK1 activated the downstream 

molecules and promoted necrosome formation in LPS-

treated Caco-2 cells, and miR-141-3p inhibited RIPK1 to 

reverse intestinal epithelial cell damage, which provided 

an upstream mechanism involving regulation of RIPK1-

mediated necroptosis in NEC. Taken together, our study 

uncovered miR-141-3p functioned as a protective 

molecule in NEC-related intestinal epithelial cell injury 

that involved RIPK1-mediated necroptosis and 

inflammation, providing an alternative perspective to 

further develop potential strategies for treatment of NEC. 

 

However, we only detected the expression of miR-141-

3p in infection-mediated NEC in clinical samples and 

LPS-treated Caco-2 cells. Whether the decreased 

expression of miR-141-3p existed in NEC caused by the 

other factors, such as premature birth, low birth weight 

and improper feeding, deserved further investigation. 

Moreover,  we only used Caco-2 cell line to conduct the

 

 

 

Figure 4. LPS induced RIPK1-mediated necroptosis of Caco-2 cells. (A) PI positive staining of LPS-treated Caco-2 cells with pcDNA3.1-RIPK1 
transfection or RIPK1 siRNA transfection. (B) The protein level of RIPK1, p-RIPK3, RIPK3, p-MLKL and MLKL in LPS-treated Caco-2 cells. (C) IP assay was 
conducted to determine the interaction between RIPK1 and RIPK3 in LPS-treated Caco-2 cells. Scale bar = 20 μm. 
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Figure 5. MiR-141-3p inhibited RIPK1-mediated necroptosis to reduce LPS-induced Caco-2 cell injury. Cell viability (A), PI positive 

staining (B), IL-6 mRNA level (C), TNF-α mRNA level (D) of LPS-treated Caco-2 cells with RIPK1 overexpression in the presence of miR-141-3p 
mimics. (E) The protein level of RIPK1, p-RIPK3, RIPK3, p-MLKL and MLKL in LPS-treated Caco-2 cells in the presence or absence of miR-141-3p 
mimics. (F) IP assay was carried out to detect the interaction between RIPK1 and RIPK3 in LPS-treated Caco-2 cells in the presence or absence 
of miR-141-3p mimics. Scale bar = 20 μm. *p<0.05, **p<0.01.  
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Table 1. Sequences of primers, siRNAs, microRNA mimic, and microRNA inhibitor used in this study. 

Gene Sequence (5’-3’) 

MiR-141-3p Forward: GGTCCTAACACTGTCTGGTAAAGTGG 

Reverse: CCAGTGCAGGGTCCGAGGT 

U6 Forward: TGCGGGTGCTCGCTTCGGCAGC 

Reverse: CCAGTGCAGGGTCCGAGGT 

GAPDH Forward: AGACCACAGTCCATGCCATC 

Reverse: CAGGGCCCTTTTTCTGAGCC 

TNF-α Forward: GACAGCAGAGGACCAGCTAA 

Reverse: AGCTGTCATATTTCCCGCTCT 

IL-6 Forward: CATCCCATAGCCCAGAGCAT 

Reverse: CAGGCTGGCATTTGTGGTTG 

RIPK1 siRNA Forward: GAAUGAGGCUUACAACAGTT 

Reverse: CUGUUGUAAGCCUCAUUCTT 

Si-NC AAUUCUCCGAACGUGUCACGU 

MiR-141-3p mimic Forward: UAUUGCACAUUACUAAGUUGCA 

Reverse: CAACUUAGUAAUGUGCAAUAUU 

Mimic NC UUCUCCGAACGUGUCACUGUU 

MiR-141-3p inhibitor UGCAACUUAGUAAUGUGCAAUA 

Inhibitor NC CAGUACUUUUGUGUAGUACAA 

U6: U6 small nuclear RNA; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; TNF-α: Tumor necrosis factor alpha; IL-6: 
Interleukin 6; siRNA: Small interfering RNA; NC: Negative control. 
 

experiment, establishing an in vitro NEC model by 

utilizing primary intestinal epithelial cells and an animal 

NEC model might be more valuable. 

 

MATERIALS AND METHODS 
 

Isolation of serum samples 
 

The serum samples were acquired from the newborns 

with NEC (n=6) and healthy controls (n=6). The 

diagnosis of NEC was based on the criterial of Bell et 

al [38]. The pregnant women, aged between 23-30 

years old, were primipara without underlying diseases, 

and gave birth during 37-41 weeks’ gestation. The 

newborns were born without  

birth defects and other diseases, and breastfed. All the 

procedures were authorized by the Second Children 

and Women’s Healthcare of Jinan City. Before 

collecting the samples, the investigators had informed 

guardians of the participants of the purpose and 

methods of this research, and all the guardians signed 

the informed consent. The fresh blood was centrifuged 

at a speed of 3000 rpm for 12 min to  

drain the supernatant carefully. This study was reviewed 

and approved by the Ethics Committee of the Second 

Children and Women’s Healthcare of Jinan City. 

 

Cell culture and treatment 
 

Human Caco-2 cells were obtained from ATCC and 

cultured in DMEM (ThermoFisherScientific, USA) 

containing 10% fetal bovine serum (Gibco, USA) and 10 

mM HEPES (ThermoFisherScientific, USA). To 

establish the in vitro NEC model, we treated Caco-2 cells 

with 100 μg/ml LPS (Sigma-Aldrich, USA) in this study. 

 

Quantitative real time PCR (qRT-PCR) 

 

The total RNA was obtained by using TRIzol (Ambion, 

USA). SuperScript III (Invitrogen, USA) was used to 

obtain cDNA. SYBR Premix Ex Taq II (Takara, Japan) 

was utilized to perform qRT-PCR. The primer 

sequences were shown in Table 1. U6 and GAPDH were 

used as the internal control. All of the primers were 

synthesized and purchased from Sangon (China). 
 

Cell transfection 
 

RIPK1 small interfering RNA (RIPK1 siRNA), miR-

141-3p mimics, miR-141-3p inhibitor, the relevant 

negative control (NC), pcDNA3.1-RIPK1 and 

pcDNA3.1 were purchased from Sangon (China), and 

the sequences were shown in Table 1. Lipofectamine 
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3000 (Invitrogen, USA) was used to conduct 

transfection in line with the manufacturer’s guidelines. 

 

Detection of cell viability 
 

Cell Counting Kit-8 (CCK-8, Beyotime, China) was 

utilized to measure cell viability. In brief, 6000 cells were 

seeded into each well in a 96-well plate followed by 

indicated treatment for 24 h. 110 ml culture medium 

containing 10 ml reagent was added into each well. After 

2 h, optical density (OD) 450 was recorded by Microplate 

Reader (Bio-Rad, USA). 

 

Propidium iodide (PI) staining 
 

After indicated treatment, Caco-2 cells in the 6-well plate 

were washed and stained with PI solution (Invitrogen, 

USA) for 20 min in the dark. After being washed, the 

cells were stained with DAPI to mark the nuclei in the 

dark. The PI positive cells represented necrotic cells that 

carried red fluorescence. 

 

Luciferase reporter gene assay 

 

TargetScanHuman 7.2 database was used to acquire the 

binding sites between miR-141-3p and wild type RIPK1. 

The procedures of luciferase assay were performed 

according to the previous study [19]. In our research, co-

transfection of the indicated vectors (Sangon, China) was 

conducted by using Lipofectamine 3000 (Invitrogen, 

USA) in Caco-2 cells. Bio-GloTM Luciferase Assay 

System (Promega, USA) was utilized to evaluate the 

luciferase activity. 

 

Western blot 

 

RIPA Lysis Buffer (Beyotime, China) containing PMSF 

(Beyotime, China) and PhosSTOP (Sigma-Aldrich, USA) 

was used to lyse the cells with indicated treatment. After 

quantification, the protein samples were separated by 

SDA-PAGE gel (Beyotime, China). Primary antibodies 

(Anti-RIPK1, BD Biosciences, USA; Anti-RIPK3, 

Abcam, USA; p-RIPK3, Abcam, USA; Anti-MLKL, 

Sigma-Aldrich, USA; Anti-p-MLKL, Sigma-Aldrich, 

USA; Anti-GAPDH, Beyotime, China) were used at 4 °C 

overnight. The protein bands were detected by ECL Kit 

(BOSTER, China). 

 

Immunoprecipitation (IP) assay 
 

Pierce Co-Immunoprecipitation Kit (Thermo Fisher 

Scientific, USA) was used to detect interaction of RIPK1 

and RIPK3 in accordance with the guidelines. Briefly, the 

cells with indicated treatment were harvested and lysed by 

IP Lysis Buffer. The primary antibody RIPK1 (BD 

Biosciences, USA) was added into the lysis solution 

containing the total protein, followed by using Sodium 

cyanoborohydride, Coupling Buffer, Elution Buffer and 

Loading Buffer, to obtain the experimental samples. 

RIPK1 was used to the control of IP, and the expression of 

RIPK1 and RIPK3 was detected by western blot analysis. 
 

Statistical analysis 
 

The data in our research were represented as mean ± 

standard deviation (SD) and analyzed by GraphPad 

Prism 8 Software (GraphPad, USA). The unpaired t-test 

was used. p value less than 0.05 was regarded as 

statistical significance. 
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