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INTRODUCTION 
 

Breast cancer is the most common malignant tumor and 

the second leading cause of death for females globally. 

Nowadays, the robust predictive factors for prognosis of 

breast cancer patients are two clinical features-tumor 

size and lymph node status at the time of detection [1]. 

Carcinomas with large tumor size or lymph node 

metastasis are usually associated with poor survival 

outcomes. However, breast cancers are well known as 

highly heterogenous neoplasms and driven by complex 

signaling pathways [2], which in part accounts for the 

fact that different therapeutic responses and then 

different survival outcomes can be observed even in 

patients diagnosed with the same breast cancer 

molecular subtype [3] and TNM stage. Therefore, 

looking for additional promising prognostic biomarkers, 

especially in the intrinsic molecular level [4, 5], is 
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ABSTRACT 
 

Pseudogenes are noncoding RNAs that have been revealed to play critical roles in oncogenesis and tumor 
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systematically analyzed the RNA sequencing data of 13931 pseudogenes in 775 breast cancer patients from The 
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proportional hazard regression. A risk score model was constructed based on the prognostic pseudogenes via 
LASSO analysis and dichotomized patients into low- and high-risk subgroups. Patients in the high-risk group had 
a significantly shorter overall survival than those in the low-risk group. The prognostic value of these 15 
pseudogenes and the risk score model were further validated in the European Genome-Phenome Archive 
dataset. Furthermore, we performed consensus clustering of the 15 prognostic pseudogenes and found that 
their expression pattern was significantly associated with tumor malignancy and host antitumor immune 
response, in terms of infiltrating immune cell compositions, antigen presenting genes expression, cytolytic 
activity and T-cell exhausted markers. This study indicated that these 15 prognostic pseudogenes were 
significantly correlated with tumor malignancy and host antitumor immune response in breast cancer, and 
might serve as potential targets for immunotherapy. 
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imperative so as to identify high-risk subgroups and 

make precise therapeutic strategies.  

 

Nowadays, the standard of care for primary breast 

cancer is surgery, followed by chemotherapy, endocrine 

therapy, radiotherapy and targeted therapy on the basis 

of molecular subtypes and TNM stage. While in recent 

years, immunotherapy is emerging as a novel treatment 

modality due to the promising therapeutic effect of 

selective immune checkpoint inhibitors in combination 

with other strategies [6], especially monoclonal 

antibodies against programmed death 1 (PD-1), 

programmed death-ligand 1 (PD-L1) and cytotoxic T 

lymphocyte-associated protein-4 axes (CTLA-4) [7]. As 

of September, 2018, the number of registered trials that 

are open to breast cancer patients, which assess novel 

approaches by harnessing the immune system, has 

reached up to 285 [8–10]. At the current stage, the 

expression level of PD-L1 in tumor tissue is a 

commonly-used predictive marker for immune response 

[11, 12]. However, the predictive results were not 

satisfactory, which indicates that immune modulation is 

a complicated process and requires much more 

functional predictors [13–15]. Therefore, it is essential 

to identify robust biological predictive markers of 

immune response when conducting clinical trials of 

immunotherapy.  

 

Pseudogenes are non-coding homologs of protein-

coding genes, which are often caused by accumulation 

of multiple mutations within genes, and their products 

are nonfunctional [16]. Pseudogenes were once labeled 

as “genetic fossils” because of lack of protein-coding 

ability or cellular gene expression. However, due to the 

development of high-throughput sequencing 

technologies, pseudogenes have been revealed to 

participant in various biological functions by regulating 

their parental transcripts, acting as competitive 

endogenous RNAs (ceRNA) [17–19]. What’s more, the 

significance of pseudogenes in gene regulation has also 

been highlighted in tumorigenesis and tumor 

progression recently [20, 21], which was largely 

attributed to the finding that PTEN pseudogene 1 could 

upregulate his parental gene PTEN, a well-known tumor 

suppressor, via ceRNA mechanism and thus played a 

pivotal role in tumorigenesis in breast cancer [22]. 

However, until now, it has not been comprehensively 

clarified the prognostic effect of pseudogenes in 

patients with breast cancer, and their potential roles in 

host antitumor immune response remain largely 

unexplored.  

 

Based on the concerns mentioned above, we 
systematically analyzed the RNA sequencing data of 

pseudogenes in 775 patients with breast cancer from 

The Cancer Genome Atlas (TCGA) dataset and 

eventually identified 15 prognostic indicators, which 

were further validated using the European Genome-

Phenome Archive (EGA) dataset. A risk score model 

was constructed based on the prognostic pseudogenes, 

and their expression pattern was functionally annotated 

by Gene Ontology (GO), Kyoto Encyclopedia of Genes 

and Genomes (KEGG) analyses and Gene Set 

Enrichment Analysis (GSEA). Besides, we also 

investigated the association between the prognostic 

pseudogenes and the host antitumor immune response, 

in terms of tumor-infiltrating immune cell com-

positions, antigen presenting genes expression, 

immunomodulator genes expression and cytolytic 

activity, so as to provide potential predictive markers to 

immunotherapy in breast cancer. 

 

RESULTS 
 

Identification of 15 prognostic pseudogenes 

 

Altogether, a whole list of 13931 pseudogenes were 

obtained from Vega databases and psiCube databases, 

of which 308 pseudogenes were available in TCGA 

datasets and thus included in the subsequent analyses. 

As results of univariate Cox proportional hazard 

regression indicated, a total of 15 pseudogenes were 

ultimately identified to be significantly associated with 

survival outcomes in TCGA dataset (Figure 1A), which 

was further verified in EGA dataset (Supplementary 

Figure 1).  

 

Construction of a risk signature based on the 

prognostic pseudogenes 

 

To improve the predictive effect of pseudogenes in the 

clinical outcomes of breast cancer, we applied the  

least absolute shrinkage and selection operator (LASSO) 

Cox regression algorithm to the 15 prognostic 

pseudogenes and constructed a risk signature based on 

the minimum criteria using TCGA data as the training 

set (Figure 1B, 1C) and EGA data as the validation set. 

The coefficients of the 15 pseudogenes were listed in 

Supplementary Table 1. The risk score was calculated 

according to survival risk score model formula. Then, 

the breast cancer patients were dichotomized into low or 

high-risk groups according to the median risk score. 

Results indicated that patients in high-risk group 

displayed significantly shorter overall survival than 

those in low-risk group (TCGA dataset, median overall 

survival 8.94 years vs. 10.85 years, log-rank test,  

p = 0.0025, Figure 1D; EGA dataset, median overall 

survival 10.79 years vs. 12.77 years, log-rank test,  

p = 0.0313, Figure 1E). The ROC curves showed that 

the risk score was good to predict survival rates with an 

AUC value of 0.769 in the training set (Figure 1F) and 

0.778 in the validation set (Figure 1G). In addition, 
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Figure 1. Construction of the risk score model based on prognostic pseudogenes. (A) The hazard ratios (HR), 95% confidence 

intervals (CI) calculated by univariate Cox proportional hazard regression of 15 prognostic pseudogenes using TCGA data. (B) LASSO 
coefficient profiles of 15 prognostic pseudogenes. (C) Ten-time cross-validation for tuning parameter selection in the LASSO model of 15 
prognostic pseudogenes. (D) The breast cancer patients from TCGA dataset in high-risk group displayed significantly shorter overall survival 
than those in low-risk group (p = 0.0025). (E) The breast cancer patients from EGA dataset in high-risk group displayed significantly shorter 
overall survival than those in low-risk group (p = 0.0313). (F) The ROC curve and AUC for the risk score model in TCGA dataset. (G) The ROC 
curve and AUC for the risk score model in EGA dataset. 
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RRN3P2 and HLA-DRB6 were found to have 

significant associations with overall survivals. Patients 

with high expression of RRN3P2 had significantly 

shorter survival than those with low expression (median 

overall survival 8.94 years vs. 11.69 years, log-rank test, 

p = 0.0088, Supplementary Figure 2A), indicating that 

high expression of RRN3P2 might correlate with high 

malignancy. On the contrary, patients with high 

expression of HLA-DRB6 had significantly longer 

survival than those with low expression (median overall 

survival 20.42 years vs. 10.24 years, log-rank test, p = 

0.014, Supplementary Figure 2B). Besides, 

RPL23AP53, HLA-DRB6, RPL13AP20, NCF1C and 

HLA-L were found to have significant associations  

with overall survivals in EGA dataset (Supplementary 

Figure 3A–3E). 

 

Expressions of prognostic pseudogenes significantly 

associated with different clinicopathological features 

and survival outcomes 

 

The distribution of the risk scores, overall survival, and 

corresponding pseudogene expression profiles in TCGA 

dataset were demonstrated in Figure 2A. Heatmap 

indicated that NCF1C, HLA-DRB6, HLA-DPB2, HLA-

J, HLA-H, HLA-L and RPL13AP20 displayed high 

expressions in the low-risk group, and thus were 

categorized as tumor-suppressor pseudogenes in the 

current study. On the other hand, the remaining 

pseudogenes (PGM5P2, HERC2P4, HSP90AB2P, 

DHX40P1, RRN3P3, RRN3P2, SDHAP1 and 

RPL23AP53) displayed high expressions in the high-

risk group and thus were categorized as oncogene 

pseudogenes in the current study. Besides, we also 

found that the risk score and prognostic pseudogenes 

were closely related to different clinicopathological 

features of breast cancer patients. The low-risk group 

was significantly associated with ER status (p = 8e-08), 

PR status (p = 6e-04), more basal-like molecular 

subtype (p = 4e-06) and lower lymph node stage (p = 

0.037) compared with high-risk group (Supplementary 

Table 2). Basal-like subtype had significantly higher 

expressions of NCF1C, HLA-H, RPL13AP20 RRN3P3 

and SDHAP1, but lower expressions of PGM5P2, 

HSP90AB2P and DHX40P1 than other subtypes 

(Figure 2B). In addition, patients with lymph node 

metastasis had significantly higher expressions of 

PGM5P2, HERC2P4 and RRN3P2 but lower 

expressions of HLA-H and RPL13AP20 than those 

without lymph node metastasis (Figure 2C). There were 

no significant differences in the expressions of the 15 

prognostic pseudogenes between patients with or 

without distant metastasis (Figure 2D).  
 

Furthermore, univariate Cox regression analysis 

demonstrated that risk score, age, PAM50, pathology  

T stage, pathology N stage and metastasis status were 

all correlated with the overall survival. When including 

these factors in the multivariate Cox regression, we 

found that risk score (p < 0.001), age (p < 0.001), 

pathology N stage (p = 0.029) and metastasis status (p = 

0.009) remained significantly associated with the 

clinical outcome (Figure 2E), which indicated that the 

risk score derived from these 15 pseudogenes could 

independently predict prognosis in breast cancer 

patients.  

 

Consensus clustering of prognostic pseudogenes 

identified two clusters highly consistent with that of 

the risk score 

 

Considering the large amounts of prognostic 

pseudogenes, we adopted dimensionality reduction 

analysis through consensus clustering of the 15 

prognostic pseudogenes in the subsequent analysis. 

According to the expression similarity of pseudogenes, 

k = 2 seemed to be the optimal selection when 

clustering stability increased from k = 2 to 10 in the 

TCGA dataset (Figure 3A–3C). Therefore, we divided 

the 775 breast cancer patients into two subgroups by 

making 2 as the k value, namely, P1 (Patients 

subgroup 1) and P2 (Patients subgroup 2). Kaplan-

Meier analysis revealed that patients in P2 subgroup 

had significantly longer overall survival than those in 

P1 subgroup (median overall survival 17.69 years vs. 

10.24 years, log-rank test, p = 0.045, Figure 3D). The 

expression pattern of the 15 prognostic pseudogenes 

across P1 and P2 subgroups was displayed in Figure 

3E. Results indicated that P1 subgroup had lower 

expressions of tumor-suppressor pseudogenes and 

higher expressions of oncogene pseudogenes, while P2 

subgroup showed the opposite trends. What’s more, 

compared with P1, P2 subgroup had significantly 

higher expressions of 6 tumor-suppressor pseudogenes 

(NCF1C, p < 2e-16; HLA-DRB6, p < 2e-16; HLA-

DPB2, p = 4e-12; HLA-J, p < 2e-16; HLA-H, p < 2e-

16; HLA-L, p < 2e-16), and significantly lower 

expressions of 6 oncogene pseudogenes (PGM5P2, p = 

0.002; HERC2P4, p = 0.003; HSP90AB2P, p = 6e-07; 

DHX40P1, p = 7e-04; RRN3P2, p = 0.014; 

RPL23AP53, p = 2e-04) (Figure 3F). In addition, we 

found that the P1 and P2 subgroup were also 

significantly associated with the clinicopathological 

features. P2 subgroup was significantly associated 

with ER status (p = 0.028), more basal-like  

molecular subtype (p = 0.002) and lower lymph node 

stage (p = 0.047) compared with P1 (Supplementary 

Table 3). These findings were highly consistent  

with those of the risk score mentioned above, which 
indicated that the expression pattern of prognostic 

pseudogenes was significantly associated with tumor 

survival. 
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Expression pattern of prognostic pseudogenes was 

closely associated with malignancy of breast cancer 

 

To better illuminate the association between prognostic 

pseudogenes and malignancy of breast cancer, we 

identified the differentially expressed genes between P1 

and P2 subgroups and annotated their functions using 

GO, KEGG pathway analysis and GSEA. GO pathway 

analyses revealed that upregulated genes in P2 were 

significantly enriched in tumor-related biological 

processes and pathways (Figure 4A), including 

regulation of JAK-STAT cascade, pattern recognition 

receptor signaling pathway and type I interferon 

signaling pathway. KEGG pathway analysis indicated 

that upregulated genes in P2 were enriched in  

TNF, JAK-STAT, IL-17, B cell receptor, Chemokine, 

 

 
 

Figure 2. Expressions of prognostic pseudogenes in breast cancer by different clinicopathological features in TCGA dataset. 
(A) The distribution of risk score, vital status and the expression pattern of 15 prognostic pseudogenes in 775 breast cancer patients. The risk 
scores are arranged in ascending order from left to right. (B) Expression levels of NCF1C, HLA-DRB6, HLA-DPB2, HLA-J, HLA-H, HLA-L, 
RPL13AP20, PGM5P2, HERC2P4, HSP90AB2P, DHX40P1, RRN3P3, RRN3P2, SDHAP1 and RPL23AP53 across different breast cancer subtypes. 
(C) Expression levels of HLA-H, RPL13AP20, PGM5P2, HERC2P4 and RRN3P2 in patients with or without lymph node metastasis. (D) 
Expression levels of HLA-H, RPL13AP20, PGM5P2, HERC2P4 and RRN3P23 in patients with or without distant metastasis. (E) Univariate and 
multivariate Cox regression analyses of the association between clinicopathological factors (including the risk score) and overall survival of 
breast cancer patients. ns denotes no significance, *** denotes P < 0.001 and **** denotes P < 0.0001. 
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NF-kappa B, T cell receptor signaling pathway and  

PD-L1expression and PD-1 checkpoint pathway in 

cancer (Figure 4A). Furthermore, “METASTASIS”, 

“SMAD”, “SIGNALING_BY_WNT_IN_CANCER” 

and “PI3KCI_AKT” were strikingly enriched in P1 

subgroup indicating by GSEA (Figure 4B), while the 

hallmarks of “INTERFERON GAMMA RESPONSE”, 

“IL2 STAT5 SIGNALING”, “IL6 JAK STAT3 

SIGNALING”, and “TNF SIGNALING” were 

remarkably enriched in P2 subgroup (Figure 4C). All 

these results partially clarified the mechanism under-

lying the prognostic effect of pseudogenes in breast 

cancer. 

 

Expression pattern of prognostic pseudogenes was 

significantly correlated with antitumor immune 

response 

 

To investigate the correlation between the expression 

pattern of pseudogenes and antitumor immune response 

in breast cancer, we assessed the immune cell 

infiltration using CIBERSORT, and estimated the 

expressions of antigen presentation genes, cytolytic 

genes and immunomodulator genes in tumor tissues 

between P1 and P2 subgroups.  

 

As summarized in Figure 5A, P2 subgroup had 

significantly higher number of tumor-infiltrating CD8+ 

T cells, CD4+ T cells, helper T cells, activated natural 

killer cells and lower number of M2 macrophage than 

P1, suggesting an enhanced immunosurveillance in P2 

subgroup. Of note, the regulatory T cell, a well-known 

member of suppressor T cell population, displayed a 

significantly higher fraction in P2 than in P1 subgroup.  

 

As for antigen presenting genes, we found that P2 had 

dramatically higher expressions of HLA-A, HLA-B, 

HLA-C, TAP1 and B2M than P1 (Figure 5B), which are 

main regulatory genes for human MHC class I cell 

surface receptors and thus activate cytotoxic T cells. 

Besides, P2 subgroup was also associated with higher 

expressions of GZMA and RPRF (Figure 5C), two 

 

 
 

Figure 3. P1/2 subgroups identified by consensus clustering of the 15 prognostic pseudogenes in TCGA dataset. (A) Consensus 

clustering cumulative distribution function (CDF) for k = 2 to 10. (B) Relative change in area under CDF curve for k = 2 to 10. (C) Consensus 
clustering of 775 breast cancers with k = 2. (D) Kaplan-Meier overall survival (OS) curves for patients in P1 and P2 subgroups. (E) The 
expression pattern of prognostic pseudogenes between P1 and P2 subgroups. (F) Expression levels of NCF1C, HLA-DRB6, HLA-DPB2, HLA-J, 
HLA-H, HLA-L, RPL13AP20, PGM5P2, HERC2P4, HSP90AB2P, DHX40P1, RRN3P3, RRN3P2, SDHAP1 and RPL23AP53 between P1 and P2 
subgroups. 
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important regulatory genes for cytolytic activity. These 

findings partially accounted for the above results that 

tumors in P2 subgroup had stronger immunogenicity 

and therefore presented higher numbers of active 

immune cell infiltrations.  

 

However, in terms of immunomodulator genes, P2 

subgroup was significantly associated with higher 

expressions of PD-1, PD-L1, PD-L2, LAG3, TIM3, 

CTLA-4, CCR4 and TIGIT than P1 subgroup (Figure 

5D), all of which are key genes of T-cell exhaustion 

markers. Besides, the expressions of CD27 and ICOS 

were also significantly higher in P2 than P1 subgroup. 

Therefore, it indicated that prognostic pseudogenes 

played a critical role in host antitumor response and 

might serve as potential targets for immunotherapy.  

Pseudogene-miRNA-target gene regulatory 

networks 

 

To elucidate the underlying mechanism how 

pseudogenes regulated anti-tumor immune response, we 

built a pseudogene-miRNA-target gene regulatory 

network. Potential miRNAs binding to the 15 

pseudogenes were identified using the dreamBase 

database (Supplementary Table 4). Pearson correlation 

analysis was used to calculate expression correlations 

between each pseudogene and its miRNA target genes. 

Target genes with | r | ≥ 0.3 and P < 0.05 were picked up 

(Supplementary Table 5). Ultimately, 4 tumor-

suppressor pseudogenes (HLA-J, HLA-H, HLA-L and 

RPL13AP20) together with 13 microRNAs and 19 

targeted genes, and 5 oncogene pseudogenes 

 

 
 

Figure 4. Functional annotation of differentially expressed genes in P1/P2 subgroups. (A) Functional annotation of up-regulated 
genes in P2 subgroup compared with P1 by using GO in terms of biological process (BP) and KEGG signaling pathway. (B) GSEA revealed that 
up-regulated genes in P1 subgroup were enriched for hallmarks of malignant tumors. (C) GSEA revealed that up-regulated genes in P2 
subgroup were enriched for hallmarks of antitumor immune response. 
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Figure 5. Immune cell infiltration and expressions of antigen presenting genes, immune cytolysis genes and 
immunomodulator genes in tumor tissues by P1/P2 subgroups. (A) Comparisons of cell composition fraction of CD8+ T cells, CD4+ T 
cells, helper T cells, regulatory T cells, activated natural killer (NK) cells, monocytes, M1 macrophages, M2 macrophages, activated dendritic 
cells (activated DCs) and neutrophils between P1 and P2 subgroups. (B) Expressions of HLA-A, HLA-B, HLA-C, TAP1 and B2M between P1 and 
P2 subgroups. (C) Expressions of GZMA and PRF1 between P1 and P2 subgroups. (D) Expressions of PD-1, PD-L1, PD-L2, LAG3, TIM3, CTLA-4, 
CCR4, TIGIT, CD27 and ICOS between P1 and P2 subgroups. 



 

www.aging-us.com 14507 AGING 

(HSP90AB2P, DHX40P1, RRN3P2, SDHAP1 and 

RPL23AP53) together with 35 microRNAs and 43 

targeted genes, were used to construct the pseudogene-

miRNA-target gene regulatory networks and visualized 

using Cytoscape (Figure 6). As results indicated, 

pseudogene HLA-L upregulated the expression of PD-

L1 by competitively binding hsa-miR-124-3p, which 

explained the higher expression of PD-L1 in P2 

subgroup. Pseudogene HLA-H, acting as decoy of has-

miR-140-3p, upregulated the expression of CD38 and 

then upregulated the infiltrations of many immune cells 

(including CD4+ T, CD8+ T, B lymphocytes and natural 

killer cells) by signal transduction and calcium 

signaling (Figure 6A). Other pseudogenes played 

regulatory roles in signaling pathways involving cell 

proliferation, oncogenic transformation, cell survival, 

cell migration, and intracellular protein trafficking as 

ceRNAs (Figure 6B). The pseudogene-miRNA-target 

gene regulatory networks partially clarified the 

mechanism how pseudogenes participated in regulating 

the antitumor immune response in breast cancer. 

 

DISCUSSION 
 

In the current study, 15 pseudogenes were identified as 

promising prognostic indicators for breast cancer by 

univariate Cox regression analysis and classified into 

tumor-suppressor pseudogenes (NCF1C, HLA-DRB6, 

HLA-DPB2, HLA-J, HLA-H, HLA-L, RPL13AP20) and 

oncogene pseudogenes (PGM5P2, HERC2P4, 

HSP90AB2P, DHX40P1, RRN3P3, RRN3P2, SDHAP1, 

RPL23AP53) based on their different effects in clinical 

outcomes using TCGA dataset. Then a risk score model 

was constructed based on the 15 prognostic pseudogenes, 

and was found good in predicting prognosis in breast 

cancer. The prognostic value for these 15 pseudogenes 

and the risk score signature was further validated in EGA 

dataset. What’s more, we also found that the expression 

pattern of these 15 prognostic pseudogenes was 

significantly associated with antitumor immune response 

in terms of tumor-infiltrating immune cell compositions, 

antigen presenting genes expression, immunomodulator 

genes expression and cytolytic activity. Pseudogene-

miRNA-target gene regulatory networks were further 

performed to elucidate the underlying mechanisms. To 

the best of our knowledge, this is the first study to 

systemically clarify the prognostic value of pseudogenes 

in breast cancer, and their regulatory roles in host 

antitumor immune response. 

 

Pseudogenes, belonging to the non-coding RNA family, 

are pervasively transcribed in the genome [23]. The 

noncoding transcripts range from 100 bp to 

approximately 100 kilobases (kb) in length and lack 

significant open reading frames, which once mislead 

people to consider pseudogenes as “genetic fossils”. 

However, recent evidence suggests that pseudogenes 

can play important regulatory functions in diverse 

human diseases [24]. They were found to contain 

miRNA-binding elements and thus increase their 

parental transcripts by acting as competitive 

endogenous RNAs (ceRNA) [25, 26]. This significant 

finding worked as a strong cornerstone for studying the 

biological roles of pseudogenes in cancer.  

 

Although currently there are no published studies 

concerning the prognostic effects of pseudogenes in 

breast cancer, previous studies have indicated the 

crucial roles of pseudogenes in tumorigenesis, tumor 

development and progression of other malignant 

tumors. For instant, pseudogene PTENP1 could 

suppress the progression of clear-cell renal cell 

carcinoma by functioning as a ceRNA [27]. Pseudo-

genes PKMP3, AC027612.4, HILS1, RP5-1132H15.3 

and HSPB1P1 were identified as prognostic predictors 

for lower-grade gliomas [28]. In addition, pseudogenes 

ANXA2P2, EEF1A1P9, FER1L4, HILS1, and 

RAET1K were found to be significantly correlated with 

glioma survival [29]. What’ more, pseudogene 

RNA5SP141 was able to strongly enhance the RIG-I-

mediated antiviral immunity response to herpes simplex 

virus 1 [30]. In the current study, we identified 15 

prognostic pseudogenes that significantly associated 

with clinical outcomes in breast cancer. They were 

further classified into two functional subgroups, tumor-

suppressor pseudogenes (NCF1C, HLA-DRB6, HLA-

DPB2, HLA-J, HLA-H, HLA-L, RPL13AP20) and 

oncogene pseudogenes (PGM5P2, HERC2P4, 

HSP90AB2P, DHX40P1, RRN3P3, RRN3P2, SDHAP1, 

RPL23AP53) based on their different effects in clinical 

outcomes. Then we constructed a risk score model 

based on the 15 prognostic pseudogenes by LASSO 

Cox regression, which was found good in predicting 

prognosis in breast cancer. All in all, our study provides 

promising prognostic predictors for breast cancer 

patients, which can better execute the principle of 

precise medicine. 

 

To the best of our knowledge, this is the first  

study concerning the correlation between pseudogenes 

and host antitumor immune response in breast cancer. 

Surprisingly, our study revealed that the expression 

pattern of the 15 prognostic pseudogenes was 

significantly associated with active tumor-infiltrating 

CD8+ T cells, CD4+ T cells, helper T cells and  

activated natural killer cells, as well as the expressions 

of HLA-A, HLA-B, HLA-C, TAP1, B2M, GZMA  

and RPRF. What’s more, T cell exhausted  

markers including PD-1, PD-L1, PD-L2, LAG3, TIM3, 
CTLA-4, CCR4 and TIGIT were also significantly 

associated with the expression pattern of pseudogenes. 

In addition, pseudogene-miRNA-target gene regulatory 
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Figure 6. Pseudogene-miRNA-target gene regulatory networks. Nine pseudogenes together with binding miRNAs and target genes 

with |r| ≥ 0.3 and P < 0.05 were used to construct the pseudogene-miRNA-target gene regulatory networks by subgroups of tumor-
suppressor pseudogenes (A) and oncogene pseudogenes (B). Pink hexagons represented pseudogenes, which are located at the cores of the 
networks. Tomato ellipses and blue round rectangles stand for binding miRNAs and target genes, respectively. 
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networks were further performed to elucidate the 

underlying mechanisms and demonstrated 4 tumor-

suppressor pseudogenes (HLA-J, HLA-H, HLA-L  

and RPL13AP20) together with 13 microRNAs and  

19 targeted genes, and 5 oncogene pseudogenes 

(HSP90AB2P, DHX40P1, RRN3P2, SDHAP1 and 

RPL23AP53) together with 35 microRNAs and  

43 targeted genes as main regulatory factors. This 

large network could provide robust evidence for  

the further study about the biological roles of 

pseudogenes in host antitumor immune response in 

breast cancer.  

 

One limitation of this study needs to be taken into 

consideration. All the analyses in the current study were 

based on the bioinformatics tools, therefore, further 

experimental validation is warranted to confirm the 

results of our study.  

 

To sum up, we identified 15 prognostic pseudogenes 

and demonstrated that their expression pattern was 

significantly correlated with the clinicopathological 

features, survival outcomes and expressions of 

immunomodulator genes in breast cancer. This current 

study provided comprehensive evidence for further 

study of pseudogenes in breast cancer, and shed new 

light on the epigenetic regulation of antitumor immune 

response. 

 

MATERIALS AND METHODS 
 

Data sources 

 

Genome and transcript sequences and annotation were 

obtained from the human genome (GRCh37), version 

19 (Ensembl 74) (https://www.encodeproject.org/). A 

list of pseudogenes was collected from Vega databases 

(http://vega.archive.ensembl.org/index.html) and 

psiCube databases according to online pseudogene 

posted data (http://pseudogene.org/) [31, 32]. The breast 

cancer gene expression data and corresponding clinical 

information were obtained from TCGA data portal 

(http://firebrowse.org/) and EGA dataset (https://ega-

archive.org/) by access number (EGAS00001001908). 

Altogether, 775 samples from TCGA and 50 samples 

from EGA with pseudogene expression data and 

corresponding clinical data were included. Immune cell 

fraction data were downloaded through CIBERSORT 

(https://cibersort.stanford.edu/) [33, 34]. The antigen 

presenting genes and immunomodulator genes were 

obtained from TCIA (https://tcia.at/home) [35]. 

miRNAs binding to pseudogenes were extracted from 

the dreamBase database (http://rna.sysu.edu.cn/ 

dreamBase/index.php) [36]. miRNA target genes were 

identified using the miRTarBase (http://mirtarbase.mbc. 

nctu.edu.tw/php/index.php) [37]. 

Screening for prognostic pseudogenes by cox 

proportional hazard regression analysis  

 

Since most of the pseudogenes were not expressed, we 

first excluded those with the expression values (RPKM) 

less than 1. Then, univariate Cox proportional  

hazard regression was performed to screen for the 

candidate pseudogenes closely associated with overall 

survival. After these two steps, 15 pseudogenes were 

identified significantly associated with survival 

outcomes in TCGA dataset (P < 0.05) and further 

validated in EGA dataset. 

 

Construction of the risk score model 

 

Based on LASSO Cox regression algorithm [38], a L1-

penalized regression on the strength of the highest 

lambda value selected by means of a 1,000 cross-

validations (‘1-se’ lambda) was conducted to further 

identify the regression coefficients of the 15 prognostic 

pseudogenes. Then a survival risk score model was 

established by the LASSO coefficients (β) as follows: 

 

1
Risk score .

n

i
Geneexp i ir 

=
=  

 

The breast cancer patients were divided into low or 

high-risk groups based on the median risk score. The 

receiver operating characteristic (ROC) curve and area 

under the curve (AUC) were conducted to estimate the 

prediction accuracy of the risk score model. Each 

prognostic pseudogene was dichotomized into low or 

high expression level, with cut-off value defining as the 

median expression value. Kaplan-Meier plots and Log-

rank test were utilized to evaluate and compare the 

survival rate between subgroups. All the analyses 

mentioned above were performed using TCGA data as 

the training set and EGA data as the validation set. 

Univariate and multivariate Cox regression analyses 

were carried out to determine the prognostic value of 

the risk score and various clinical characteristics. 

 

Consensus clustering analysis 

 
To investigate the functional roles of pseudogenes in 

breast cancer, we clustered the patients into different 

subgroups by the R package “ConsensusClusterPlus” 

(50 iterations, resample rate of 80%, and Pearson 

correlation) based on the expression levels of the 

prognostic pseudogenes in TCGA dataset [39].  

 
Functional analysis of the prognostic pseudogenes 

 
To better understand the association between prognostic 

pseudogenes and malignancy of breast cancer, GO 

pathway analysis, KEGG analysis and GSEA [40] were 

https://www.encodeproject.org/
http://vega.archive.ensembl.org/index.html
http://pseudogene.org/
http://firebrowse.org/
https://ega-archive.org/
https://ega-archive.org/
https://cibersort.stanford.edu/
https://tcia.at/home
http://rna.sysu.edu.cn/dreamBase/index.php
http://rna.sysu.edu.cn/dreamBase/index.php
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
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carried out to functionally annotate genes that 

differentially expressed in different subgroups by using 

the R package “clusterProfiler” [41].  

 

Immune cell infiltration, immune response and 

immune cytolysis 

 

CIBERSORT [33], a bioinformatic deconvolution 

algorithm to calculate immune cell composition from 

their gene expression profiles, was used to assess 

tumor-infiltrating cell compositions in diverse tumors 

[42]. The immune cell fractions, expressions of antigen 

presenting genes, immunomodulator genes [43] and 

immune cytolysis genes [44] were compared in 

different subgroups by Wilcoxon signed-rank test. 

 

Pseudogene-miRNA-target gene regulatory 

networks 

 

miRNAs binding to prognostic pseudogenes were 

obtained from the dreamBase database [36]. miRNA 

target genes with at least one strong experimental 

method (reporter assay or western blot) were extracted 

by the miRTarBase [37]. Pearson analysis was 

conducted to calculate expression correlation between 

pseudogenes and miRNA target genes. Target genes 

conforming to | r | ≥ 0.3 and P < 0.05 were selected and 

applied to construct pseudogene-miRNA-target gene 

regulatory networks using Cytoscape 3.7.1. 

 
Statistical analysis 

 

One-way ANOVA and t test were carried out to 

compare the expression levels of prognostic 

pseudogenes in different subgroups differentiated by 

lymph node status, molecular subtypes and distant 

metastasis status. Chi-square test was used to evaluate 

the differences of clinicopathological characteristics 

between subgroups identified by consensus clustering of 

pseudogenes. All statistical analyses were performed 

using R software (http://www.r-project.org/) and 

Bioconductor (http://bioconductor.org/). A two-sided p 

value < 0.05 was considered statistically significant in 

all analyses. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Validation of the 15 prognostic pseudogenes in EGA dataset. The hazard ratios (HR), 95% confidence 

intervals (CI) calculated by univariate Cox proportional hazard regression of the 15 prognostic pseudogenes in EGA dataset.  
 

 
 

Supplementary Figure 2. Correlation between the expression levels of RRN3P2 (A) and HLA-DRB6 (B) and overall survival in patients with 

breast cancer from TCGA dataset.  
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Supplementary Figure 3. Correlation between the expression levels of RPL23AP53 (A), HLA-DRB6 (B), RPL13AP20 (C), NCF1C (D) and HLA-L 
(E) and overall survival in patients with breast cancer from EGA dataset. 
 

  



 

www.aging-us.com 14516 AGING 

Supplementary Tables 
 

Supplementary Table 1. The coefficients of the 15 prognostic pseudogenes by LASSO. 

Pseudogenes Coefficients 

NCF1C  0.000000000 

HLA-DRB6 -0.002846803 

HLA-DRB2 -0.104956422 

HLA-J -0.057654172 

HLA-H 0.000000000 

HLA-L -0.013823392 

RPL13AP20 -0.001763734 

PGM5P2 0.000000000 

HERC2P4 0.000000000 

HSP90AB2P 0.000000000 

DHX40P1 0.044932918 

RRN3P3 0.000000000 

RRN3P2 0.226104532 

SDHAP1 0.046539494 

RPL23AP53 0.021710806 
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Supplementary Table 2. Clinicopathological features stratified by high-risk and low-risk subgroups. 

Variable High-risk, n (%) Low-risk, n (%) P 

No. of Patients  387(49.94) 388(50.06) - 

Age at diagnosis, years   0.603 

≤ 50 116(14.97) 124(16.00)  

> 50 271(34.96) 264(34.06)  

ER status    8e-08 

Negative 53(6.84) 118(15.23)  

Positive  311(40.13) 257(33.16)  

Unknown  23(2.97) 15(1.68)  

PR status   6e-04 

Negative 97(12.52) 145(18.71)  

Positive 265(34.19) 228(29.42)  

Unknown  25(3.22) 15(1.94)  

HER-2 status   0.904 

Negative 269(34.71) 272(35.10)  

Positive 65(8.39) 67(8.65)  

Unknown  53(6.84) 49(6.32)  

Molecular subtypes    4e-06 

Normal-like 42(5.42) 89(11.48)  

Luminal A 26(3.35) 39(5.03)  

Luminal B 206(26.58) 166(21.42)  

HER2 positive 102(13.16) 75(9.68)  

Basal-like 6(0.77) 16(2.06)  

Unknown  5(0.64) 3(0.39)  

T stage   0.688 

T1 105(13.55) 100(12.90)  

T2 223(28.77) 235(30.32)  

T3 41(5.29) 42(5.42)  

T4 17(2.19) 10(1.29)  

Unknown 1(0.13) 1(0.13)  

Lymph node stage   0.037 

N0 168(21.68) 193(24.90)  

N1 137(17.68) 127(16.39)  

N2 52(6.71) 40(5.16)  

N3 18(2.32) 25(3.23)  

Unknown 12(1.55) 3(0.39)  

Distance metastasis status   0.248 

Negative 347(44.77) 354(45.68)  

Positive 6(0.77) 10(1.29)  

Unknown  34(4.39) 24(3.10)  

Vital status   0.070 

Alive 318(41.03) 338(43.61)  

Dead 69(8.90) 50(6.45)  

Abbreviations: ER: estrogen receptor; PR: progesterone receptor; HER-2: human epidermal growth receptor-2. 
* Evaluated by Chi-square test.  
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Supplementary Table 3. Clinicopathological features stratified by P1 and P2 subgroups. 

Variable P1, n (%) P2, n (%) P 

No. of Patients  362(46.71) 413(53.29) - 

Age at diagnosis, years   0.709 

≤ 50 115(14.84) 125(16.12)  

> 50 247(31.87) 288(37.16)  

ER status    0.028 

Negative 66(8.52) 105(13.55)  

Positive  275(35.48) 293(37.81)  

Unknown  21(2.71) 15(1.94)  

PR status   0.413 

Negative 107(13.81) 135(17.42)  

Positive 233(30.06) 260(33.55)  

Unknown  22(2.84) 18(2.32)  

HER-2 status   0.358 

Negative 250(32.25) 291(37.55)  

Positive 58(7.48) 74(9.55)  

Unknown  54(6.97) 48(6.19)  

Molecular subtypes    0.002 

Normal-like 47(6.06) 84(10.84)  

Luminal A 26(3.35) 39(5.03)  

Luminal B 180(23.23) 192(24.77)  

HER2 positive 95(12.25) 82(10.58)  

Basal-like 7(0.90) 15(1.94)  

Unknown  7(0.90) 1(0.13)  

T stage   0.075 

T1 93(12.00) 112(14.45)  

T2 211(27.23) 247(31.87)  

T3 37(4.77) 46(5.94)  

T4 20(2.58) 7(0.90)  

Unknown 1(0.13) 1(0.13)  

Lymph node stage   0.047 

N0 153(19.74) 208(26.84)  

N1 132(17.03) 132(17.03)  

N2 48(6.19) 44(5.68)  

N3 18(2.32) 25(3.23)  

Unknown 11(1.42) 4(0.52)  

Distance metastasis status   0.441 

Negative 325(41.94) 376(48.52)  

Positive 6(0.77) 10(1.29)  

Unknown  31(4.00) 27(3.48)  

Vital status   0.560 

Alive 303(39.1) 353(45.5)  

Dead 59(7.61) 60(7.74)  

Abbreviations: P1: patient subgroup 1; P2: patient subgroup 2; ER: estrogen receptor; PR: progesterone receptor; HER-2: 
human epidermal growth receptor-2.  
* Evaluated by Chi-square test. 
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Supplementary Table 4. Potential miRNAs binding to the 15 prognostic pseudogenes identified by dreamBase. 

Pseudogene miRNA 

NCF1C 0 

HLA-DRB6 0 

HLA-DRB2 0 

HLA-J hsa-miR-1193; hsa-miR-140-3p; hsa-miR-15a-5p; hsa-miR-15b-5p; hsa-miR-16-5p; 

 hsa-miR-195-5p; hsa-miR-214-3p; hsa-miR-2278; hsa-miR-3619-5p; hsa-miR-3918; 

 hsa-miR-424-5p; hsa-miR-4428; hsa-miR-4726-5p; hsa-miR-497-5p; hsa-miR-589-5p; 

 hsa-miR-6838-5p; hsa-miR-761 

HLA-H  

 hsa-miR-124-3p; hsa-miR-125a-5p; hsa-miR-125b-5p; hsa-miR-1343-3p; hsa-miR-140-3p; hsa-miR-

143-3p; hsa-miR-15a-5p; hsa-miR-15b-5p; hsa-miR-16-5p; hsa-miR-195-5p; 

 hsa-miR-214-3p; hsa-miR-22-3p; hsa-miR-2278; hsa-miR-296-5p; hsa-miR-3127-5p; 

 hsa-miR-3184-5p; hsa-miR-3200-5p; hsa-miR-323a-3p; hsa-miR-323b-3p; hsa-miR-3605-3p; hsa-

miR-3619-5p; hsa-miR-362-5p; hsa-miR-380-3p; hsa-miR-3918; hsa-miR-423-5p; 

 hsa-miR-424-5p; hsa-miR-4319; hsa-miR-4640-5p; hsa-miR-4726-5p; hsa-miR-4770; 

 hsa-miR-497-5p; hsa-miR-500b-5p; hsa-miR-506-3p; hsa-miR-514a-5p; hsa-miR-532-3p; hsa-miR-

605-3p; hsa-miR-6088; hsa-miR-665; hsa-miR-6746-3p; hsa-miR-6783-3p; 

 hsa-miR-6838-5p; hsa-miR-744-5p; hsa-miR-761; hsa-miR-766-5p 

HLA-L hsa-miR-140-3p; hsa-miR-15a-5p; hsa-miR-15b-5p; hsa-miR-16-5p; hsa-miR-195-5p; 

 hsa-miR-214-3p; hsa-miR-2278; hsa-miR-296-5p; hsa-miR-3127-5p; hsa-miR-335-5p; 

 hsa-miR-3619-5p; hsa-miR-370-3p; hsa-miR-380-3p; hsa-miR-3918; hsa-miR-424-5p; 

 hsa-miR-4428; hsa-miR-4726-5p; hsa-miR-497-5p; hsa-miR-500b-5p; hsa-miR-6838-5p; 

 hsa-miR-6893-3p; hsa-miR-761 

RPL13AP20 hsa-miR-1224-5p; hsa-miR-193a-5p; hsa-miR-214-3p; hsa-miR-296-3p; hsa-miR-29a-3p; hsa-miR-

29b-3p; hsa-miR-29c-3p; hsa-miR-3619-5p; hsa-miR-3681-5p; hsa-miR-409-3p; 

 hsa-miR-452-5p; hsa-miR-4664-3p; hsa-miR-4676-3p; hsa-miR-486-5p; hsa-miR-526b-5p; 

 hsa-miR-532-5p; hsa-miR-6512-3p; hsa-miR-665; hsa-miR-6849-5p; hsa-miR-761; 

 hsa-miR-766-5p; hsa-miR-873-5p; hsa-miR-892c-3p 

PGM5P2 hsa-miR-328-3p 

HERC2P4 hsa-miR-146a-5p; hsa-miR-146b-5p; hsa-miR-181a-5p; hsa-miR-181b-5p; hsa-miR-181c-5p; 

 hsa-miR-181d-5p; hsa-miR-205-5p; hsa-miR-4262; hsa-miR-7153-5p 

HSP90AB2P hsa-miR-124-3p; hsa-miR-1252-5p; hsa-miR-128-3p; hsa-miR-142-5p; hsa-miR-144-5p; 

 hsa-miR-150-5p; hsa-miR-182-5p; hsa-miR-18a-5p; hsa-miR-18b-5p; hsa-miR-205-5p; 

 hsa-miR-2115-3p; hsa-miR-216a-3p; hsa-miR-2682-5p; hsa-miR-29a-3p; hsa-miR-29b-3p; hsa-miR-

29c-3p; hsa-miR-3187-3p; hsa-miR-320a; hsa-miR-320b; hsa-miR-320c; 

 hsa-miR-320d; hsa-miR-345-3p; hsa-miR-34b-5p; hsa-miR-365a-3p; hsa-miR-365b-3p; 

 hsa-miR-3681-3p; hsa-miR-376a-3p; hsa-miR-376b-3p; hsa-miR-376c-3p; hsa-miR-380-3p; hsa-

miR-423-3p; hsa-miR-4429; hsa-miR-449c-5p; hsa-miR-4735-3p; hsa-miR-4761-5p; 

 hsa-miR-4766-3p; hsa-miR-4766-5p; hsa-miR-488-3p; hsa-miR-494-3p; hsa-miR-496; 

 hsa-miR-506-3p; hsa-miR-514a-5p; hsa-miR-515-5p; hsa-miR-519e-5p; hsa-miR-5590-3p; hsa-miR-

577; hsa-miR-616-3p; hsa-miR-670-3p; hsa-miR-670-5p; hsa-miR-766-5p; 

 hsa-miR-874-3p; hsa-miR-9-5p; hsa-miR-942-5p; hsa-miR-944 

DHX40P1 hsa-miR-124-3p; hsa-miR-1271-5p; hsa-miR-1306-5p; hsa-miR-186-5p; hsa-miR-199a-5p; hsa-miR-

199b-5p; hsa-miR-22-3p; hsa-miR-30a-5p; hsa-miR-30b-5p; hsa-miR-30c-5p; 

 hsa-miR-30d-5p; hsa-miR-30e-5p; hsa-miR-33a-5p; hsa-miR-33b-5p; hsa-miR-3612; 

 hsa-miR-506-3p; hsa-miR-545-5p; hsa-miR-625-3p; hsa-miR-628-5p; hsa-miR-650; 

 hsa-miR-7151-5p; hsa-miR-96-5p 

RRN3P3 0 

RRN3P2 hsa-miR-1297; hsa-miR-132-3p; hsa-miR-191-5p; hsa-miR-212-3p; hsa-miR-224-3p; 

 hsa-miR-26a-5p; hsa-miR-26b-5p; hsa-miR-300; hsa-miR-381-3p; hsa-miR-4465; 
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 hsa-miR-4524a-5p; hsa-miR-4524b-5p; hsa-miR-522-3p; hsa-miR-532-5p 

SDHAP1 hsa-let-7a-5p; hsa-let-7b-5p; hsa-let-7c-5p; hsa-let-7d-5p; hsa-let-7e-5p; hsa-let-7f-5p; 

 hsa-let-7g-5p; hsa-let-7i-5p; hsa-miR-105-5p; hsa-miR-1249-3p; hsa-miR-1301-3p; 

 hsa-miR-136-5p; hsa-miR-15a-5p; hsa-miR-15b-5p; hsa-miR-16-5p; hsa-miR-195-5p; 

 hsa-miR-216a-5p; hsa-miR-2355-5p; hsa-miR-2681-3p; hsa-miR-3150a-3p; hsa-miR-3529-5p; hsa-

miR-361-3p; hsa-miR-3622b-5p; hsa-miR-379-5p; hsa-miR-424-5p; hsa-miR-4458; 

 hsa-miR-4500; hsa-miR-4731-5p; hsa-miR-4761-3p; hsa-miR-485-5p; hsa-miR-491-5p; 

 hsa-miR-495-3p; hsa-miR-497-5p; hsa-miR-5047; hsa-miR-505-3p; hsa-miR-516b-5p; 

 hsa-miR-542-3p; hsa-miR-543; hsa-miR-545-3p; hsa-miR-5688; hsa-miR-5691; 

 hsa-miR-6763-5p; hsa-miR-6805-3p; hsa-miR-6838-5p; hsa-miR-6884-5p; hsa-miR-7853-5p; hsa-

miR-98-5p 

RPL23AP53 hsa-miR-1343-3p; hsa-miR-141-3p; hsa-miR-200a-3p; hsa-miR-214-5p; hsa-miR-28-5p; 

 hsa-miR-3139; hsa-miR-376a-3p; hsa-miR-376b-3p; hsa-miR-6783-3p; hsa-miR-708-5p 
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Supplementary Table 5. miRNA targeted genes correlated with their pseudogenes at | r | ≥ 0.3 and P < 0.05. 

Pseudogene miRNA targeted genes 

NCF1C 0 

HLA-DRB6 0 

HLA-DRB2 0 

HLA-J CCL5 

HLA-H CD274; BAK1; CD38; CXCL10; CCL4; CCL5; COTL1 

HLA-L CD38; CXCL10; CCL4; CCL5; CD274 

RPL13AP20 BAX; GSK3B; IFNAR1; GSK3B; MGMT; CDK3 

PGM5P2 0 

HERC2P4 0 

HSP90AB2P AR; BCL2L11; CCNT2; CLOCK; CNOT6; CPEB3; CPEB4; CREB1; DICER1; ERBB3; ESR1; 

FOXP1; GSK3B 

DHX40P1 CLOCK; ATF6; CDH1; CLTC  

RRN3P3 0 

RRN3P2 ATM; CHD1; CPEB4; CRK; GSK3B; IRAK4; KLHL11; LARP1; MAP3K2; MTDH; NR2C2; 

PIK3C2A; PTPN13; RASA1; RB1; RB1CC1; RCBTB1; ROCK1 

SDHAP1 MPL; DMTF1; MBD1; MPL 

RPL23AP53 KLF12; KLHL20; ATRX; MPL 

 


