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INTRODUCTION 
 

Despite therapeutic advances in recent years, cancer still 

ranks as a leading cause of death [1]. The Cancer 

Genome Atlas (TCGA) program and Gene Expression 

Omnibus (GEO) data, which provide important 

information for further understanding of tumor biology, 

are available to users via multiple web-based platforms 

([2–11]). This knowledge is essential and has already 

been incorporated into clinical practice, improving our 

ability to diagnose, treat, and prevent cancer. 
 

Immunotherapy based on cytotoxic T lymphocyte-

associated antigen 4 (CTLA4), programmed death-1 

(PD-1), and programmed death ligand-1 (PD-L1) 

inhibitors has emerged as an effective treatment in 

melanoma and non–small-cell lung carcinoma [12, 13]. 

As noted in several studies, tumor-infiltrating lympho-

cytes,  such  as  tumor-associated macrophages (TAMs), 

 

play an important role in patient prognosis and the 

efficacy of immunotherapy [14–17]. Some markers 

have been identified as effectors of immunotherapy 

[18–20]. However, current immunotherapy strategies 

have shown poor clinical efficacy in other cancers [21–

23]. Therefore, identifying efficacious immune-related 

therapeutic targets in cancers is urgently needed. 

 

m6A is a prevalent internal mRNA modification [24, 25] 

and plays an important role in cancer progression [26] and 

immunoregulation [27]. m6A modification is regulated by 

“writers” (m6A methyltransferases, such as methyl 

transferase-like 3 [METTL3] and methyl 

transferase-like 14), “erasers” (m6A demethyl trans-

ferases, such as fat mass and obesity-associated [FTO] 

and alkB homologue 5, RNA demethylase), and “readers” 

(effectors recognizing m6A, such as three YTH domain 

proteins [YTHDF1–3]) [28]. m6A modification (deletion 

of METTL3 or YTHDF2) controls the innate immune 
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response to infection by targeting type I interferons [29]. 

m6A modification by FTO increases melanoma growth 

and decreases response to anti–PD-1 blockade 

immunotherapy [30]. METTL3-mediated mRNA m6A 

methylation promotes dendritic cell (DC) activation and 

function [31]. YTHDF1 shows anti-tumor immunity in 

DCs [32]. YTHDF2 sequesters m6A-circRNA and is 

essential for suppression of innate immunity [33]. In 

addition, YTHDF2 plays cell type-specific roles in lytic 

viral gene expression during Kaposi's sarcoma-associated 

herpesvirus infection [34]. YTHDF2 is a functional m6A-

specific reader protein that mainly regulates stability of 

mRNA [35]. A previous study showed that YTHDF2 

expression was regulated by miR-145 in hepatocellular 

carcinoma (HCC) cells [36]. Moreover, YTHDF2 may 

function as a tumor suppressor to inhibit cell proliferation 

and growth in HCC [37]. In addition, YTHDF2 acted as a 

tumor oncogene to promote prostate cancer cell 

proliferation and migration [38]. Interestingly, it has been 

found that YTHDF2 plays dual roles in pancreatic cancer 

cells by promoting proliferation and inhibiting migration 

and invasion [39]. Therefore, the roles of YTHDF2 in 

cancer remain elusive, especially regarding tumor-

immune interactions.  

 

In this study, we analyzed YTHDF2 expression and its 

correlation with the prognosis of cancer patients via a 

pan-cancer analysis using various web-based platforms. 

We also investigated the relationship between YTHDF2 

expression and tumor-infiltrating immune cells (TIICs) 

in various cancers. Moreover, we analyzed the 

correlation of YTHDF2 with isocitrate dehydrogenase 1 

(IDH1) in LGG. Finally, we performed the enrichment 

analysis of YTHDF2 in LGG. These results shed light 

on the important role of YTHDF2 in LGG and provide 

an underlying mechanism between YTHDF2 and 

tumor-immune interactions. 

 

RESULTS 
 

YTHDF2 expression in cancer 
 

We used the Tumor Immune Estimation Resource 

(TIMER) database to study differences in YTHDF2 

expression in tumor tissues and adjacent normal tissues. 

Figure 1A shows that YTHDF2 expression was 

substantially higher in BLCA (bladder urothelial 

carcinoma), breast invasive carcinoma, colon 

adenocarcinoma, esophageal carcinoma, LUAD (lung 

adenocarcinoma), stomach adenocarcinoma, prostate 

adenocarcinoma, and UCEC (uterine corpus endometrial 

carcinoma) tissues than in adjacent normal tissues. 

However, YTHDF2 expression was lower in head and 

neck squamous cell carcinoma, KICH (kidney 

chromophobe), KIRC (kidney renal clear cell carcinoma), 

kidney renal papillary cell carcinoma, and LIHC (liver 

hepatocellular carcinoma) tissues than in adjacent normal 

tissues. YTHDF2 expression was not expressed 

substantially between cholangiocarcinoma, lung 

squamous cell carcinoma, READ (rectum adeno-

carcinoma), and thyroid carcinoma tissues and adjacent 

normal tissues. Unfortunately, no data were available on 

YTHDF2 expression in adjacent normal tissues for the 

following cancers: adrenocortical carcinoma, DLBC 

(lymphoid neoplasm diffuse large B-cell lymphoma), 

GBM (glioblastoma multiforme), LAML (acute myeloid 

leukemia), LGG (lower-grade glioma), mesothelioma, OV 

(ovarian serous cystadenocarcinoma), PAAD (pancreatic 

adenocarcinoma), pheochromocytoma and paragon-

glioma, SARC (sarcoma), skin cutaneous melanoma, 

testicular germ cell tumor, thymoma, uterine carcino-

sarcoma, and uveal melanoma. 

 

To provide a more comprehensive evaluation of 

YTHDF2 expression in cancers, we used the online 

database Gene Expression Profiling Interactive Analysis 

(GEPIA) to compare YTHDF2 expression across 33 

TCGA cancer types and in TCGA and GTEx normal 

tissues. Figure 1B shows that YTHDF2 expression was 

elevated in many cancers, especially DLBC, GBM, 

PAAD, and THYM. 

 

We then used the ONCOMINE database to compare 

YTHDF2 expression in human cancer and corresponding 

normal samples (Figure 1C and Supplementary Table 1). 

Supplementary Table 1 ([40–46]) shows YTHDF2 

datasets in human cancers. YTHDF2 expression up-

regulated in anaplastic oligoastrocytoma, with a fold 

change of 2.433, and downregulated in glioblastoma, with 

a fold change of –2.762. In addition, YTHDF2 expression 

upregulated in the other cancers, with a fold change from 

2.038 to 11.69. 

 

Prognostic value of YTHDF2 in cancer 

 

We investigated the impact of YTHDF2 expression on 

survival rates by using the PrognoScan database. The 

relationships between YTHDF2 expression and 

prognosis in different cancers are shown in 

Supplementary Table 2. YTHDF2 expression sub-

stantially impacted the prognosis of four cancer types, 

including brain, breast, colorectal, and soft tissue. 

However, the impact of YTHDF2 on survival was 

conflicting in two independent breast cancer cohorts. 

 

To further predict the prognostic potential of YTHDF2 in 

cancers, four databases (GEPIA, TIMER, OncoLnc, and 

Kaplan-Meier plotter) were used to evaluate the 

prognostic value of YTHDF2. The detailed results are 

summarized in Supplementary Table 3. In the GEPIA 

database, high YTHDF2 expression was associated with 

poorer overall survival (OS) and disease-free survival 
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(DFS) in KICH (OS hazard ratio [HR] = 9.2, P= 0.011; 

DFS HR = 4.7, P = 0.031) and LGG (OS HR = 1.8, P = 

0.0024; DFS HR = 2, P = 1.60e-05) (Figure 2A and 2B), 

whereas it was associated with better prognosis in KIRC 

(OS HR = 0.63, P = 0.0035; DFS HR = 0.63, P = 0.012). 

In addition, high YTHDF2 expression was associated 

with poorer OS but not poorer DFS in LIHC (OS HR = 

1.6, P = 0.0068; DFS HR = 1.3, P = 0.081) (Figure 2C 

and 2D) and SARC (OS HR = 2.1, P = 0.00044; DFS HR 

= 1.3, P = 0.16) (Figure 2E and 2F), whereas it was 

associated with superior OS but not superior DFS in 

UCEC (OS HR = 0.48, P = 0.045; DFS HR = 0.63, P = 

1.6). In the TIMER database, higher YTHDF2 expression 

was associated with poor OS in KICH (HR = 24.208, 

95% confidence interval [CI] = 2.122-276.177, P = 0.01), 

LGG (HR = 2.749, 95% CI = 1.697-4.453, P = 0), LIHC 

(HR = 2.194, 95% CI =1.334-3.608, P = 0.002), and 

SARC (HR = 3.024, 95% CI = 1.725-5.302, P = 0). In the 

OncoLnc database, high YTHDF2 expression was 

associated with poor prognosis in LGG (Cox coefficient = 

0.329, P = 0.00038), LIHC (Cox coefficient = 0.316, P = 

0.00088) and SARC (Cox coefficient = 0.428, P = 

0.00012), whereas it was associated with superior 

prognosis in READ (Cox coefficient = –0.53, P = 0.022). 

In the Kaplan-Meier plotter database, high YTHDF2 

expression was associated with poor OS in LIHC (HR = 

2.71, 95% CI = 1.9-3.87, P = 1.00e-08) and SARC (HR = 

2.71, 95% CI = 1.62-4.55, P = 8.20e-05), whereas it was 

associated with superior OS in BLCA (HR = 0.69, 95% 

CI = 0.51-0.92, P = 0.011), KIRC (HR = 0.58, 95% CI = 

0.43-0.78, P = 0.00029), LUAD (HR = 0.67, 95% CI = 

0.5-0.9, P = 0.0078), OV (HR = 0.73, 95% CI = 0.56-

0.95, P = 0.021), READ (HR = 0.47, 95% CI = 0.22-1.01, 

P = 0.048), and THYM (HR = 0, 95% CI = 0-inf, P = 

0.038). These results suggest that YTHDF2 is a potential 

prognostic biomarker of LGG, LIHC, and SARC, and 

indicate the prognostic value of YTHDF2 expression may 

depend on cancer type. 

 

 
 

Figure 1. YTHDF2 expression in different types of human cancers were determined with (A) the TIMER, (B) GEPIA, and (C) ONCOMINE 
databases. ***P<0.001, **P<0.01, *P<0.05. 
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We then used the “survival” TIMER module to confirm 

the prognostic value of YTHDF2 expression in LGG, 

LIHC, and SARC (Table 1). We explored the clinical 

impact of YTHDF2 and corrected for potential 

confounding factors with a multivariable Cox pro-

portional hazard model. In the univariate analysis, 

YTHDF2, patient age, and all TIICs (B cells, CD4+ T 

cells, CD8+ T cells, macrophages, neutrophils. and 

DCs) had a significant impact on OS in LGG. 

YTHDF2, macrophages, and neutrophils had a 

significant impact on OS in LIHC, whereas YTHDF2, 

patient age, and CD4+ T cells had a significant impact 

on OS in SARC. In the multivariate analysis, we 

observed significant associations of YTHDF2, patient 

age, and macrophages with OS in LGG. However, only 

YTHDF2 was associated with OS in LIHC. In addition, 

associations between YTHDF2, patient age, CD4+ T 

cells, and OS were observed in SARC. By using the 

 

 
 

Figure 2. Kaplan-Meier survival curves comparing YTHDF2 high and low expression (A, B) in LGG, (C, D) LIHC, and (E, F) SARC in datasets from 
the GEPIA database. (A) OS and (B) DFS survival curves in LGG (n = 256). (C) OS and (D) DFS survival curves in LIHC (n = 182). (E) OS and (F) DFS 
survival curves in SARC (n = 131). DFS, disease-free survival; LGG, lower-grade glioma; LIHC, liver hepatocellular carcinoma; SARC, sarcoma; 
OS, overall survival. 
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Table 1. Univariate and multivariate analysis of association of YTHDF2 and prognostic factors with overall survival in 
LGG, LIHC and SARC. 

Parameter 

LGG LIHC SARC 

Univariate analysis Multivariate analysis Univariate analysis 
Multivariate 

analysis 
Univariate analysis 

Multivariate 

analysis 

 HR (95% CI) P-value HR (95% CI) P-value    HR (95% CI) P-value 
HR  

(95% CI) 
P-value HR (95% CI) P-value HR (95% CI) 

P-

val

ue 

Age 
1.058  

(1.043-1.073) 
*** 

1.057  (1.041-

1.073) 
*** 

1.01  

(0.997-1.024) 
 0.139   

1.019 

(1.003-   1.034) 
* 

1.019  

(1.004-1.033) 
* 

gender (male) 
1.092  

(0.765-1.557) 
0.629   

0.816 

(0.573-1.163) 
0.26   

0.87  

(0.584   - 

1.297) 

0.494   

raceBlack 
4939923  

(0-Inf) 
0.993   

1.542  

(0.656-3.622) 
 0.321   

1.073  

(0.130-8.821) 
0.948   

raceWhite 3286235 (0-Inf) 0.993   
1.300  

(0.893-1.894) 
 0.172   

0.788 (0.108-

5.750) 
0.814   

Tumor Purity 
0.562 (0.25-

1.261) 
0.162   

2.07  

(0.901-4.759) 
 0.087   

2.003  

(0.723-5.551) 
0.181   

B cell  
830.428  

(54.364-12685) 
*** 

3.450  

(0.011-1042.915) 
0.671 

0.864 

(0.053-13.978) 
   0.918   

0.224  

(0.006-8.9) 
0.426   

CD8+Tcell 

19943.51 

(1320.611-

301181.6) 

*** 
5.782 (0.005-

6512.228) 
0.625 

0.515  

(0.053-5.035) 
  0.569   

0.677  

(0.039-11.68) 
0.788   

CD4+Tcell 
47.835 

(6.336-361.158) 
*** 

0.062  

(0.000-188.625) 
0.497 

11.602 

(0.483-278.815) 

      

0.131 
  

0.016  

(0.001-0.436) 
* 

0.016  

(0.001-0.425) 
* 

Macrophage 

296.664  

(52.011-

1692.124) 

*** 
851.361 (15.430-

46973.874) 
 ** 

22.634 

(1.631-314.017) 
* 

23.940(0.5

35-

1070.315) 

0.101 
0.41  

(0.05- 3.368) 
0.407   

Neutrophil 

881.918  

(66.197-

11749.39) 

*** 
0.016  

(0.000-49.469) 
0.314 

486.294 

(2.269-104217.1) 
  * 

0.299(0.00

0- 

2654.334) 

0.795 
0.003  

(0- 3.517) 
0.107   

Dendritic 
10.994  

(4.24-28.506) 
*** 

3.874   

(0.095-157.366) 
0.474 

1.74 

(0.54-5.612) 
0.354   

0.359  

(0.088-1.475) 
0.156   

YTHDF2 
2.749 (1.697-

4.453) 
*** 

1.984  

(1.104-3.565) 
 * 

2.194 

(1.334 -3.608) 
** 

2.094(1.27

0-    3.454) 
** 

3.024  

(1.725-5.302) 
*** 

3.013  

(1.720-5.277)  

  

*** 

LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; SARC, Sarcoma; YTHDF2, YTH N6-methyladenosine 
RNA binding protein 2; Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation 
adjusted by purity.P-value Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05. 
 

UALCAN database, higher YTHDF2 expression was 

associated with poor OS in LGG, LIHC, and SARC. 

YTHDF2 expression also impacted the OS in LGG, 

LIHC, and SARC with different clinicopathological 

parameters, such as gender and tumor grade 

(Supplementary Figure 1 and Supplementary Table 4). 

Although YTHDF2 expression was not significantly 

higher in LGG compared with normal samples 

(Supplementary Figure 2A), we found that YTHDF2 

expression was higher in astrocytoma than in oligo-

astrocytoma and oligodendroglioma. YTHDF2 expression 

was higher in grade 3 LGG than in grade 2. In addition, 

higher YTHDF2 expression was associated with poor OS 

in all LGG and LGG with astrocytoma, but not 

oligoastrocytoma and oligodendroglioma (Supplementary 

Figure 2 and Supplementary Table 4).  

 

YTHDF2 expression is correlated with the immune 

infiltration level in LGG 
 

As stated previously, some TIICs were independent 

predictors of survival in cancers (Table 1). Therefore, 

we investigated the correlation of YTHDF2 expression 

with immune infiltration levels in 32 cancer types from 

the TIMER database. The analysis showed that 

YTHDF2 expression was associated with tumor purity 



 

www.aging-us.com 18481 AGING 

in 14 cancer types and B cell infiltration levels in 10 

cancer types. In addition, YTHDF2 expression was 

associated with CD8+ T cell levels in 12 cancer types, 

CD4+T cell levels in 14 cancer types, macrophage 

levels in 14 cancer types, neutrophil levels in 12 cancer 

types, and DC levels in 12 cancer types (Supplementary 

Table 5).  

 

YTHDF2 expression was positively correlated with the 

levels of infiltrating B cells (r = 0.505, P = 2.45e-32), 

CD8+ T cells (r = 0.25, P = 3.02e-08), CD4+ T cells (r 

= 0.379, P = 1.09e-17), macrophages (r = 0.309, P = 

6.79e-12), neutrophils (r = 0.468, P = 3.39e-27), and 

DCs (r = 0.489, P = 5.91e-30) in LGG (Figure 3A). 

However, YTHDF2 expression was only associated 

with neutrophils in LIHC (r = 0.159, P = 3.01e-03) 

(Figure 3B), and YTHDF2 expression had no 

significant correlations with infiltrating immune cell 

levels in SARC (Figure 3C). These findings strongly 

indicate that YTHDF2 plays an important role in 

immune infiltration in LGG. 

 

Correlation analysis between YTHDF2 expression 

and immune markers 
 

To better understand the relationship between YTHDF2 

and various infiltrating immune cells, we analyzed the 

correlations between YTHDF2 expression and the 

marker genes of different immune cells and functional T 

cells in LGG, LIHC, and SARC with the TIMER 

database. Table 2 shows YTHDF2 expression was 

associated with most marker genes of the various 

immune and T cells in LGG. However, YTHDF2 

expression was associated with only 14 markers in 

LIHC and 13 markers in SARC (Table 2). 

 

Interestingly, YTHDF2 expression was associated with 

gene markers of B cells, monocytes, TAMs, M2 

macrophages, DCs, and Th2 cells in LGG (Table 2). 

These findings indicate that YTHDF2 may play a 

specific role in the regulation of macrophage 

polarization in LGG. We further investigated the 

relationship between YTHDF2 and the related genes 

and markers of TAMs. This analysis showed that 

YTHDF2 expression was  related to TAM-related 

genes and markers, such as CCL2, CSF1, CSF1R, 

EGF, STAT3, STAT6, IL-6, IL-10, TLR4, TGFβ 

(TGFB1), LOX, PD-L1 (CD274), PD-L2 

(PDCD1LG2), CD80, CD86, and MFGE8 (Table 3). 

Poor prognosis in LGG correlate with most TAM 

markers, including EGF, STAT3, STAT6, IL-6, IL-10, 

TGFβ (TGFB1), LOX, PD-L1 (CD274), PD-L2 

(PDCD1LG2), CD80, and CD86 (Supplementary Table 

6). These results further reveal that YTHDF2 has a 

strong relationship with TAM infiltration. We also 

found a significant relationship between YTHDF2 and 

DC markers, such as HLA-DPB1, HLA-DQB1, HLA-

DRA, HLA-DPA1, BDCA-1(CD1C), and CD11c 

(ITGAX). In addition, a significant correlation between 

YTHDF2 and TGFβ (TGFB1) was observed in Treg 

cells, whereas TIM-3 (HAVCR2) correlate with T cell 

exhaustion (Table 2)., These results further suggest that 

YTHDF2 plays a role in immune escape in the LGG 

microenvironment. 

 

 
 

Figure 3. Correlation of YTHDF2 expression with immune infiltration level in (A) LGG, (B) LIHC, and (C) SARC. LGG, lower-grade glioma; LIHC, 
liver hepatocellular carcinoma; SARC, sarcoma. 
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Table 2. Correlation between YTHDF2 and relate genes and markers of immune cells in TIMER. 

Description Gene markers 

LGG LIHC SARC 

None Purity None Purity None Purity 

cor p cor p cor p cor p cor p cor p 

CD8+T cell CD8A 0.090  * 0.083  0.069  0.042  0.425  0.023  0.669  0.007  0.914  -0.001  0.983  

 CD8B -0.077  0.081  -0.070  0.128  0.069  0.186  0.047  0.384  -0.030  0.625  -0.041  0.523  

T 

cell(general) 
CD3D 0.158  *** 0.159  *** 0.065  0.214  0.054  0.315  -0.033  0.594  -0.039  0.545  

 CD3E 0.174  *** 0.181  *** -0.018  0.732  -0.026  0.624  -0.081  0.191  -0.088  0.171  

 CD2 0.194  *** 0.196  *** 0.002  0.975  -0.012  0.829  -0.038  0.541  -0.045  0.478  

B cell CD19 0.222  *** 0.221  *** 0.080  0.125  0.085  0.116  -0.045  0.472  -0.030  0.635  

 CD79A 0.273  *** 0.304  *** -0.005  0.924  -0.016  0.773  0.016  0.802  0.031  0.632  

Monocyte CD86 0.436  *** 0.442  *** 0.122  * 0.107  * 0.075  0.231  0.067  0.295  

 CSF1R 0.441  *** 0.452  *** 0.118  * 0.109  * 0.015  0.807  0.003  0.957  

TAM CCL2 0.222  *** 0.214  *** 0.099  0.057  0.103  0.056  -0.065  0.297  -0.074  0.246  

 CD68 0.344  *** 0.344  *** 0.093  0.073  0.089  0.100  0.115  0.065  0.113  0.078  

 IL10 0.305  *** 0.307  *** 0.136  ** 0.139  * 0.150  * 0.140  * 

M1 

Macrophage 
INOS (NOS2) -0.024  0.582  -0.014  0.758  -0.122  * -0.113  * 0.043  0.488  0.044  0.491  

 IRF5 0.357  *** 0.364  *** -0.149  ** -0.155  ** -0.040  0.523  -0.028  0.667  

 
COX2 

(PTGS2) 
0.113  * 0.111  * 0.099  0.057  0.100  0.062  -0.026  0.677  -0.028  0.659  

M2 

Macrophage 
CD163 0.221  *** 0.210  *** 0.110  * 0.104  0.054  0.084  0.178  0.073  0.254  

 VSIG4 0.426  *** 0.420  *** 0.145  ** 0.139  * 0.091  0.145  0.078  0.222  

 MS4A4A 0.296  *** 0.302  *** 0.121  * 0.112  * 0.053  0.396  0.036  0.576  

Neutrophils 
CD66b 

(CEACAM8) 
0.100  * 0.097  * 0.072  0.169  0.083  0.122  0.064  0.300  0.071  0.266  

 
CD11b 

(ITGAM) 
0.435  *** 0.441  *** 0.133  * 0.138  * 0.015  0.810  0.004  0.950  

 CCR7 0.010  0.829  0.013  0.772  -0.010  0.855  -0.020  0.716  -0.170  ** -0.180  ** 

Natural 

killer cell 
KIR2DL1 0.003  0.946  0.000  0.996  0.088  0.092  0.092  0.088  -0.025  0.688  -0.038  0.549  

 KIR2DL3 0.085  0.055  0.086  0.059  0.078  0.132  0.082  0.130  -0.091  0.144  -0.106  0.097  

 KIR2DL4 0.299  *** 0.297  *** 0.117  * 0.099  0.066  0.052  0.400  0.053  0.406  

 KIR3DL1 -0.022  0.614  -0.029  0.520  0.067  0.195  0.059  0.273  -0.110  0.077  -0.134  * 

 KIR3DL2 0.079  0.073  0.084  0.066  0.007  0.900  0.001  0.984  -0.037  0.555  -0.040  0.533  

 KIR3DL3 0.028  0.523  0.031  0.498  0.079  0.130  0.082  0.127  -0.074  0.235  -0.078  0.223  

 KIR2DS4 0.038  0.386  0.045  0.323  0.065  0.209  0.076  0.156  -0.037  0.551  -0.036  0.578  

Dendritic 

cell 
HLA-DPB1 0.304  *** 0.312  *** 0.045  0.389  0.029  0.591  -0.050  0.423  -0.059  0.359  

 HLA-DQB1 0.258  *** 0.258  *** 0.051  0.324  0.031  0.565  -0.017  0.787  -0.025  0.695  

 HLA-DRA 0.362  *** 0.366  *** 0.090  0.082  0.080  0.139  -0.012  0.846  -0.023  0.722  

 HLA-DPA1 0.301  *** 0.307  *** 0.075  0.150  0.063  0.239  -0.063  0.309  -0.073  0.255  

 
BDCA-

1(CD1C) 
0.135  ** 0.139  ** -0.067  0.198  -0.065  0.226  -0.238  *** -0.257  *** 

 
BDCA-

4(NRP1) 
0.014  0.755  -0.003  0.948  0.101  0.051  0.109  * 0.135  * 0.127  * 

 
CD11c 

(ITGAX) 
0.243  *** 0.242  *** 0.081  0.120  0.079  0.140  0.056  0.365  0.052  0.418  

Th1 T-bet (TBX21) 0.121  ** 0.112  * 0.053  0.306  0.046  0.390  -0.073  0.238  -0.082  0.202  

 STAT4 -0.109  * -0.103  * -0.011  0.838  -0.022  0.679  0.005  0.941  -0.001  0.991  

 STAT1 0.268  *** 0.250  *** -0.010  0.841  -0.035  0.517  -0.148  * -0.155  * 

 IFN-γ (IFNG) 0.112  * 0.130  ** 0.097  0.061  0.086  0.112  0.026  0.681  0.025  0.693  

 TNF-α (TNF) 0.166  *** 0.175  *** 0.116  * 0.120  * 0.054  0.385  0.031  0.628  

Th2 GATA3 0.276  *** 0.272  *** 0.032  0.534  0.023  0.663  0.134  * 0.154  * 

 STAT6 0.207  *** 0.222  *** 0.013  0.801  0.015  0.780  -0.350  *** -0.346  *** 

 STAT5A 0.367  *** 0.360  *** 0.028  0.587  0.006  0.909  -0.183  ** -0.173  ** 

 IL13 0.047  0.283  0.045  0.322  0.027  0.607  0.032  0.548  0.039  0.533  0.064  0.321  

Tfh BCL6 0.120  ** 0.118  * 0.172  ** 0.194  *** -0.164  ** -0.186  ** 

 IL21 0.100  * 0.089  0.053  0.063  0.223  0.057  0.289  -0.002  0.969  -0.009  0.885  

Th17 STAT3 0.290  *** 0.265  *** 0.178  ** 0.184  ** -0.248  *** -0.269  *** 

 IL17A -0.030  0.497  -0.027  0.551  0.011  0.833  0.035  0.511  0.017  0.784  0.037  0.561  

Treg FOXP3 -0.322  *** -0.317  *** 0.040  0.441  0.052  0.336  0.126  * 0.125  0.051  

 
TGFβ 

(TGFB1) 
0.415  *** 0.419  *** 0.004  0.934  0.008  0.882  0.160  * 0.149  * 

 CCR8 0.028  0.531  0.020  0.662  0.070  0.181  0.075  0.166  0.064  0.305  0.050  0.436  
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 STAT5B -0.021  0.640  -0.030  0.512  -0.205  *** -0.201  *** -0.459  *** -0.474  *** 

T cell 

exhaustion 

PD-1 

(PDCD1) 
0.188  *** 0.176  *** 0.016  0.756  0.007  0.896  0.114  0.067  0.123  0.054  

 CTLA4 0.167  *** 0.175  *** 0.048  0.355  0.031  0.562  0.010  0.878  0.012  0.849  

 LAG3 0.187  *** 0.189  *** 0.032  0.536  0.009  0.861  0.103  0.097  0.113  0.078  

 
TIM-3 

(HAVCR2) 
0.458  *** 0.457  *** 0.162  ** 0.153  ** 0.106  0.090  0.100  0.118  

 GZMB 0.034  0.442  0.036  0.430  0.039  0.451  0.025  0.637  0.123  * 0.119  0.063  

LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; SARC, Sarcoma; TAM, tumor-associated macrophage; 
Th, T helper cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of Spearman’s correlation; None, correlation 
without adjustment. Purity, correlation adjusted by purity. P-value Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05. 
 

Table 3. Correlation analysis between YTHDF2 and relate genes and markers of TAMs in TIMER. 

Description Gene markers 

LGG LIHC SARC 

None Purity None Purity None Purity 

cor p cor p cor p cor p cor p cor p 

TAMs CCL2 0.222  *** 0.214  *** 0.099  0.057  0.103  0.056  -0.065  0.297  -0.074  0.246  

 CSF1 0.399  *** 0.389  *** 0.223  *** 0.257  *** -0.010  0.874  -0.033  0.604  

 CSF1R 0.441  *** 0.452  *** 0.118  * 0.109  * 0.015  0.807  0.003  0.957  

 EGF 0.280  *** 0.293  *** 0.356  *** 0.361  *** -0.185  ** -0.201  ** 

 STAT3 0.290  *** 0.265  *** 0.178  *** 0.184  *** -0.248  *** -0.269  *** 

 STAT6 0.207  *** 0.222  *** 0.013  0.801  0.015  0.780  -0.350  *** -0.346  *** 

 IL6 0.318  *** 0.303  *** 0.028  0.593  0.037  0.490  0.056  0.369  0.038  0.554  

 IL10 0.305  *** 0.307  *** 0.136  ** 0.139  ** 0.150  * 0.140  * 

 TLR4 0.114  ** 0.116  * 0.174  *** 0.176  ** -0.092  0.138  -0.104  0.104  

 TGFβ (TGFB1) 0.415  *** 0.419  *** 0.004  0.934  0.008  0.882  0.160  ** 0.149  * 

 LOX 0.478  *** 0.466  *** 0.090  0.083  0.111  * 0.191  ** 0.187  ** 

 PD-L1(CD274) 0.198  *** 0.189  *** 0.192  *** 0.195  *** -0.110  0.076  -0.123  0.054  

 PD-L2(PDCD1LG2) 0.454  *** 0.456  *** 0.104  * 0.096  0.075  -0.014  0.823  -0.026  0.687  

 CD80 0.300  *** 0.277  *** 0.153  ** 0.154  ** 0.121  0.052  0.117  0.069  

 CD86 0.436  *** 0.442  *** 0.122  * 0.107  * 0.075  0.231  0.067  0.295  

 MFGE8 -0.366  *** -0.383  *** 0.031  0.552  0.025  0.638  -0.433  *** -0.442  *** 

LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; SARC, Sarcoma; TAMs, tumor-associated macrophages; 
Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity. P-value 
Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05. 
 

YTHDF2 expression is correlated with IDH1 level in 

LGG 
 

IDH1 mutations often occur in gliomas [47, 48] and 

AML [49, 50]. In addition, mutant IDH is highly 

associated with the regulation of the immune 

microenvironment in LGG [51]. Moreover, YTHDF2 is 

related to cancer stem cells (CSCs) in AML [52]. We 

attempted to find the relationship between YTHDF2 

and IDH1 expression. We also analyzed the impact of 

the IDH1 mutation on immune infiltration levels in 

LGG. Interestingly, data from the GEPIA database 

showed that high IDH1 expression was associated with 

poor OS in LGG (HR = 1.7, P = 0.0061) (Figure 4A). 

LGG patients with IDH1 mutations had a superior OS 

according to the cBioPortal for Cancer Genomics 

analysis (Figure 4B). Chinese Glioma Cooperative 

Group (CGGA) data also indicated that the IDH1 

mutation led to a superior OS in glioma (Figure 4C). 

However, the IDH1 mutation had no impact on OS in 

AML (Figure 4D). In addition, YTHDF2 expression has 

a moderate positive relationship with IDH1 in LGG 

(Figure 4E) and a weak positive relationship with IDH1 

in AML (Figure 4F). YTHDF2 expression was weakly 

related to TAM-related genes and markers in AML 

(Supplementary Table 7). More importantly, the levels 

of infiltration B cells, CD8+ T cells, macrophages, 

neutrophils, and DCs were higher in IDH1-wild-type 

LGG than IDH1-mutant LGG (Figure 4G). These 

results suggest that YTHDF2 may play an important 

role in immune infiltration in LGG, especially IDH1-

wild-type LGG, but not in AML.  
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Enrichment analysis of YTHDF2 functional 

networks in LGG 

 

We used the LinkedOmics database to analyze YTHDF2 

mRNA sequencing data from 27 LGG patients. The 

volcano plot in Figure 5A shows that YTHDF2 was 

positively correlated with 241 genes (dark-red dots) but 

negatively correlated with 195 genes (dark-green dots) 

(FDR< 0.05). The 50 significant gene sets positively and 

negatively associated with YTHDF2 are shown in the heat 

map (Figure 5B and 5C). The LinkedOmics GESA tool 

was used to perform the Gene Ontology and pathway 

enrichment analyses (Supplementary Table 8 and Figure 

5D–5G). Supplementary Table 8 shows that in general the 

genes correlated with YTHDF2 were enriched in 

biological processes (double-strand break repair, DNA 

replication, cell cycle checkpoint, and mitotic cell cycle 

phase transition), cellular components (DNA packaging 

complex, protein-DNA complex, nuclear speck, 

replication fork, and chromosomal region), and molecular 

function (RNA polymerase II transcription factor binding, 

repressing transcription factor binding, NF-kappaB 

binding, nucleosome binding, and alcohol binding). Our 

results, demonstrating enrichment analyses for the KEGG, 

Panther, Reactome, and Wiki pathways, show the genes 

correlated with YTHDF2 were more enriched in cell 

cycle, TCA cycle, DNA replication, and the FAS 

signaling pathway.  

 

 
 

Figure 4. Correlation of YTHDF2 expression with IDH1 level in LGG. (A) High IDH1 expression was correlated with poor OS in the LGG 
GEPIA dataset. (B) LGG patients with IDH1 mutations had superior OS in the dataset from cBioPortal for Cancer Genomics. (C) IDH1 mutation 
led to a superior OS in gliomas. (D) IDH1 expression was not correlated with OS in the AML in GEPIA dataset. (E, F) YTHDF2 expression had a 
positive relationship with IDH1 in LGG and AML. (G) The immune infiltration levels were higher in IDH1-wild-type than in IDH1-mutant LGG. 
AML, acute myeloid leukemia; LGG, lower-grade glioma; OS, overall survival. 
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DISCUSSION 
 

In the present study, we first performed a pan-cancer 

analysis to analyze YTHDF2 expression and prognostic 

value. Comprehensive analysis suggested that the 

differences in YTHDF2 expression and prognostic 

values in different types of cancer may reflect 

underlying mechanisms associated with different 

biological characteristics. Importantly, multivariate 

analysis confirmed that high YTHDF2 expression was 

an independent prognostic factor in patients with LGG, 

LIHC, or SARC. We found that YTHDF2 expression

 

 
 

Figure 5. Enrichment analysis of YTHDF2 functional networks in LGG by LinkedOmics. (A) Volcano plot of genes differentially 
expressed in correlation with YTHDF2. (B, C) Heat maps of genes positively and negatively correlated with YTHDF2 (top 50). (D) KEGG 
pathway analysis of YTHDF2 by GSEA. (E) Panther pathway analysis of YTHDF2 by GSEA. (F) Reacmoe pathway analysis of YTHDF2 by GSEA. 
(G) Wiki pathway analysis of YTHDF2 by GSEA.  
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was higher in LGG compared with normal samples, 

although the difference was not significant. LGG are a 

diverse group of primary brain tumors, which mainly 

include astrocytoma, oligoastrocytoma, and oligo-

dendroglioma. Previous studies have shown that 

astrocytic tumor type (vs. oligodendroglioma or oligo-

dominant) was a poor prognostic indicator in patients 

with LGG [53–55]. We also found that YTHDF2 

expression was higher in astrocytoma than in the other 

tumor types (oligoastrocytoma and oligodendroglioma). 

Moreover, high YTHDF2 expression was a prognostic 

factor in LGG with astrocytoma but not with 

oligoastrocytoma and oligodendroglioma. Similarly, the 

expression of YTHDF2 was higher in grade 3 LGG than 

in grade 2, and high YTHDF2 expression was a 

prognostic factor in LGG with different tumor grades. 

These results implied that YTHDF2 was a prognostic 

factor in LGG, especially with the more malignant 

subtype or higher tumor grade. However, more research 

is needed to verify the findings.  

 

A second important finding from this study is that 

YTHDF2 expression positively correlated with the 

levels of infiltrating B cells, CD8+ T cells, CD4+ T 

cells, macrophages, neutrophils, and DCs in LGG. 

Notably, an association was found between YTHDF2 

expression and TAM markers, such as CCL2, CSF1, 

CSF1R, EGF, STAT3, STAT6, IL-6, IL-10, TLR4, 

TGFβ (TGFB1), LOX, PD-L1 (CD274), PD-L2 

(PDCD1LG2), CD80, CD86, and MFGE8. TAMs play 

a special role in regulating different steps of tumor 

progression and metastasis [56]. In glioma, CSCs can 

induce M2 macrophages, which secrete many cytokines, 

including TGF-β1 and IL-10, and facilitate immune-

suppression [57]. Secretion of IL-10 and TGF-β was 

shown to facilitate an immunosuppressive micro-

environment by inhibiting T cell proliferation in oral 

squamous cell carcinoma [58]. Interestingly, colony-

stimulating factor-1 (CSF1) secreted from tumor cells 

was shown to induce macrophages to produce 

epidermal growth factor (EGF), which in turn promoted 

the migration of cancer cells [59]. In addition, inhibition 

of colony-stimulating factor-1 receptor (CSF1R) in 

TAMs suppressed the metastasis of pancreatic tumors 

[60]. The role of TAMs in immunosuppression has been 

widely studied. For instance, activation of the PD-1/PD-

L1/PD-L2 and CTLA4/CD80/CD86 pathways leads to 

inhibition of TCR signal and T cell cytotoxic functions 

[61, 62]. Previously, it has been suggested that TAMs 

are attractive therapeutic targets, based on their 

important role in the tumor immunosuppressive 

microenvironment in cancer patients [56]. Another 

interesting finding is the association between YTHDF2 

expression and DCs, Treg cells, and T cell exhaustion 

markers, such as HLA-DPB1, HLA-DQB1, HLA-DRA, 

HLA-DPA1, TGFβ, and TIM-3. Notably, TIM-3 is a 

crucial T cell exhaustion regulator [63]. DCs can 

promote tumor metastasis by increasing Treg cells and 

reducing CD8+T cell cytotoxicity [64]. In addition, 

some markers (tumor mutational burden [TMB], PD-1, 

and PD-L1) have been identified as the effectors of 

immunotherapy. TMB can be used as a biomarker to 

identify pediatric glioblastoma (GBM) patients who 

may benefit from immunotherapy [65]. However, 

another study found that high TMB is only found in 

3.5% of GBM patients, and that IDH1-mutant gliomas 

are not enriched for high TMB [66]. PD-1 (PDCD1) 

promoter methylation is a prognostic factor in patients 

with LGG harboring IDH mutations [20]. A previous 

study found that PD-L2 expression upregulated in 

higher grade glioma and IDH-wild-type glioma. High 

PD-L2 expression was associated with poor survival in 

GBM [67]. Importantly, several immunotherapies have 

been evaluated in patients with glioma, including 

peptide vaccines, DC vaccines, oncolytic viruses, CAR-

T cells, and checkpoint inhibitor therapy [68–70]. 

However, a previous study reported the response rates 

were low in refractory high-grade gliomas treated with 

PD-1 inhibitors [71]. TIGIT and PD-1 dual checkpoint 

blockade enhances antitumor immunity and survival in 

a murine GBM model [72]. Blocking PD-1/PD-L1 

interactions together with MLN4924 therapy is a 

potential strategy for glioma treatment [73]. Gliomas 

treated with DC vaccination ± murine anti–PD-1 

monoclonal antibody blockade or a colony-stimulating 

factor 1 receptor inhibitor (PLX3397) had prolonged 

survival in vivo [74]. Previous studies indicate that 

combination therapy with immune checkpoint blockade 

is effective for the treatment of malignant tumors, 

including GBM [75, 76].  

 

Our third important finding is that YTHDF2 expression 

correlated with IDH1 expression in LGG. The analysis 

showed that high IDH1 expression was associated with 

poor OS in LGG. IDH1 mutations were associated with 

a superior OS. This is consistent with previous studies 

showing that IDH1 mutation is an independent 

favorable prognostic marker in glioma [47, 48]. In 

addition, the immune infiltration levels were higher in 

IDH1-wild-type LGG than in IDH1-mutant LGG. We 

showed that significant infiltration of immune cells, 

such as B cells, CD8+ T cells, CD4+ T cells, 

macrophages, neutrophils, and DCs, was linked to poor 

prognosis in LGG. In a previous study, IDH-wild-type 

gliomas exhibit a more prominent tumor infiltrating 

lymphocytes than IDH-mutant cases [77]. IDH1 

mutations in gliomas caused leukocyte chemotaxis 

downregulation, resulting in suppression of the tumor-

associated immune system [78]. As previously noted, 

IDH-mutant gliomas can escape the immune 

surveillance of natural killer cells [79]. More 

importantly, YTHDF2 expression has a positive 
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relationship with IDH1 level. These results indicate that 

the role of YTHDF2 in immune infiltration in LGG may 

depend on IDH1 status. However, further investigations 

are needed to verify our findings. 

 

Pathway enrichment analysis of YTHDF2 in LGG by 

GESA found that the genes correlated with YTHDF2 were 

more significantly enriched in cell cycle, TCA cycle, DNA 

replication, and the FAS signaling pathway. Interestingly, 

the most significant gene positively associated with 

YTHDF2, FAF1, can regulate antiviral immunity ([80, 

81]). Moreover, notch family genes (the pathway found in 

the enrichment analysis) were prognostic biomarkers and 

correlated with immune infiltrates in gastric cancer ([82]). 

Because bioinformatics analysis was performed based on 

TCGA or GEO datasets, further biological experiments are 

needed to validate future results. 

 

In summary, our data provide a comprehensive 

bioinformatics analysis of YTHDF2 expression and 

prognostic value in human cancers. High YTHDF2 

expression correlates with poor prognosis and increased 

immune infiltration levels (including infiltration of B 

cells, CD8+ T cells, CD4+ T cells, macrophages, 

neutrophils and DCs) in LGG. YTHDF2 expression 

positively correlated with expression of several immune 

cell markers, including exhausted T cell markers, PD-1, 

TIM-3, and CTLA-4 in LGG. In addition, YTHDF2 

expression positively correlated with TAM gene 

markers in LGG. Interestingly, YTHDF2 expression 

positively correlated with IDH1 expression in LGG. 

These findings suggest that YTHDF2 is a potential 

prognostic biomarker and correlates with tumor immune 

cells infiltration in LGG. 

 

MATERIALS AND METHODS 
 

GEPIA database analysis 
 

GEPIA (http://gepia.cancer-pku.cn/index.html) [2] is an 

interactive web server for analyzing the RNA 

sequencing expression data of 9,736 tumors and 8,587 

normal samples from the TCGA and the GTEx projects 

using a standard processing pipeline. GEPIA was used 

to analyze YTHDF2 expression and associated survival 

values (including OS and DFS) of YTHDF2 in 33 

different cancer types. Using the Spearman method, 

correlation between YTHDF2 and IDH1 was 

determined. YTHDF2 values were represented on the x-

axis, and IDH1 values were represented on the y-axis.  
 

TIMER database analysis 
 

The TIMER database (https://cistrome.shinyapps.io/ 

timer/) [3], which includes 10,897 samples across 32 

cancer types from TCGA, is a comprehensive resource for 

estimating the abundance of six types of infiltrating 

immune cells, including B cells, CD4+ T cells, CD8+ T 

cells, neutrophils, macrophages, and DCs. We analyzed 

YTHDF2 expression in different cancer types via 

different expression modules and the correlation of 

YTHDF2 expression with the abundance of immune 

infiltrates via the gene module. Partial correlations 

between variables, when considering tumor purity, are 

shown on the left-most panel of the figure or table [83]. In 

addition, relationships between YTHDF2 expression and 

publicly available gene markers of TIICs were explored 

via correlation modules [84]. The Spearman method was 

used to determine the correlation coefficient.  

 

ONCOMINE analysis 

 

ONCOMINE (http://www.oncomine.com) [4], an 

online cancer microarray database, was applied to 

analyze YTHDF2 mRNA levels in different cancers. 

The search filters were set as the following: differential 

analysis (cancer vs normal), cancer type (breast cancer), 

sample type (clinical specimen), data type (mRNA), and 

gene (YTHDF2). Thresholds were set as gene rank, 

10%; fold change, 2; and P-value, 0.05.  

 

UALCAN database 
 

UALCAN (http://ualcan.path.uab.edu/index.html) [5] is 

a portal for facilitating tumor subgroup gene expression 

and survival analyses. It was used to evaluate the 

mRNA levels and prognostic value of YTHDF2 in LGG 

patient and normal samples. A P value less than 0.05 

was considered significant. 

 

PrognoScan database analysis 

 

The PrognoScan database (http://www.abren.net/ 

PrognoScan/) [6] was used to analyze the relationships 

between YTHDF2 expression and patient prognosis, 

such as OS and DFS, across publicly available cancer 

microarray datasets. 

 

Kaplan-Meier plotter database analysis 
 

The Kaplan-Meier plotter (http://kmplot.com/analysis/) 

[7] is capable of assessing the effect of 54,675 genes on 

survival in 21 cancer types. The correlation between 

YTHDF2 expression and survival was analyzed by the 

pan-cancer module of the Kaplan-Meier plotter. The HR 

with 95% CI and the log-rank P-value were determined. 

 

OncoLnc database analysis 
 

OncoLnc (http://www.oncolnc.org/) [8] is an interactive 

tool for exploring survival correlations, and for 

downloading clinical data coupled to expression data 

http://gepia.cancer-pku.cn/index.html
http://www.oncomine.com/
http://ualcan.path.uab.edu/index.html
http://www.abren.net/PrognoScan/
http://www.abren.net/PrognoScan/
http://kmplot.com/analysis/
http://www.oncolnc.org/
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for mRNAs, miRNAs, and long noncoding RNAs. The 

correlation between YTHDF2 expression and survival 

was analyzed by OncoLnc. The Cox correlation 

coefficient and P-value were calculated. 

 

CGGA database analysis 

 

A total of 118 glioma samples (82 samples with IDH1 

mutation and 37 with wild-type IDH1) from CGGA 

were analyzed to determine the association of IDH1 

with survival [9]. GraphPad Prism software was used to 

generate a survival curve, and the log-rank test was used 

to assess the statistical significance.  

 

cBioportal for Cancer Genomics database analysis  

 

The cBioportal Cancer Genomics database (https:// 

www.cbioportal.org) [10], which was originally 

developed at Memorial Sloan Kettering Cancer Center, 

enables users to visualize, analyze, and download large-

scale cancer genomics datasets. The survival associated 

with IDH1 alterations in LGG was analyzed, and the 

log-rank test P-value was calculated. Determination of 

the correlation between YTHDF2 and IDH1 was 

performed using the Spearman and Pearson methods.  

 

LinkedOmics dataset 
 

LinkedOmics (http://www.linkedomics.org/login.php) 

[11] is a publicly available portal that includes multi-

omics data from all 32 TCGA cancer types. It provides 

a unique platform for biologists and clinicians to access, 

analyze, and compare cancer multi-omics data within 

and across tumor types. 

 

AUTHOR CONTRIBUTIONS  
 

Xiangan Lin, Zhichao Wang, and Guangda Yang 

conceptualized the project. Xiangan Lin and Zhichao 

Wang helped to develop the methodology used in this 

manuscript. Xiangan Lin, Zhichao Wang, Guangda 

Yang, Guohua Wen, and Hailiang Zhang performed the 

investigations. Xiangan Lin, Guohua Wen, and Hailiang 

Zhang wrote the original draft of the manuscript. 

Zhichao Wang and Guangda Yang reviewed and edited 

the manuscript. Guohua Wen and Hailiang Zhang 

contributed to the manuscript preparation and creation. 

Guangda Yang and Guohua Wen supervised the project.   

 

CONFLICTS OF INTEREST  
 

The authors have no conflicts of interest to declare. 

 

FUNDING 
 

No funding was received for this project. 

REFERENCES 
 

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 
Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 

 https://doi.org/10.3322/caac.21492 PMID:30207593 

2. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web 
server for cancer and normal gene expression profiling 
and interactive analyses. Nucleic Acids Res. 2017; 
45:W98–102. 

 https://doi.org/10.1093/nar/gkx247 PMID:28407145 

3. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu 
XS. TIMER: a web server for comprehensive analysis of 
tumor-infiltrating immune cells. Cancer Res. 2017; 
77:e108–10. 

 https://doi.org/10.1158/0008-5472.CAN-17-0307 
PMID:29092952 

4. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally 
R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. 
ONCOMINE: a cancer microarray database and 
integrated data-mining platform. Neoplasia. 2004; 
6:1–6. 

 https://doi.org/10.1016/s1476-5586(04)80047-2 
PMID:15068665 

5. Chandrashekar DS, Bashel B, Balasubramanya SA, 
Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, 
Varambally S. UALCAN: a portal for facilitating tumor 
subgroup gene expression and survival analyses. 
Neoplasia. 2017; 19:649–58. 

 https://doi.org/10.1016/j.neo.2017.05.002 
PMID:28732212 

6. Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a 
new database for meta-analysis of the prognostic value 
of genes. BMC Med Genomics. 2009; 2:18. 

 https://doi.org/10.1186/1755-8794-2-18 
PMID:19393097 

7. Nagy Á, Lánczky A, Menyhárt O, Győrffy B. Validation 
of miRNA prognostic power in hepatocellular 
carcinoma using expression data of independent 
datasets. Sci Rep. 2018; 8:9227. 

 https://doi.org/10.1038/s41598-018-27521-y 
PMID:29907753 

8. Anaya J. OncoLnc: linking TCGA survival data to 
mRNAs, miRNAs, and lncRNAs. PeerJ Computer 
Science. 2016. 

 https://doi.org/10.7717/peerj-cs.67 

9. Yan W, Zhang W, You G, Zhang J, Han L, Bao Z, Wang Y, 
Liu Y, Jiang C, Kang C, You Y, Jiang T. Molecular 
classification of gliomas based on whole genome gene 
expression: a systematic report of 225 samples from 

https://www.cbioportal.org/
https://www.cbioportal.org/
http://www.linkedomics.org/login.php
https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.1093/nar/gkx247
https://pubmed.ncbi.nlm.nih.gov/28407145
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://pubmed.ncbi.nlm.nih.gov/29092952
https://doi.org/10.1016/s1476-5586(04)80047-2
https://pubmed.ncbi.nlm.nih.gov/15068665
https://doi.org/10.1016/j.neo.2017.05.002
https://pubmed.ncbi.nlm.nih.gov/28732212
https://doi.org/10.1186/1755-8794-2-18
https://pubmed.ncbi.nlm.nih.gov/19393097
https://doi.org/10.1038/s41598-018-27521-y
https://pubmed.ncbi.nlm.nih.gov/29907753
https://doi.org/10.7717/peerj-cs.67


 

www.aging-us.com 18489 AGING 

the Chinese glioma cooperative group. Neuro Oncol. 
2012; 14:1432–40. 

 https://doi.org/10.1093/neuonc/nos263 
PMID:23090983 

10. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, 
Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, 
Cerami E, Sander C, Schultz N. Integrative analysis of 
complex cancer genomics and clinical profiles using the 
cBioPortal. Sci Signal. 2013; 6:pl1. 

 https://doi.org/10.1126/scisignal.2004088 
PMID:23550210 

11. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: 
analyzing multi-omics data within and across 32 cancer 
types. Nucleic Acids Res. 2018; 46:D956–63. 

 https://doi.org/10.1093/nar/gkx1090 PMID:29136207 

12. Werner JM, Schweinsberg V, Schroeter M, von Reutern 
B, Malter MP, Schlaak M, Fink GR, Mauch C, Galldiks N. 
Successful treatment of myasthenia gravis following 
PD-1/CTLA-4 combination checkpoint blockade in a 
patient with metastatic melanoma. Front Oncol. 2019; 
9:84. 

 https://doi.org/10.3389/fonc.2019.00084 
PMID:30828569 

13. Brahmer JR, Govindan R, Anders RA, Antonia SJ, 
Sagorsky S, Davies MJ, Dubinett SM, Ferris A, Gandhi L, 
Garon EB, Hellmann MD, Hirsch FR, Malik S, et al. The 
society for immunotherapy of cancer consensus 
statement on immunotherapy for the treatment of 
non-small cell lung cancer (NSCLC). J Immunother 
Cancer. 2018; 6:75. 

 https://doi.org/10.1186/s40425-018-0382-2 
PMID:30012210 

14. Miksch RC, Schoenberg MB, Weniger M, Bösch F, 
Ormanns S, Mayer B, Werner J, Bazhin AV, D’Haese JG. 
Prognostic impact of tumor-infiltrating lymphocytes 
and neutrophils on survival of patients with upfront 
resection of pancreatic cancer. Cancers (Basel). 2019; 
11:39. 

 https://doi.org/10.3390/cancers11010039 
PMID:30609853 

15. Zheng X, Song X, Shao Y, Xu B, Hu W, Zhou Q, Chen L, 
Zhang D, Wu C, Jiang J. Prognostic role of tumor-
infiltrating lymphocytes in esophagus cancer: a meta-
analysis. Cell Physiol Biochem. 2018; 45:720–32. 

 https://doi.org/10.1159/000487164 PMID:29414812 

16. Mielgo A, Schmid MC. Impact of tumour associated 
macrophages in pancreatic cancer. BMB Rep. 2013; 
46:131–38. 

 https://doi.org/10.5483/bmbrep.2013.46.3.036 
PMID:23527856 

17. Bingle L, Brown NJ, Lewis CE. The role of tumour-
associated macrophages in tumour progression: 

implications for new anticancer therapies. J Pathol. 
2002; 196:254–65. 

 https://doi.org/10.1002/path.1027 PMID:11857487 

18. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton 
GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. 
Tumor mutational burden as an independent predictor 
of response to immunotherapy in diverse cancers. Mol 
Cancer Ther. 2017; 16:2598–608. 

 https://doi.org/10.1158/1535-7163.MCT-17-0386 
PMID:28835386 

19. Liu B, Arakawa Y, Yokogawa R, Tokunaga S, Terada Y, 
Murata D, Matsui Y, Fujimoto KI, Fukui N, Tanji M, 
Mineharu Y, Minamiguchi S, Miyamoto S. PD-1/PD-L1 
expression in a series of intracranial germinoma and its 
association with Foxp3+ and CD8+ infiltrating 
lymphocytes. PLoS One. 2018; 13:e0194594. 

 https://doi.org/10.1371/journal.pone.0194594 
PMID:29617441 

20. Röver LK, Gevensleben H, Dietrich J, Bootz F, Landsberg 
J, Goltz D, Dietrich D. PD-1 (PDCD1) promoter 
methylation is a prognostic factor in patients with 
diffuse lower-grade gliomas harboring isocitrate 
dehydrogenase (IDH) mutations. EBioMedicine. 2018; 
28:97–104. 

 https://doi.org/10.1016/j.ebiom.2018.01.016 
PMID:29396294 

21. Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and 
potential of PD-1/PD-L1 checkpoint blockade 
immunotherapy for glioblastoma. J Exp Clin Cancer 
Res. 2019; 38:87. 

 https://doi.org/10.1186/s13046-019-1085-3 
PMID:30777100 

22. Wang D, Lin J, Yang X, Long J, Bai Y, Yang X, Mao Y, 
Sang X, Seery S, Zhao H. Combination regimens with 
PD-1/PD-L1 immune checkpoint inhibitors for 
gastrointestinal Malignancies. J Hematol Oncol. 2019; 
12:42. 

 https://doi.org/10.1186/s13045-019-0730-9 
PMID:31014381 

23. Hsu MM, Balar AV. PD-1/PD-L1 combinations in 
advanced urothelial cancer: rationale and current 
clinical trials. Clin Genitourin Cancer. 2019; 17:e618–26. 

 https://doi.org/10.1016/j.clgc.2019.03.009 
PMID:31005473 

24. Zhao BS, Roundtree IA, He C. Post-transcriptional gene 
regulation by mRNA modifications. Nat Rev Mol Cell 
Biol. 2017; 18:31–42. 

 https://doi.org/10.1038/nrm.2016.132 
PMID:27808276 

25. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA 
modifications in gene expression regulation. Cell. 2017; 
169:1187–200. 

https://doi.org/10.1093/neuonc/nos263
https://pubmed.ncbi.nlm.nih.gov/23090983
https://doi.org/10.1126/scisignal.2004088
https://pubmed.ncbi.nlm.nih.gov/23550210
https://doi.org/10.1093/nar/gkx1090
https://pubmed.ncbi.nlm.nih.gov/29136207
https://doi.org/10.3389/fonc.2019.00084
https://pubmed.ncbi.nlm.nih.gov/30828569
https://doi.org/10.1186/s40425-018-0382-2
https://pubmed.ncbi.nlm.nih.gov/30012210
https://doi.org/10.3390/cancers11010039
https://pubmed.ncbi.nlm.nih.gov/30609853
https://doi.org/10.1159/000487164
https://pubmed.ncbi.nlm.nih.gov/29414812
https://doi.org/10.5483/bmbrep.2013.46.3.036
https://pubmed.ncbi.nlm.nih.gov/23527856
https://doi.org/10.1002/path.1027
https://pubmed.ncbi.nlm.nih.gov/11857487
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://pubmed.ncbi.nlm.nih.gov/28835386
https://doi.org/10.1371/journal.pone.0194594
https://pubmed.ncbi.nlm.nih.gov/29617441
https://doi.org/10.1016/j.ebiom.2018.01.016
https://pubmed.ncbi.nlm.nih.gov/29396294
https://doi.org/10.1186/s13046-019-1085-3
https://pubmed.ncbi.nlm.nih.gov/30777100
https://doi.org/10.1186/s13045-019-0730-9
https://pubmed.ncbi.nlm.nih.gov/31014381
https://doi.org/10.1016/j.clgc.2019.03.009
https://pubmed.ncbi.nlm.nih.gov/31005473
https://doi.org/10.1038/nrm.2016.132
https://pubmed.ncbi.nlm.nih.gov/27808276


 

www.aging-us.com 18490 AGING 

 https://doi.org/10.1016/j.cell.2017.05.045 
PMID:28622506 

26. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6-
methyladenosine modification in cancers: current 
status and perspectives. Cell Res. 2018; 28:507–17. 

 https://doi.org/10.1038/s41422-018-0034-6 
PMID:29686311 

27. Zhang C, Fu J, Zhou Y. A review in research progress 
concerning m6A methylation and immunoregulation. 
Front Immunol. 2019; 10:922. 

 https://doi.org/10.3389/fimmu.2019.00922 
PMID:31080453 

28. Lee M, Kim B, Kim VN. Emerging roles of RNA 
modification: m6A and u-tail. Cell. 2014; 158:980–87. 

 https://doi.org/10.1016/j.cell.2014.08.005 
PMID:25171402 

29. Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, 
Nachshon A, Tai-Schmiedel J, Friedman N, Le-Trilling 
VTK, Trilling M, Mandelboim M, Hanna JH, Schwartz S, 
Stern-Ginossar N. m6A modification controls the 
innate immune response to infection by targeting type 
I interferons. Nat Immunol. 2019; 20:173–182. 

 https://doi.org/10.1038/s41590-018-0275-z 
PMID:30559377 

30. Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, Aplin AE, 
Lu Z, Hwang S, He C, He YY. m6A mRNA demethylase 
FTO regulates melanoma tumorigenicity and response 
to anti-PD-1 blockade. Nat Commun. 2019; 10:2782. 

 https://doi.org/10.1038/s41467-019-10669-0 
PMID:31239444 

31. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao 
X. Mettl3-mediated mRNA m6A methylation promotes 
dendritic cell activation. Nat Commun. 2019; 10:1898. 

 https://doi.org/10.1038/s41467-019-09903-6 
PMID:31015515 

32. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, 
Liu Y, Wang J, Dougherty U, Bissonnette MB, Shen B, 
Weichselbaum RR, et al. Anti-tumour immunity 
controlled through mRNA m6A methylation and 
YTHDF1 in dendritic cells. Nature. 2019; 566:270–74. 

 https://doi.org/10.1038/s41586-019-0916-x 
PMID:30728504 

33. Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, 
Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, 
Hur S, Chang HY. N6-methyladenosine modification 
controls circular RNA immunity. Mol Cell. 2019; 76:96–
109.e9. 

 https://doi.org/10.1016/j.molcel.2019.07.016 
PMID:31474572 

34. Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger 
BA. N6-methyladenosine modification and the YTHDF2 
reader protein play cell type specific roles in lytic viral 

gene expression during kaposi’s sarcoma-associated 
herpesvirus infection. PLoS Pathog. 2018; 
14:e1006995. 

 https://doi.org/10.1371/journal.ppat.1006995 
PMID:29659627 

35. Liao S, Sun H, Xu C. YTH domain: a family of N6-
methyladenosine (m6A) readers. Genomics Proteomics 
Bioinformatics. 2018; 16:99–107. 

 https://doi.org/10.1016/j.gpb.2018.04.002 
PMID:29715522 

36. Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, Liu Y, Ye L, 
Li Y, Zhang X. MicroRNA-145 modulates N6-
methyladenosine levels by targeting the 3'-
untranslated mRNA region of the N6-methyladenosine 
binding YTH domain family 2 protein. J Biol Chem. 
2017; 292:3614–23. 

 https://doi.org/10.1074/jbc.M116.749689 
PMID:28104805 

37. Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H, 
Kang T. YTHDF2 suppresses cell proliferation and 
growth via destabilizing the EGFR mRNA in 
hepatocellular carcinoma. Cancer Lett. 2019; 
442:252–61. 

 https://doi.org/10.1016/j.canlet.2018.11.006 
PMID:30423408 

38. Li J, Meng S, Xu M, Wang S, He L, Xu X, Wang X, Xie L. 
Downregulation of N6-methyladenosine binding 
YTHDF2 protein mediated by miR-493-3p suppresses 
prostate cancer by elevating N6-methyladenosine 
levels. Oncotarget. 2017; 9:3752–64. 

 https://doi.org/10.18632/oncotarget.23365 
PMID:29423080 

39. Chen J, Sun Y, Xu X, Wang D, He J, Zhou H, Lu Y, Zeng J, 
Du F, Gong A, Xu M. YTH domain family 2 orchestrates 
epithelial-mesenchymal transition/proliferation 
dichotomy in pancreatic cancer cells. Cell Cycle. 2017; 
16:2259–71. 

 https://doi.org/10.1080/15384101.2017.1380125 
PMID:29135329 

40. French PJ, Swagemakers SM, Nagel JH, Kouwenhoven 
MC, Brouwer E, van der Spek P, Luider TM, Kros JM, 
van den Bent MJ, Sillevis Smitt PA. Gene expression 
profiles associated with treatment response in 
oligodendrogliomas. Cancer Res. 2005; 65:11335–44. 

 https://doi.org/10.1158/0008-5472.CAN-05-1886 
PMID:16357140 

41. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, 
Pastorino S, Purow BW, Christopher N, Zhang W, Park 
JK, Fine HA. Tumor stem cells derived from 
glioblastomas cultured in bFGF and EGF more closely 
mirror the phenotype and genotype of primary tumors 
than do serum-cultured cell lines. Cancer Cell. 2006; 
9:391–403. 

https://doi.org/10.1016/j.cell.2017.05.045
https://pubmed.ncbi.nlm.nih.gov/28622506
https://doi.org/10.1038/s41422-018-0034-6
https://pubmed.ncbi.nlm.nih.gov/29686311
https://doi.org/10.3389/fimmu.2019.00922
https://pubmed.ncbi.nlm.nih.gov/31080453
https://doi.org/10.1016/j.cell.2014.08.005
https://pubmed.ncbi.nlm.nih.gov/25171402
https://doi.org/10.1038/s41590-018-0275-z
https://pubmed.ncbi.nlm.nih.gov/30559377
https://doi.org/10.1038/s41467-019-10669-0
https://pubmed.ncbi.nlm.nih.gov/31239444
https://doi.org/10.1038/s41467-019-09903-6
https://pubmed.ncbi.nlm.nih.gov/31015515
https://doi.org/10.1038/s41586-019-0916-x
https://pubmed.ncbi.nlm.nih.gov/30728504
https://doi.org/10.1016/j.molcel.2019.07.016
https://pubmed.ncbi.nlm.nih.gov/31474572
https://doi.org/10.1371/journal.ppat.1006995
https://pubmed.ncbi.nlm.nih.gov/29659627
https://doi.org/10.1016/j.gpb.2018.04.002
https://pubmed.ncbi.nlm.nih.gov/29715522
https://doi.org/10.1074/jbc.M116.749689
https://pubmed.ncbi.nlm.nih.gov/28104805
https://doi.org/10.1016/j.canlet.2018.11.006
https://pubmed.ncbi.nlm.nih.gov/30423408
https://doi.org/10.18632/oncotarget.23365
https://pubmed.ncbi.nlm.nih.gov/29423080
https://doi.org/10.1080/15384101.2017.1380125
https://pubmed.ncbi.nlm.nih.gov/29135329
https://doi.org/10.1158/0008-5472.CAN-05-1886
https://pubmed.ncbi.nlm.nih.gov/16357140


 

www.aging-us.com 18491 AGING 

 https://doi.org/10.1016/j.ccr.2006.03.030 
PMID:16697959 

42. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, 
Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey 
SS, Thorsen T, Quist H, Matese JC, et al. Gene 
expression patterns of breast carcinomas distinguish 
tumor subclasses with clinical implications. Proc Natl 
Acad Sci USA. 2001; 98:10869–74. 

 https://doi.org/10.1073/pnas.191367098 
PMID:11553815 

43. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, 
Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, 
Demeter J, Perou CM, Lønning PE, et al. Repeated 
observation of breast tumor subtypes in independent 
gene expression data sets. Proc Natl Acad Sci USA. 
2003; 100:8418–23. 

 https://doi.org/10.1073/pnas.0932692100 
PMID:12829800 

44. Pyeon D, Newton MA, Lambert PF, den Boon JA, 
Sengupta S, Marsit CJ, Woodworth CD, Connor JP, 
Haugen TH, Smith EM, Kelsey KT, Turek LP, Ahlquist 
P. Fundamental differences in cell cycle deregulation 
in human papillomavirus-positive and human 
papillomavirus-negative head/neck and cervical 
cancers. Cancer Res. 2007; 67:4605–19. 

 https://doi.org/10.1158/0008-5472.CAN-06-3619 
PMID:17510386 

45. Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van 
Kessel AG, Kovacs G. High-resolution DNA copy 
number and gene expression analyses distinguish 
chromophobe renal cell carcinomas and renal 
oncocytomas. BMC Cancer. 2009; 9:152. 

 https://doi.org/10.1186/1471-2407-9-152 
PMID:19445733 

46. Morrison C, Farrar W, Kneile J, Williams N, Liu-Stratton 
Y, Bakaletz A, Aldred MA, Eng C. Molecular 
classification of parathyroid neoplasia by gene 
expression profiling. Am J Pathol. 2004; 165:565–76. 

 https://doi.org/10.1016/S0002-9440(10)63321-4 
PMID:15277230 

47. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray 
F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, 
Delattre JY. Isocitrate dehydrogenase 1 codon 132 
mutation is an important prognostic biomarker in 
gliomas. J Clin Oncol. 2009; 27:4150–54. 

 https://doi.org/10.1200/JCO.2009.21.9832 
PMID:19636000 

48. Juratli TA, Kirsch M, Geiger K, Klink B, Leipnitz E, Pinzer 
T, Soucek S, Schrock E, Schackert G, Krex D. The 
prognostic value of IDH mutations and MGMT 
promoter status in secondary high-grade gliomas. J 
Neurooncol. 2012; 110:325–33. 

 https://doi.org/10.1007/s11060-012-0977-2 
PMID:23015095 

49. Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern 
W, Haferlach T. IDH1 mutations are detected in 6.6% of 
1414 AML patients and are associated with 
intermediate risk karyotype and unfavorable prognosis 
in adults younger than 60 years and unmutated NPM1 
status. Blood. 2010; 116:5486–96. 

 https://doi.org/10.1182/blood-2010-02-267955 
PMID:20805365 

50. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke 
J, Bullinger L, Späth D, Kayser S, Zucknick M, Götze K, 
Horst HA, Germing U, Döhner H, Döhner K. IDH1 and 
IDH2 mutations are frequent genetic alterations in 
acute myeloid leukemia and confer adverse prognosis 
in cytogenetically normal acute myeloid leukemia with 
NPM1 mutation without FLT3 internal tandem 
duplication. J Clin Oncol. 2010; 28:3636–43. 

 https://doi.org/10.1200/JCO.2010.28.3762 
PMID:20567020 

51. Qian Z, Li Y, Fan X, Zhang C, Wang Y, Jiang T, Liu X. 
Molecular and clinical characterization of IDH 
associated immune signature in lower-grade gliomas. 
Oncoimmunology. 2018; 7:e1434466. 

 https://doi.org/10.1080/2162402X.2018.1434466 
PMID:29872572 

52. Paris J, Morgan M, Campos J, Spencer GJ, Shmakova 
A, Ivanova I, Mapperley C, Lawson H, Wotherspoon 
DA, Sepulveda C, Vukovic M, Allen L, Sarapuu A,  
et al. Targeting the RNA m6A reader YTHDF2 
selectively compromises cancer stem cells in acute 
myeloid leukemia. Cell Stem Cell. 2019; 25:137–
48.e6. 

 https://doi.org/10.1016/j.stem.2019.03.021 
PMID:31031138 

53. Baumert BG, Stupp R, European Organization for 
Research and Treatment of Cancer (EORTC) Radiation 
Oncology Group, and European Organization for 
Research and Treatment of Cancer (EORTC) Brain 
Tumor Group. Low-grade glioma: a challenge in 
therapeutic options: the role of radiotherapy. Ann 
Oncol. 2008 (Suppl 7); 19:vii217–22. 

 https://doi.org/10.1093/annonc/mdn434 
PMID:18790954 

54. Pignatti F, van den Bent M, Curran D, Debruyne C, 
Sylvester R, Therasse P, Afra D, Cornu P, Bolla M, Vecht 
C, Karim AB, European Organization for Research and 
Treatment of Cancer Brain Tumor Cooperative Group, 
and European Organization for Research and 
Treatment of Cancer Radiotherapy Cooperative Group. 
Prognostic factors for survival in adult patients with 
cerebral low-grade glioma. J Clin Oncol. 2002; 
20:2076–84. 

https://doi.org/10.1016/j.ccr.2006.03.030
https://pubmed.ncbi.nlm.nih.gov/16697959
https://doi.org/10.1073/pnas.191367098
https://pubmed.ncbi.nlm.nih.gov/11553815
https://doi.org/10.1073/pnas.0932692100
https://pubmed.ncbi.nlm.nih.gov/12829800
https://doi.org/10.1158/0008-5472.CAN-06-3619
https://pubmed.ncbi.nlm.nih.gov/17510386
https://doi.org/10.1186/1471-2407-9-152
https://pubmed.ncbi.nlm.nih.gov/19445733
https://doi.org/10.1016/S0002-9440(10)63321-4
https://pubmed.ncbi.nlm.nih.gov/15277230
https://doi.org/10.1200/JCO.2009.21.9832
https://pubmed.ncbi.nlm.nih.gov/19636000
https://doi.org/10.1007/s11060-012-0977-2
https://pubmed.ncbi.nlm.nih.gov/23015095
https://doi.org/10.1182/blood-2010-02-267955
https://pubmed.ncbi.nlm.nih.gov/20805365
https://doi.org/10.1200/JCO.2010.28.3762
https://pubmed.ncbi.nlm.nih.gov/20567020
https://doi.org/10.1080/2162402X.2018.1434466
https://pubmed.ncbi.nlm.nih.gov/29872572
https://doi.org/10.1016/j.stem.2019.03.021
https://pubmed.ncbi.nlm.nih.gov/31031138
https://doi.org/10.1093/annonc/mdn434
https://pubmed.ncbi.nlm.nih.gov/18790954


 

www.aging-us.com 18492 AGING 

 https://doi.org/10.1200/JCO.2002.08.121 
PMID:11956268 

55. Schiff D, Brown PD, Giannini C. Outcome in adult low-
grade glioma: the impact of prognostic factors and 
treatment. Neurology. 2007; 69:1366–73. 

 https://doi.org/10.1212/01.wnl.0000277271.47601.a1 
PMID:17893297 

56. Aras S, Zaidi MR. TAMeless traitors: macrophages in 
cancer progression and metastasis. Br J Cancer. 2017; 
117:1583–91. 

 https://doi.org/10.1038/bjc.2017.356  
PMID:29065107 

57. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, 
Sawaya R, Heimberger AB. Glioma cancer stem cells 
induce immunosuppressive macrophages/microglia. 
Neuro Oncol. 2010; 12:1113–25. 

 https://doi.org/10.1093/neuonc/noq082 
PMID:20667896 

58. Takahashi H, Sakakura K, Kudo T, Toyoda M, Kaira K, 
Oyama T, Chikamatsu K. Cancer-associated fibroblasts 
promote an immunosuppressive microenvironment 
through the induction and accumulation of protumoral 
macrophages. Oncotarget. 2017; 8:8633–47. 

 https://doi.org/10.18632/oncotarget.14374 
PMID:28052009 

59. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley 
ER, Graf T, Pollard JW, Segall J, Condeelis J. A paracrine 
loop between tumor cells and macrophages is required 
for tumor cell migration in mammary tumors. Cancer 
Res. 2004; 64:7022–29. 

 https://doi.org/10.1158/0008-5472.CAN-04-1449 
PMID:15466195 

60. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, 
Sanford DE, Belaygorod L, Carpenter D, Collins L, 
Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, 
et al. Targeting tumor-infiltrating macrophages 
decreases tumor-initiating cells, relieves immuno-
suppression, and improves chemotherapeutic 
responses. Cancer Res. 2013; 73:1128–41. 

 https://doi.org/10.1158/0008-5472.CAN-12-2731 
PMID:23221383 

61. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, 
Zheng L. Activated monocytes in peritumoral stroma of 
hepatocellular carcinoma foster immune privilege and 
disease progression through PD-L1. J Exp Med. 2009; 
206:1327–37. 

 https://doi.org/10.1084/jem.20082173 
PMID:19451266 

62. Ojalvo LS, King W, Cox D, Pollard JW. High-density gene 
expression analysis of tumor-associated macrophages 
from mouse mammary tumors. Am J Pathol. 2009; 
174:1048–64. 

 https://doi.org/10.2353/ajpath.2009.080676 
PMID:19218341 

63. Mohammadizad H, Shahbazi M, Hasanjani Roushan 
MR, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M. 
TIM-3 as a marker of exhaustion in CD8+ T cells of 
active chronic hepatitis B patients. Microb Pathog. 
2019; 128:323–28. 

 https://doi.org/10.1016/j.micpath.2019.01.026 
PMID:30660734 

64. Sawant A, Hensel JA, Chanda D, Harris BA, Siegal GP, 
Maheshwari A, Ponnazhagan S. Depletion of 
plasmacytoid dendritic cells inhibits tumor growth and 
prevents bone metastasis of breast cancer cells. J 
Immunol. 2012; 189:4258–65. 

 https://doi.org/10.4049/jimmunol.1101855 
PMID:23018462 

65. Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J, 
Daniel S, Covert M, Frampton GM, Hsu S, Lesser GJ, 
Stogner-Underwood K, Mott RT, et al. Comprehensive 
genomic profiling of 282 pediatric low- and high-grade 
gliomas reveals genomic drivers, tumor mutational 
burden, and hypermutation signatures. Oncologist. 
2017; 22:1478–90. 

 https://doi.org/10.1634/theoncologist.2017-0242 
PMID:28912153 

66. Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, 
Huse JT, de Groot J, Li S, Overwijk WW, Spetzler D, 
Heimberger AB. Mutational burden, immune 
checkpoint expression, and mismatch repair in glioma: 
implications for immune checkpoint immunotherapy. 
Neuro Oncol. 2017; 19:1047–57. 

 https://doi.org/10.1093/neuonc/nox026 
PMID:28371827 

67. Wang ZL, Li GZ, Wang QW, Bao ZS, Wang Z, Zhang CB, 
Jiang T. PD-L2 expression is correlated with the 
molecular and clinical features of glioma, and acts as 
an unfavorable prognostic factor. Oncoimmunology. 
2018; 8:e1541535. 

 https://doi.org/10.1080/2162402X.2018.1541535 
PMID:30713802 

68. Dunn-Pirio AM, Vlahovic G. Immunotherapy 
approaches in the treatment of Malignant brain 
tumors. Cancer. 2017; 123:734–50. 

 https://doi.org/10.1002/cncr.30371 PMID:27875627 

69. Weant MP, Jesús CM, Yerram P. Immunotherapy in 
gliomas. Semin Oncol Nurs. 2018; 34:501–12. 

 https://doi.org/10.1016/j.soncn.2018.10.011 
PMID:30396808 

70. Desai R, Suryadevara CM, Batich KA, Farber SH, 
Sanchez-Perez L, Sampson JH. Emerging 
immunotherapies for glioblastoma. Expert Opin Emerg 
Drugs. 2016; 21:133–45. 

https://doi.org/10.1200/JCO.2002.08.121
https://pubmed.ncbi.nlm.nih.gov/11956268
https://doi.org/10.1212/01.wnl.0000277271.47601.a1
https://pubmed.ncbi.nlm.nih.gov/17893297
https://doi.org/10.1038/bjc.2017.356
https://pubmed.ncbi.nlm.nih.gov/29065107
https://doi.org/10.1093/neuonc/noq082
https://pubmed.ncbi.nlm.nih.gov/20667896
https://doi.org/10.18632/oncotarget.14374
https://pubmed.ncbi.nlm.nih.gov/28052009
https://doi.org/10.1158/0008-5472.CAN-04-1449
https://pubmed.ncbi.nlm.nih.gov/15466195
https://doi.org/10.1158/0008-5472.CAN-12-2731
https://pubmed.ncbi.nlm.nih.gov/23221383
https://doi.org/10.1084/jem.20082173
https://pubmed.ncbi.nlm.nih.gov/19451266
https://doi.org/10.2353/ajpath.2009.080676
https://pubmed.ncbi.nlm.nih.gov/19218341
https://doi.org/10.1016/j.micpath.2019.01.026
https://pubmed.ncbi.nlm.nih.gov/30660734
https://doi.org/10.4049/jimmunol.1101855
https://pubmed.ncbi.nlm.nih.gov/23018462
https://doi.org/10.1634/theoncologist.2017-0242
https://pubmed.ncbi.nlm.nih.gov/28912153
https://doi.org/10.1093/neuonc/nox026
https://pubmed.ncbi.nlm.nih.gov/28371827
https://doi.org/10.1080/2162402X.2018.1541535
https://pubmed.ncbi.nlm.nih.gov/30713802
https://doi.org/10.1002/cncr.30371
https://pubmed.ncbi.nlm.nih.gov/27875627
https://doi.org/10.1016/j.soncn.2018.10.011
https://pubmed.ncbi.nlm.nih.gov/30396808


 

www.aging-us.com 18493 AGING 

 https://doi.org/10.1080/14728214.2016.1186643 
PMID:27223671 

71. Reiss SN, Yerram P, Modelevsky L, Grommes C. 
Retrospective review of safety and efficacy of 
programmed cell death-1 inhibitors in refractory high 
grade gliomas. J Immunother Cancer. 2017; 5:99. 

 https://doi.org/10.1186/s40425-017-0302-x 
PMID:29254497 

72. Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, 
Luksik AS, Kim E, Wu A, Xia Y, Garzon-Muvdi T, Jackson 
C, Ye X, Tyler B, et al. TIGIT and PD-1 dual checkpoint 
blockade enhances antitumor immunity and survival in 
GBM. Oncoimmunology. 2018; 7:e1466769. 

 https://doi.org/10.1080/2162402X.2018.1466769 
PMID:30221069 

73. Filippova N, Yang X, An Z, Nabors LB, Pereboeva L. 
Blocking PD1/PDL1 interactions together with 
MLN4924 therapy is a potential strategy for glioma 
treatment. J Cancer Sci Ther. 2018; 10:190–97. 

 https://doi.org/10.4172/1948-5956.1000543 
PMID:30393513 

74. Antonios JP, Soto H, Everson RG, Moughon D, Orpilla 
JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, 
Yong WH, Li G, Cloughesy TF, et al. Immunosuppressive 
tumor-infiltrating myeloid cells mediate adaptive 
immune resistance via a PD-1/PD-L1 mechanism in 
glioblastoma. Neuro Oncol. 2017; 19:796–807. 

 https://doi.org/10.1093/neuonc/now287 
PMID:28115578 

75. Wang JY, Bettegowda C. Genetics and immunotherapy: 
using the genetic landscape of gliomas to inform 
management strategies. J Neurooncol. 2015;  
123:373–83. 

 https://doi.org/10.1007/s11060-015-1730-4 
PMID:25697584 

76. Ishikawa E, Yamamoto T, Matsumura A. Prospect of 
immunotherapy for glioblastoma: tumor vaccine, 
immune checkpoint inhibitors and combination 
therapy. Neurol Med Chir (Tokyo). 2017; 57:321–30. 

 https://doi.org/10.2176/nmc.nmc.ra.2016-0334 
PMID:28539528 

77. Berghoff AS, Kiesel B, Widhalm G, Wilhelm D, Rajky O, 
Kurscheid S, Kresl P, Wöhrer A, Marosi C, Hegi ME, 
Preusser M. Correlation of immune phenotype with 
IDH mutation in diffuse glioma. Neuro Oncol. 2017; 
19:1460–68. 

 https://doi.org/10.1093/neuonc/nox054 
PMID:28531337 

78. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, 
Hanke M, Margineantu DH, Rao A, Bolouri H, Delrow J, 
Hockenbery D, Houghton AM, Holland EC. Mutant 
IDH1 regulates the tumor-associated immune system 
in gliomas. Genes Dev. 2017; 31:774–86. 

 https://doi.org/10.1101/gad.294991.116 
PMID:28465358 

79. Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim 
WJ, Kohanbash G, Chang Y, Park Y, Engh J, Choi J, Chan 
T, Okada H, et al. IDH mutant gliomas escape natural 
killer cell immune surveillance by downregulation of 
NKG2D ligand expression. Neuro Oncol. 2016; 
18:1402–12. 

 https://doi.org/10.1093/neuonc/now061 
PMID:27116977 

80. Dai T, Wu L, Wang S, Wang J, Xie F, Zhang Z, Fang X, Li 
J, Fang P, Li F, Jin K, Dai J, Yang B, et al. FAF1 regulates 
antiviral immunity by inhibiting MAVS but is 
antagonized by phosphorylation upon viral infection. 
Cell Host Microbe. 2018; 24:776–90.e5. 

 https://doi.org/10.1016/j.chom.2018.10.006 
PMID:30472208 

81. Song S, Lee JJ, Kim HJ, Lee JY, Chang J, Lee KJ. Fas-
associated factor 1 negatively regulates the antiviral 
immune response by inhibiting translocation of 
interferon regulatory factor 3 to the nucleus. Mol Cell 
Biol. 2016; 36:1136–51. 

 https://doi.org/10.1128/MCB.00744-15 
PMID:26811330 

82. Hu J, Yu J, Gan J, Song N, Shi L, Liu J, Zhang Z, Du J. 
Notch1/2/3/4 are prognostic biomarker and correlated 
with immune infiltrates in gastric cancer. Aging (Albany 
NY). 2020; 12:2595–609. 

 https://doi.org/10.18632/aging.102764 
PMID:32028262 

83. Aran D, Sirota M, Butte AJ. Systematic pan-cancer 
analysis of tumour purity. Nat Commun. 2015; 6:8971. 

 https://doi.org/10.1038/ncomms9971 PMID:26634437 

84. Pan JH, Zhou H, Cooper L, Huang JL, Zhu SB, Zhao XX, 
Ding H, Pan YL, Rong L. LAYN is a prognostic biomarker 
and correlated with immune infiltrates in gastric and 
colon cancers. Front Immunol. 2019; 10:6. 

 https://doi.org/10.3389/fimmu.2019.00006 
PMID:30761122 

 

  

https://doi.org/10.1080/14728214.2016.1186643
https://pubmed.ncbi.nlm.nih.gov/27223671
https://doi.org/10.1186/s40425-017-0302-x
https://pubmed.ncbi.nlm.nih.gov/29254497
https://doi.org/10.1080/2162402X.2018.1466769
https://pubmed.ncbi.nlm.nih.gov/30221069
https://doi.org/10.4172/1948-5956.1000543
https://pubmed.ncbi.nlm.nih.gov/30393513
https://doi.org/10.1093/neuonc/now287
https://pubmed.ncbi.nlm.nih.gov/28115578
https://doi.org/10.1007/s11060-015-1730-4
https://pubmed.ncbi.nlm.nih.gov/25697584
https://doi.org/10.2176/nmc.nmc.ra.2016-0334
https://pubmed.ncbi.nlm.nih.gov/28539528
https://doi.org/10.1093/neuonc/nox054
https://pubmed.ncbi.nlm.nih.gov/28531337
https://doi.org/10.1101/gad.294991.116
https://pubmed.ncbi.nlm.nih.gov/28465358
https://doi.org/10.1093/neuonc/now061
https://pubmed.ncbi.nlm.nih.gov/27116977
https://doi.org/10.1016/j.chom.2018.10.006
https://pubmed.ncbi.nlm.nih.gov/30472208
https://doi.org/10.1128/MCB.00744-15
https://pubmed.ncbi.nlm.nih.gov/26811330
https://doi.org/10.18632/aging.102764
https://pubmed.ncbi.nlm.nih.gov/32028262
https://doi.org/10.1038/ncomms9971
https://pubmed.ncbi.nlm.nih.gov/26634437
https://doi.org/10.3389/fimmu.2019.00006
https://pubmed.ncbi.nlm.nih.gov/30761122


 

www.aging-us.com 18494 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Prognostic YTHDF2 values in cancers analyzed by the UALCAN database. (A) LGG. (B) LGG with different 
gender. (C) LGG with different tumor grade. (D) LIHC. (E) LIHC with different gender. (F) LIHC with different tumor grade. (G) SARC. (H) SARC 
with different gender. LGG, lower-grade glioma; LIHC, liver hepatocellular carcinoma; SARC, sarcoma.  
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Supplementary Figure 2. Expression and overall survival of YTHDF2 in LGG analyzed by the UALCAN and GEPIA databases. (A) 
Expression level of YTHDF2 in LGG compared with normal sample. (B) Expression level of YTHDF2 in LGG based on histological subtypes. (C) 
Expression level of YTHDF2 in LGG based on tumor grade. (D) Expression level of YTHDF2 in LGG based on TP53 mutation status. (E) Overall 
survival of YTHDF2 in all LGG patients. (F) Overall survival of YTHDF2 in LGG patients with astrocytoma. (G) Overall survival of YTHDF2 in LGG 
patients with oligoastrocytoma. (H) Overall survival of YTHDF2 in LGG patients with oligodendroglioma. LGG, lower-grade glioma. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 2, 3 and 5. 

 
Supplementary Table 1. The significant Datasets of the YTHDF2 in Human Cancers (ONCOMINE database). 

Cancer type Sub cancer type t-Test Fold Change P-value Study 

Brain and CNS 
Cancer  

Anaplastic Oligoastrocytoma vs. 
Normal 

5.874 2.433 1.90E-04 French Brain Statistics 

 Glioblastoma vs. Normal -16.491 -2.762 3.97E-13 Lee Brain Statistics 

Breast cancer Fibroadenoma vs. Normal 5.597 9.945 0.003 Sorlie Breast Statistics 

 Fibroadenoma vs. Normal 6.235 11.69 0.002 Sorlie Breast 2 Statistics 

Cervical Cancer Cervical Cancer vs. Normal 6.66 2.061 3.58E-08 
Pyeon Multi-cancer 

Statistics 
Head and Neck 
cancer 

Oral Cavity Carcinoma vs. Normal 5.523 2.838 1.78E-04 
Pyeon Multi-cancer 

Statistics 
Kidney cancer Renal Wilms Tumor vs. Normal 4.817 2.3 0.002 Yusenko Renal Statistics 

Other cancer 
Parathyroid Hyperplasia vs. 

Normal 
4.171 2.55 8.54E-04 

Morrison Parathyroid 
Statistics 

 
Parathyroid Gland Adenoma vs. 

Normal 
5.064 2.038 3.88E-04 

Morrison Parathyroid 
Statistics 

 
Supplementary Table 2. Prognostic values of YTHDF2 in cancers analyzed by the PrognoScan database. 

Supplementary Table 3. Prognostic values of YTHDF2 in cancers analyzed by GEPIA, TIMER, OncoLnc, and Kaplan-
Meier plotter.  
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Supplementary Table 4. The expression level and survival analysis of YTHDF2 with different clinicopathological 
characteristics in LGG, LIHC and SARC (UALCAN database).  

 LGG  LIHC  SARC 

Expression analysis  P-value   P-value   P-value 

Sample Type         

Normal-vs-Primary tumor NA   High 3.63E-12  Not sig 2.39E-01 

Gender         

Normal-vs-Male NA   high 8.52E-11  Not sig 3.05E-01 

Normal-vs-Female NA   high 4.73E-10  Not sig 1.90E-01 

Male-vs-Female Not sig 3.06E-01  Not sig 5.46E-01  high 4.22E-03 

Tumor grade         

Normal-vs-Grade 1 NA   high 5.93E-05  NA  

Normal-vs-Grade 2 NA   high 4.07E-08  NA  

Normal-vs-Grade 3 NA   high 1.23E-11  NA  

Normal-vs-Grade 4 NA   high 1.89E-02  NA  

Grade 1-vs-Grade 2 NA   Not sig 8.68E-01  NA  

Grade 1-vs-Grade 3 NA   high 1.65E-02  NA  

Grade 1-vs-Grade 4 NA   Not sig 2.19E-01  NA  

Grade 2-vs-Grade 3 high 1.10E-06  high 7.18E-03  NA  

Grade 2-vs-Grade 4 NA   Not sig 8.90E-02  NA  

Grade 3-vs-Grade 4 NA    6.75E-01  NA  

TP53 mutation status         

Normal-vs-TP53-Mutant NA   high 1.62E-12  Not sig 3.05E-01 

Normal-vs-TP53-
NonMutant NA   high 1.63E-07  Not sig 2.09E-01 

TP53-Mutant-vs-TP53-
NonMutant low 1.62E-12  low 1.06E-08  Not sig 8.60E-01 

Histological subtypes         

Astrocytoma-vs-
Oligoastrocytoma low 7.22E-04 Normal-vs-N0 high 3.65E-12 NA   

Astrocytoma-vs-
Oligodendroglioma low 3.44E-12 Normal-vs-N1 high 3.08E-03 NA   

Oligoastrocytoma-vs-
Oligodendroglioma low 1.32E-03 N0-vs-N1 Not sig 8.31E-01 NA   

         

Survival analysis         

Expression level sig P<0.0001  sig P<0.0001  sig P=0.0094 

Tumor grade sig P<0.0001  sig P<0.0001  NA  

Gender sig P=0.0075  sig P<0.0001  sig P=0.032 

Note: LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; SARC, Sarcoma; YTHDF2, YTH N6-
methyladenosine RNA binding protein 2; high, means high expression; low, means low expression; sig, means significant; Not 
sig, means not significant; NA, means not available; Grade 1, Well differentiated (low grade); Grade 2, Moderately 
differentiated (intermediate grade); Grade 3, Poorly differentiated (high grade); Grade 4, Undifferentiated (high grade); N0, 
No regional lymph node metastasis; N1, Metastases in 1 to 3 axillary lymph nodes; N2, Metastases in 4 to 9 axillary lymph 
nodes; N3, Metastases in 10 or more axillary lymph nodes. 

Supplementary Table 5. Correlation analysis between YTHDF2 and immune infiltration level in cancers by TIMER. 
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Supplementary Table 6. Prognostic values of relate genes and markers of TAMs in LGG analyzed by GEPIA. 

Description Gene markers 

LGG 

OS DFS 

HR P-value HR P-value 
TAM CCL2 1.40  0.05100  1.00  0.96000  
 CSF1 1.00  0.86000  1.20  0.32000  
 CSF1R 1.20  0.37000  1.20  0.35000  
 EGF 1.90  *** 1.50  ** 
 STAT3 1.90  *** 1.60  ** 
 STAT6 1.90  *** 1.40  * 
 IL6 1.90  *** 1.40  * 
 IL10 1.60  ** 1.30  0.16000  
 TLR4 1.00  0.94000  0.96  0.82000  
 TGFβ (TGFB1) 1.70  ** 1.50  ** 
 LOX 3.20  *** 1.70  ** 
 PD-L1(CD274) 1.80  ** 1.30  0.12000  
 PD-L2(PDCD1LG2) 2.00  *** 2.00  *** 
 CD80 2.50  *** 1.60  ** 
 CD86 1.80  ** 1.40  * 
 MFGE8 1.10  0.68000  0.81  0.17000  

LGG, Brain Lower Grade Glioma.P-value Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05. 

 

Supplementary Table 7. Correlation analysis between YTHDF2 and relate genes and markers of TAMs in LAML by 
GEPIA. 

Description Gene markers 
LAML 

Cor p-value 

TAMs CCL2 -0.003  0.9700  
 CSF1 0.240  ** 
 CSF1R -0.018  0.8100  
 EGF 0.210  ** 
 STAT3 0.430  *** 
 STAT6 0.230  ** 
 IL6 0.002  0.9800  
 IL10 -0.079  0.3000  
 TLR4 -0.028  0.7100  
 TGFβ (TGFB1) 0.160  * 
 LOX 0.270  *** 
 PD-L1(CD274) 0.200  ** 
 PD-L2(PDCD1LG2) -0.035  0.6500  
 CD80 0.280  *** 
 CD86 -0.240  ** 
 MFGE8 0.480  *** 

LAML, Acute Myeloid Leukemia; TAMs, tumor-associated macrophages; Cor, R value of Spearman’s correlation; P-value 
Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05. 

 

Supplementary Table 8. The enrichment analysis of YTHDF2 in LGG by GSEA tool of LinkedOmics database.  

 Gene Set Description Size P-Value 

BP GO:0006302 double-strand break repair 56 0 

 GO:0071166 ribonucleoprotein complex localization 41 0 

 GO:0006260 DNA replication 90 0 

 GO:0000075 cell cycle checkpoint 75 0 

 GO:0044772 mitotic cell cycle phase transition 156 0 

 GO:0006333 chromatin assembly or disassembly 55 0 

 GO:0016458 gene silencing 55 0 

 GO:0006338 chromatin remodeling 55 0 
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 GO:0040029 regulation of gene expression, epigenetic 75 0 

 GO:0006403 RNA localization 75 0 

CC GO:0044815 DNA packaging complex 21 0 

 GO:0032993 protein-DNA complex 58 0 

 GO:0016607 nuclear speck 108 0 

 GO:0005657 replication fork 25 0 

 GO:0098687 chromosomal region 100 0 

 GO:0035145 exon-exon junction complex 5 0.005  

 GO:0017053 transcriptional repressor complex 25 0.012 

 GO:0000793 condensed chromosome 61 0.008  

 GO:0016605 PML body 32 0.011 

 GO:0034399 nuclear periphery 51 0.004  

MF GO:0001085 RNA polymerase II transcription factor binding 51 0 

 GO:0070491 repressing transcription factor binding 25 0 

 GO:0051059 NF-kappaB binding 8 0 

 GO:0031491 nucleosome binding 27 0 

 GO:0043178 alcohol binding 24 0 

 GO:0017056 structural constituent of nuclear pore 12 0.004 

 GO:0035326 enhancer binding 43 0 

 GO:0042826 histone deacetylase binding 35 0.007 

 GO:0008327 methyl-CpG binding 9 0 

 GO:0003714 transcription corepressor activity 74 0.004  

KEGG  
Pathway hsa04110 Cell cycle 46 0 

 hsa03040 Spliceosome 40 0 

 hsa03013 RNA transport 56 0 

 hsa04152 AMPK signaling pathway 38 0 

 hsa00020 Citrate cycle (TCA cycle) 9 0 

 hsa05203 Viral carcinogenesis 63 0.004  

 hsa03430 Mismatch repair 8 0.012  

 hsa05166 Human T-cell leukemia virus 1 infection 81 0.025  

 hsa03030 DNA replication 13 0.038  

Panther 
Pathway P00020 FAS signaling pathway 17 0.004  

 P00014 Cholesterol biosynthesis 6 0.004  

 P00017 DNA replication 8 0.021  

 P02762 Pentose phosphate pathway 4 0.023  

 P02746 Heme biosynthesis 5 0.031  

 P00016 Cytoskeletal regulation by Rho GTPase 23 0.032  

 P00053 T cell activation 34 0.035  

Reacmoe 
Pathway R-HSA-8936459 

RUNX1 regulates genes involved in megakaryocyte differentiation 
and platelet function 33 0 

 R-HSA-5250913 Positive epigenetic regulation of rRNA expression 37 0 

 R-HSA-73728 RNA Polymerase I Promoter Opening 24 0 

 R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 33 0 

 R-HSA-3247509 Chromatin modifying enzymes 74 0 

 R-HSA-427359 SIRT1 negatively regulates rRNA expression 26 0 

 R-HSA-1912408 Pre-NOTCH Transcription and Translation 34 0 

 R-HSA-1640170 Cell Cycle 196 0 

 R-HSA-71403 Citric acid cycle (TCA cycle) 4 0.004  

 R-HSA-9604323 Negative regulation of NOTCH4 signaling 15 0.016  

Wiki 
Pathway WP314 

Fas Ligand (FasL) pathway and Stress induction of Heat Shock 
Proteins (HSP) regulation 25 0 

 WP411 mRNA Processing 35 0 

 WP2446 Retinoblastoma Gene in Cancer 32 0 

 WP466 DNA Replication 13 0 

 WP179 Cell Cycle 44 0 

 WP78 TCA Cycle (aka Krebs or citric acid cycle) 4 0 
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 WP531 DNA Mismatch Repair 8 0.008  

 WP2453 
TCA Cycle and Deficiency of Pyruvate Dehydrogenase complex 

(PDHc) 6 0.036  

 WP1742 TP53 Network 12 0.038  

 WP3664 
Regulation of Wnt/B-catenin Signaling by Small Molecule 

Compounds 4 0.048  

Note: LGG, Brain Lower Grade Glioma; YTHDF2, YTH N6-methyladenosine RNA binding protein 2; GSEA, Gene Set Enrichment 
Analysis; BP, biological process; CC, cellular component; MF, molecular function; GO, Gene Ontology;  KEGG, Kyoto 
Encyclopedia of Genes and Genomes. 
 


