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INTRODUCTION 
 
Multiple myeloma (MM) is a common plasma cell 
malignancy that accounts for more than 17% of 
hematological malignancies and 1.8% of all cancers in 
the United States [1]. Treatment of MM has been 
rapidly evolving, with not only new classes and 
generations of drugs (e.g., immunomodulatory drugs 
[IMiDs], proteasome inhibitors [PIs], monoclonal 
antibodies, histone deacetylase [HDAC] inhibitors) but 
also immunotherapy (e.g., CAR-T therapy) [2, 3]. 
However, MM remains an incurable disease, and 
patients suffer from relapse and refractory especially 
high-risk MM. So, finding new therapeutic targets and 
designing new drug candidates are crucial for the 
treatment of MM. 

 

Microarray technology is widely used to investigate 
differential mRNA expression and identify biomarkers, 
which provides important clues to identify new 
treatment targets for many diseases, including MM [4, 
5]. In the present study, we used bioinformatics tools to 
analyze the different expressed genes between MM 
cells and normal plasma cells to identify the new 
treatment target.  
 
Targeting therapy has achieved great improvements in 
the treatment for malignancies, including MM (e.g. 
CD38 monoclonal antibody) [6]. At the meanwhile, 
peptide therapeutics have become an emerging method 
in the pharmaceutical industry aided by computational 
drug design [7, 8]. In our study, we are intending to 
design targeting affinity peptides to key membrane 
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one of the key clusters. Highly expression of HLA-E mRNA on MM cells was also confirmed by real-time qPCR 
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Data Bank (PDB ID: 3CDG) which was used to design targeting peptides with Molecular Operating Environment 
software. By analyzing interaction between CD94/NKG2A and HLA-E, a peptide with twelve amino acids was 
screened as a model peptide. Peptides library was constructed by randomly replaced non-key amino acid. 
Peptide-protein docking method was used to identify high affinity peptides. PEPTIDE 1-3 and model peptide 
were synthesized and identified the affinity to HLA-E by flow cytometer and confocal laser microscopy. At last, 
PEPTIDE3 (NALDEYCEDKNR) was found with the highest affinity. Taking all, HLA-E is a new treatment target, and 
PEPTIDE 3 is an ideal high affinity target-binding peptide candidate. 

 

mailto:wanght@sj-hospital.org
mailto:mjwei@cmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 2 AGING 

antigen in MM by computer software. And then 
evaluating the peptides’ affinity to the target by 
experiments. In future research, the targeting peptides 
will be linked to a chemical drug to produce a peptide-
drug conjugate (PDC), which is a potential new drug 
candidate for the treatment of MM. 
 
RESULTS 
 
Identification of upregulated DEGs in MM 
 
GSE6691 [9] and GSE39754 [10] datasets were found on 
Gene Expression Omnibus (GEO, http://www.ncbi.nlm. 
nih.gov/geo) database with MM patients and normal 
plasma cell samples. The number of upregulated DEGs on 
MM in the GSE6691 and GSE 39754 datasets were 580 
and 682, respectively. The overlap between the two 
datasets consisted of 134 upregulated DEGs (Figure 1A).  
 
Identification of HLA-E as an anti-myeloma target 
by PPI network construction and hub gene analysis 
 
The protein-protein interaction (PPI) network was 
constructed from the 134 co-upregulated DEGs though 

STRING (http://www.string-db.org/, version 10.5) [11] 
and visualized by Cytoscape (http://www.cytoscape.org/, 
version 3.6.0) (Figure 1B). Five modules were recognized 
as key clusters by molecular complex detection (MCODE, 
version 1.4.2) [12] clustering algorithm that comes with 
Cytoscape. Three of these modules had MCODE scores 
greater than 4 (Figure 1C–1E) and, thus, were considered 
key modules involved in the occurrence of MM. These 
three modules consisted of 31 genes. Hub genes were 
involved in the occurrence of myeloma, and identified by 
cytoHubba (version 0.1) [13] (Figure 1F). The four genes 
(DDOST, HLA-E, NME1, and CANX) were found in the 
overlap between the MCODE and cytoHubba analyses, 
which indicating that these genes may play an important 
role in MM (Table 1 and Figure 1G).  
 
To design a peptide drug candidate for the treatment of 
MM, the suitable targets had to be membrane proteins. 
Thus, DDOST, HLA-E, and CANX were selected as 
potential targets. NME1 was excluded because it is an 
intracellular protein. However, a protein lacking 
available structural information could not be used as a 
target for the computational design of a peptide drug. 
Following a search of the RCSB Protein Data Bank 

 

 
 

Figure 1. HLA-E is a key gene in MM. (A) Identification of upregulated DEGs in GSE6691 and GSE39754 datasets (Log2FC >1.5, P < 0.05). 
(B) The protein-protein interaction (PPI) network between co-upregulated DEGs in MM. (C–E). Modules in the PPI network with scores >4 and 
HLA-E in the cluster 3 (Figure 1E). (F). HLA-E is one of the hub genes in PPI network. (G) Overlapping genes between the key clusters and hub 
genes. 

http://www.ncbi.nlm.nih.gov/geo
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Table 1. List of hub genes in the key clusters. 

Antigens Site Structure of protein with interacted 
ligands 

NME1 Intracellular protein NO 
CANX Membrane protein NO 
HLA-E Membrane protein PDB ID: 3CDG 
DDOST Membrane protein NO 

 

(PDB, https://www.rcsb.org), HLA-E was the only key 
membrane protein suitable for designing anti-myeloma 
peptide drug-candidate. And HLA-E was in the cluster 3 
and hub genes as shown in Figure 1E, 1F. 
 
Differential HLA-E expression in myeloma patients 
and controls 
 
We demonstrated that HLA-E was overexpressed on 
MM samples based on GEO database analysis. To 
further investigate the HLA-E expression on MM cells, 
we collected bone marrow samples (including 6 MM 
and 6 normal controls) in Shengjing hospital. After 
sorted by CD138 beats, HLA-E mRNA was detected. 
There were significantly higher HLA-E expression 
levels in the MM samples compared with the controls 
(P < 0.05, Figure 2). 
 
Design of HLA-E targeting peptides 
 
Crystal structure of HLA-E complex interacting with 
CD94/NKG2A (PDB ID: 3CDG) [14] had been used as 
the foundation for designing affinity target-binding 

peptides (Figure 3A) in the present study. The pocket in 
which HLA-E interacts with CD94/NKG2A was 
considered as the dominant site[15, 16]. The crystal 
structure data 3CDG was uploaded into the Molecular 
Operating Environment (MOE) software 2018.01 
(Chemical Computing Group ULC, Montreal, Quebec, 
Canada) (http://www.chemcomp.com/). After refining 
and energy minimization steps, the area of the HLA-E 
complex that interacts with CD94/NKG2A was 
identified. Subsequently, a detailed analysis of the 
binding sites was carried out to investigate the favorable 
ligand-receptor contact regions. Both CD94 and 
NKG2A could interact with the pocket of HLA-E. The 
model peptides were obtained from CD94 or NKG2A 
which could interact with the pocket of HLA-E. Before 
docking, peptides conformation searching was done to 
make the peptide more realistic. Finally, a peptide 
segment containing 12 amino acids obtained from 
CD94 which was more stable, could be used as a model 
peptide for binding more accurately to the pocket of 
HLA-E. Protein docking showed that the model peptide 
could interact with the pocket of the HLA-E complex 
(Figure 3B; HLA-E pocket, pink surface; peptide, 

 

 
 

Figure 2. Higher expression of HLA-E mRNA in CD138 positive myeloma cells than normal plasma cells detected with real-
time qPCR. The expression of HLA-E mRNA in normal plasma cells and MM cells were 0.048 ± 0.018 and 0.188 ± 0.032, respectively  
(P < 0.05). 

https://www.rcsb.org/
http://www.chemcomp.com/
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green, red, and blue balls). The site view of the model 
peptide docking with the pocket of HLA-E could ensure 
the interaction but with a low affinity for forming few 
chemical bonds (Figure 3C, Table 2). With the aim of 
enhancing the affinity of the peptides to HLA-E, a 
peptide library was constructed by randomly replacing 
non-key amino acids in the model peptide using MOE 
software (Figure 3D). Docked the top three peptides 
from peptide library (i.e., highest affinity and stability) 
with the pocket of HLA-E (Figure 4, Table 2). The 
results showed that PEPTIDE 3 was predicted to have 
the highest affinity and S value (Figure 4E, 4F and 
Table 2). PEPTIDE 1 and 2 also had higher affinity to 
HLA-E compared to the model peptide (Figure 4A–4D 
and Table 2). Based on the results, PEPTIDE 3 could 
markedly increase the bonding affinity, indicating that it 
was a potential peptide drug candidate for targeting 
HLA-E in myeloma. 

As previous report, only with leader peptide could 
HLA-E protein express on the surface of the cells [16]. 
There were several ways HLA-E could obtain the leader 
peptide (nine amino acids with different sequences) 
[17]. We compared the affinity between the designed 
affinity peptide and leader peptide with HLA-E. The 
final best pose with the highest score was analyzed and 
compared to the binding mode of the PEPTIDE 3 with 
the HLA-E protein. According to the binding free 
energy of HLA-E-peptide complex, we found the 
designed PEPTIDE 3 was binding more stronger than 
the original leader peptide (PEPTIDE 3 with the highest 
score of 17.06 kcal/mol and leader peptide with the 
highest score of 15.26 kcal/mol). In addition, the 
interactions between peptides and HLA-E were analyzed. 
As seen in Figure 5, the designed PEPTIDE 3 (Figure 
5B) had more interactions with HLA-E protein than the 
original peptide (Figure 5A). Figure 5A showed that

 

 
 

Figure 3. Design of affinity peptides targeting HLA-E. (A) Crystal structure of the HLA-E-CD94/NKG2A complex from PDB ID: 3CDG.  
(B) Interaction between model peptide and the key area of HLA-E (pink area represents the key interacting area). (C) Site view of the 
interaction between the model peptide and HLA-E; (D) Screening of a peptide library generated using the method of random replacing non-
key site amino acids for high affinity peptides for HLA-E. The top three peptides (i.e., highest affinity and stability) were designated PEPTIDE 1, 
2 and 3.  
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Table 2. The amino acid sequence of affinity peptides and the interaction sites on HLA-E. 

Peptide Sequence S score Interaction sites on HLA-E 
MODEL NALDESCEDKNR -36.7 H: R10-R62; N11-R62 
PEPTIDE1 NALDELGEHRNW -48.6 I: D4-R65; H: R10-E63 

PEPTIDE2 NALDESWEDKNR -47.4 H: R12-R65; R12-Q72; a: W6-H155; D4-Y159; 
i: R12-D69; R12-R65 

PEPTIDE3 NALDEYCEDKNR -55.9 H: N1-R65; E8-Y84; E8-K146; a: Y6-W97;  
i: D9-K146; D: E8-Y84; C7-F116 

 

leader peptide can form hydrogen bonds between 
Val1 and Tyr159, Met2 and Glu63, His9, Arg5 and 
Trp133, Ser147, Leu9 and Arg65 of HLA-E. 
Hydrogen bonds  between Leu9 and Gln113 of CD94, 
Lys164 of NKG2A protein could also be formed to 
increase the binding energy. However, the designed 
PEPTIDE 3 could form more interactions which 

include hydrogen bonds between Ala2, Asp4, Glu5, 
Glu8, Asp9, Lys10, Asn11, Arg12 and Thr163, 
Gln156, Ser143, Tyr84, Lys146 of HLA-E protein. It 
could also form several hydrogen bonds between 
PEPTIDE 3 and CD94 protein, such as Glu5, Asn11, 
Arg12 and Gln112, Ser110, Asn158, Ser109 (As seen 
in Figure 5B). The computational study indicated that  

 

 
 

Figure 4. Interaction of affinity peptides with HLA-E. (A, C, E). The docking of PEPTIDE 1, 2 and 3 with the key area of HLA-E (PDB ID: 
3CDG). (B, D, F). Site view of PEPTIDE 1, 2 and 3 docking with HLA-E. Dash lines, hydrogen bonds; Labeled residues, amino acids interacted 
between affinity peptides and HLA-E. 
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the designed PEPTIDE 3 bound more stronger to the 
HLA-E protein and had more binding free energy. 
 
Verify the targeting peptides’ affinity against HLA-
E by FCM and confocal laser microscopy 
 
The expression of HLA-E on the surface of 293T cells 
and HLA-E plasmid transfected 293T cells were 
detected by flow cytometer (FCM, ACEA 
NovoCyteTM, Hangzhou, China). The result showed 
that 293T cell line didn’t express HLA-E protein on 
cell surface (Figure 6A). The expression rate of HLA-
E on 293T cell line was 72.53% after HLA-E plasmid 
transfection (Figure 6A). The HLA-E high expressed 
293T cells and 293T cells were incubated with 
different concentration fluorescein isothiocyanate 
(FITC) labeled model peptide and PEPTIDE 1-3 for 
1h. And then detected the affinity of targeting peptides 
to HLA-E by FCM. The result showed that with the 
concentration growing, more peptide could be detected 
in HLA-E high expressed 293T cells (Figure 6B–6E). 
PEPTIDE 3 had the highest affinity to HLA-E which 
was consistent with computational result (Figure 6E, 
6F). After that HLA-E blocking antibody was used to 
incubate with HLA-E plasmid transfected 293T cells 
for 30mins, and then incubated with 50μg/ml 
PEPTIDE 3. The result showed that fluorescence 
intensity nearly disappeared (Figure 6E, 6F). 
 
U266 cell line is a common myeloma cell line. HLA-E 
protein could not be detected on the surface of U266 
cell line by FCM (Figure 7A). As previous experiment 
introduced that HLA-E protein need leader peptide to 

express on myeloma cells surface [18]. With this 
protocol, HLA-E protein was detected on the surface of 
U266 cells by pretreating with leader peptide (Figure 
7A). This HLA-E expressed U266 cell line was used to 
detect the FITC labeled peptides’ affinity by confocal 
laser microscope. PEPTIDE 3 which had highest 
affinity to HLA-E was used in this part. With the 
concentration growing, more FITC labeled PEPTIDE 3 
could be detected on the HLA-E expressed U266 cells 
(Figure 7B–7E). When HLA-E expressed U266 cells 
pre-treated with HLA-E blocking antibody, the affinity 
of P3 to HLA-E disappeared (Figure 7F). 
 
DISCUSSION 
 
The treatment of MM has achieved great progress with 
the use of new drugs, even for some of the refractory 
and relapse patients [19]. With the improvements in 
biological knowledge, therapeutic options are able to 
overcome the high-risk behavior that represents an 
unmet clinical need [20]. Novel therapeutic way, 
targeting the neoplastic clone and improving its immune 
microenvironment are important for the treatment of 
MM [21, 22]. In order to find new treatment target, 
identifying high expressed antigen on the surface of 
MM cells is important. GEO datasets provide mRNA 
expression data for many types of diseases and normal 
tissues. This database makes it possible for us to 
increase the number of samples so that we could 
evaluate to discover a new therapeutic target for MM. 
With bioinformatics analysis, we identified four 
candidate therapeutic targets (DDOST, HLA-E, NME1, 
and CANX) for the treatment of MM. One of the most  

 

 
 

Figure 5. The site view of the interactions between leader peptide (shown as green) and the designed PEPTIDE 3 (shown as 
orange) with the HLA-E proteins (HLA-E protein is shown as purple, CD94 protein is shown as yellow, NKG2A protein is 
shown as blue). All hydrogen bonds and residues are labeled. (A) the site view of leader peptide docked with HLA-E; (B) the site view of 
PEPTIDE 3 with HLA-E. 
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effective techniques to achieve the selective delivery of 
drugs is based on targeting overexpressed receptors on 
the surface of cancer cells. NME1 was eliminated for it 
was not a membrane protein, and thus would have 
required the ability of drugs to penetrate the membrane to 
be effective. Because our approach relied on rational 
computational design of the peptide drug, structural 
information for the candidate targets was required. Thus, 
DDOST and CANX were eliminated for had no 
structural information with ligands. As a result, HLA-E 
was the only candidate drug target in the present 
research. The high expression of HLA-E mRNA was 
identified in bone marrow samples from MM patients in 
Shengjing Hospital. Thus, it represents a potential new 
target for the treatment of myeloma. 
 
HLA-E is characterized by lower polymorphism [23]. 
and plays a critical role in the immune response by 
both inhibiting and activating the function of natural 
killer (NK) cells [24]. The effects of HLA-E on NK 
cells are mediated through its binding with either 
CD94/NKG2A  (an inhibitory receptor) or NKG2C (an 
activating receptor). The affinity of HLA-E to 
CD94/NKG2A is much greater than CD94/NKG2C 
[25, 26]. So, HLA-E highly express on the surface of 
cells can inhibit the killing function of NK cells [27]. 
Thus, high HLA-E expression levels on the surface of 
tumor cells could inhibit the function of NK cells, 
which might be an important mechanism underlying 

tumor escape. Moreover, several malignancies and 
viral diseases express high levels of HLA-E, including 
hematological diseases [28–32]. In recent years, 
immunotherapy has been used to treat many kinds of 
malignancies successfully, even relapse patients [33]. 
Taken together, HLA-E is not only a target to find MM 
cells but also an immune checkpoint. Targeting HLA-E 
may could restore and enhance the immune function to 
give a new way for treating many malignant diseases 
including MM.  
 
Therapeutic peptides have gained a wide range of 
applications in medicine because of their safety, 
tolerability, high selectivity, and good efficacy [34]. 
Computational techniques can identify the new peptide 
drugs against specific targets and evaluate the bonding 
affinity before they are synthesized in laboratory [35, 36]. 
 
In the present study, we designed HLA-E targeting 
affinity peptide drug by analyzing the interaction 
between HLA-E and CD94/NKG2A. Previous works 
showed that HLA-E had very limited allelic 
polymorphism [23]. For designing HLA-E targeting 
peptide, low polymorphism was more suitable. HLA-E 
usually presented peptides derived from the leader 
sequence of other HLA class I molecules. However, it 
became evident that HLA-E ligands were not restricted 
to the leader peptides of HLA class I molecules [37–
40]. 3CDG from PDB website provided structure of the 

 

 
 

Figure 6. The affinity of targeting peptides increased with the growing of concentration and could be blocked by HLA-E 
blocking antibody. (A) 293T cells did not express HLA-E, and plasmid transfect 293T cells expressed HLA-E (p<0.01). (B) the affinity  
of model peptide and PEPTIDE 1-3 increased with the increasing of concentration. Precultured transfected 293T cells with HLA-E 
blocking antibody, the affinity of P3 disappeared. (C) The statistical chart about the affinity of peptides to HLA-E. All repeated for  
three times. 
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interaction between HLA-E and its ligand with high 
resolution. Peptides obtained from CD94, NKG2A and 
leader peptide were docking with key area of HLA-E 
respectively. At last, a peptide with 12 amino acids was 
found forming the most bonds with HLA-E and 
considered as a model peptide. With the strategy of 
randomly replacing non-key amino acids to enhance the 
affinity of peptides [41]. A peptide library was built. 
And we evaluated the peptides’ affinity to the target by 
a protein docking program. The top three peptides were 
subjected to molecular docking analysis, and PEPTIDE 
3 (NALDEYCEDKNR) was found to have the highest 
affinity for HLA-E. There were several studies 
highlighted the critical importance of peptides, most 
derived from the leader sequence of HLA-G, 
emphasizing the role of HLA-E and CD94/NKG2A 
system [42, 43]. To our surprise, PEPTIDE 3 was even 
binding stronger to HLA-E than original leader peptide 
for forming more interaction with HLA-E protein. If 
PEPTIDE 3 had stronger affinity to HLA-E, it might 
interfere the steady expression of HLA-E on the surface 
of MM cells. At that time, NK cells could recognize 
MM cells and kill it. The immune function of NK cells 

will recover. Up to now, high affinity peptides in theory 
were identified. 
 
In order to verify the affinity of peptides to HLA-E. The 
potential high affinity peptides (model peptide and 
PEPTIDE 1-3) were synthesized and labeled by FITC 
fluorescein. We built HLA-E high expressed cell lines 
293T and U266 by plasmid transfection and leader 
peptide pretreating respectively. FCM and confocal 
laser microscopy were used to detect the FITC labeled 
HLA-E targeting peptides. The result verified the 
computer work, PEPTIDE 3 had the highest affinity to 
HLA-E. Indicating PEPTIDE 3 could be considered as a 
potential targeting peptide drug candidate to target MM 
cells.  
 
However, there are still some limitations in our study. 
We verified HLA-E high expression on some MM 
patients, while the number of patients was not large 
enough. Moreover, the prognostic significance of HLA-E 
on MM patients was not discussed. We also need to 
clarify the side effect of PEPTIDE 3, especially off-target 
effect in vivo experiment. In further, we will do the 

 

 
 

Figure 7. Affinity of PEPTIDE 3 to HLA-E high expressed U266 cells. (A) HLA-E protein was not detected on U266 cells; pretreated 
U266 cells with leader peptide could induce HLA-E expression. (B) 5μg/ml PEPTIDE 3 interacted with HLA-E high expressed U266 cells; (C) 
10μg/ml PEPTIDE 3 interacted with HLA-E high expressed U266 cells; (D) 25μg/ml PEPTIDE 3 interacted with HLA-E high expressed U266 cells; 
(E) 50μg/ml PEPTIDE 3 interacted with HLA-E high expressed U266 cells obviously; (F) 50μg/ml PEPTIDE 3 could not interacted with HLA-E 
blocking antibody pre-treated HLA-E high expressed U266 cells. The figures were representing ones and all repeated for three times. 
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biological effects of PEPTIDE 3 not only on MM cells 
cell lines and in myeloma primary cells but also in vivo. 
 
In summary, the present study has identified HLA-E as 
a new therapeutic target for MM and designed affinity 
peptides targeting it. PEPTIDE 3 has the strongest 
affinity to HLA-E. In future studies, the affinity 
peptide could also be used to produce peptide-drug-
conjugates (PDC) for the target treatment of MM. The 
present work provides a new way for the treatment  
of MM. 
 
MATERIALS AND METHODS 
 
Microarray data 
 
GSE6691 and GSE39754 datasets were downloaded 
from the GEO database and combined for analysis. The 
datasets included bone marrow samples from 182 MM 
patients and 11 healthy volunteers (control samples).  
 
Identification of upregulated differentially expressed 
genes (DEGs) 
 
The upregulated DEGs in MM samples compared  
to the controls were screened using GEO2R 
(http://www.ncbi.nlm.nih.gov/geo/geo2r). Log2FC (fold 
change) > 1.5 and P-value <0.05 were set as standard 
criteria. The co-DEGs between GSE6691 and 
GSE39754 were identified by Venn diagram online 
(http://bioinformatics.psb.ugent.be/webtools/Venn/). 
 
PPI network construction and cluster analysis 
 
PPI network of co-upregulated DEGs was constructed 
using the STRING online database. A combined  
score greater than 0.4 was considered statistically 
significant. Cytoscape was used to visualize the PPI 
networks. The whole PPI network was clustered into 
several key modules using MCODE. The criteria for 
selection were as follows: MCODE score > 4, degree 
cut-off = 2, node score cut-off = 0.2, k-core = 2, and 
maximum depth = 100.  
 
Identification of hub genes  
 
CytoHubba was employed to determine the hub genes 
of the PPI network. In this study, BottleNeck 
calculations were used to identify the top ten hub 
genes. 
Patients and bone marrow samples 
 
Bone marrow samples from six MM patients and six 
non-hematological malignant patients were collected 
from the Hematological Department, Shengjing 
Hospital of China Medical University from Sep 2016 to 

Jun 2017 with informed consent. All experimental 
protocols were approved by the Ethics Committee in 
Shengjing Hospital. MM cells were purified with 
CD138 magnetic beads using positive selection 
according to the manufacturer’s instructions (Miltenyi 
Biotec, Germany) [44].  
 
Real-time quantitative RT-PCR (RT-qPCR) 
 
Total RNA was extracted using Trizol (TaKaRa, Japan). 
Reverse transcription (2.5 μg total RNA) was performed 
using a cDNA synthesis kit (TaKaRa, Japan). qRT-PCR 
was performed with SYBR Premix EX Taq (TaKaRa, 
Japan) using the QuantStudio 3 real-time PCR system 
(ThermoFisher, USA). RT-qPCR primers were 
synthesized as described [45]: HLA-E forward primer, 
5'-ccgtcaccctgagatgga-3'; HLA-E reverse primer, 5'-
agcaatgatgcccacgat-3'. β-actin was used as a reference 
and amplified using primers 5'-ccaaccgcgagaagatga-3' 
and 5'-ccagaggcgtacagggatag-3'. qRT-PCR was 
performed by denaturation at 95°C for 3 min followed 
by 40 cycles of denaturation at 95°C for 12 sec and 
annealing at 62°C for 40 sec. The relative levels of 
HLA-E expression were calculated as ΔCt = Ct(gene) - 
Ct(reference). The 2-ΔΔCt method was used to calculate 
the fold-change of gene expression. 
 
Design of high-affinity targeting peptides against 
HLA-E 
 
Crystal structure of homo sapiens’ HLA-E complex 
interacting with CD94/NKG2A was obtained from the 
PDB website. The result showed that there were two 
crystal structures available listed as PDB code 3CDG 
and 3CII. 3CDG with the higher resolution which 
would be used as the foundation for the design of 
affinity targeting peptides. Interactions between proteins 
and peptide-protein docking were performed by MOE 
software. To design affinity peptides targeting HLA-E, 
we firstly fulfilled the structure preparation of the HLA-
E-CD94/NKG2A complex by addition of hydrogen, 
removal of H2O molecules, and energy minimization. 
Next, we identified the key interacting area between 
HLA-E and CD94/NKG2A by analyzing the bonding 
and mining literature data. A peptide obtained from 
CD94/NKG2A was used as a model peptide for 
interaction with the HLA-E pocket. The peptide library 
was constructed based on the model peptide using the 
residue scan module in MOE software for random 
replacement of non-key amino acids. All peptides with 
predicted high affinity for HLA-E were optimized as 
follow. Firstly, conformational searching of these 
peptides was conducted with LowModeMD method; 
Secondly, docking was conducted based on two steps 
(placement and refinement) of Dock module in MOE. 
Triangle matcher and rigid receptor method were used 

http://www.ncbi.nlm.nih.gov/geo/geo2r
http://bioinformatics.psb.ugent.be/webtools/Venn/
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in these two steps. 100 poses would produce in the 
placement step and at last exported 10 poses. At last, 
London dG and GBVI/WSA dG scoring function were 
used to estimate the affinity of peptide to HLA-E. The 
binding affinity of these peptides could be predicted by 
forming interaction bonds and binding free energy (S 
value obtained from docking simulations).  
 
Verify the targeting peptides’ affinity against HLA-
E by FCM 
 
293T cells as a tool cell line which collected by our 
laboratory were used for construction HLA-E high 
express cell lines by transfecting HLA-E plasmid with 
Lipofectamine 3000 (Invitrogen) as previous report [46]. 
Affinity peptides which labeled by FITC were purchased 
from Chinese Peptide (Hangzhou, China). The 
expression of HLA-E was detected using antihuman 
fluorescent monoclonal antibody allophycocyanin 
(APC) and performed by flow cytometer (FCM, ACEA 
NovoCyteTM, Hangzhou, China). The HLA-E antibodies 
were purchased from Biolegend (clone: 3D12, San 
Diego, CA, USA). 5μg/ml, 10μg/ml, 25μg/ml, 50μg/ml 
model and PEPTIDE 1-3 were cultured with HLA-E 
high expressed 293T cells and 293T cells. Then affinity 
of peptides against HLA-E were detected by FCM. 
Firstly, a ‘live gate’ was circled. Secondly, Cells were 
first gated by their FSC/SSC properties, and then the 
percentage of each concentration FITC-labeled peptides 
were computed (Supplementary Figure 1). 
 
Verify the targeting peptides’ affinity against HLA-
E by confocal laser microscopy 
 
U266 cells was a common kind of myeloma cell lines 
which could be inducted to express HLA-E by adding 
leader peptide as previous report [28]. U266 cells were 
incubated with 500 μM of HLA-B7 (VMAPRTVLL) 
or a control peptide (VGRGRAFVLI) for 12 h at 37 
°C. Cultured U266 cells without peptide or with the 
solvent of the peptides (DMSO) considered as 
negative control. HLA-E expression was determined 
by FCM. 
 
HLA-E high expressed U266 cells and U266 cells were 
used for verification the affinity of the targeting 
peptides against HLA-E by confocal laser microscopy 
[47]. Preparations for microscopic observations as 
follows: FITC-labeled targeting peptides solution of 
1μL (50mg/ml) and 1mL cells (4×105) were mixed into 
a six-hole plate for 1h and then fixed by 
polyformaldehyde for 30mins. Membrane and nuclei 
were dyed by DLI and DAPI for 30mins after washing 
and resuspending the cells with phosphate buffer 
solution (PBS). Nikon C2 confocal microscope was 
used for microscopic observations [48]. The sample was 

stored in dark place at 4°C, and then observation was 
carried at 20mins after dyeing. 
 
Statistical analysis 
 
The data were expressed as the mean ± SD and two 
group statistical comparisons of means were calculated 
using the Student's t-test (SPSS software 23.0). A P-
value < 0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Figure 
 
 

 
 
Supplementary Figure 1. The way to circle cells. First, a ‘live gate’ was circled. Cells were first gated by their FSC/SSC properties and 
then, the percentage of each concentration FITC-labeled peptides were computed. 


