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INTRODUCTION 
 

Despite the significant efficacy, cancer monotherapy 

has frequently been reported with acquired drug 

resistance due to tumor heterogeneity [1]. In recent 

years, combinational therapies of drug synergy were 

actively sought with increased efficacy, reduced side 

effects, and delayed drug resistance [2–4]. 

Representative examples include a combination of 

panobinostat and doxorubicin for acute myeloid 

leukemia [5], and the use of histone-deacetylase 

inhibitor AR-42 in combination with cisplatin in 

bladder cancer treatment [6]. While promising, 

identifying synergistic drugs from a large pool of 

candidates remains challenging for specific cancer 

types. Complicated context factors have been found to 

affect the synergistic effects of drug treatment, such as 

drug structures, tested cell lines/animals, drug dosage, 

sequential treatment, and testing conditions, and so on 

[7]. Under such circumstances, searching synergistic 

partners via „trial-and-error‟ experiments seem 

impractical considering the huge space of potential 

drugs with various dose combinations on different 

testing cell lines [8]. More cost-effective computational 

methods have been explored to reduce the searching 

landscapes of subsequent experiments. 

 

Currently, only a few algorithms have been published 

with promising performance [9, 10], such as Drug-

Induced Genomic Residual Effect (DIGRE) [11], 

IUPUI_CCBB methods [3], Combination Drug 

Assembler (CDA) [12], Huang‟s and Parkkinen‟s 

method [13]. In 2015, our group constructed a workflow 

of RACS with top performance among peers [14, 15]. 
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ABSTRACT 
 

Though promising, identifying synergistic combinations from a large pool of candidate drugs remains 
challenging for cancer treatment. Due to unclear mechanism and limited confirmed cases, only a few 
computational algorithms are able to predict drug synergy. Yet they normally require the drug-cell treatment 
results as an essential input, thus exclude the possibility to pre-screen those unexplored drugs without cell 
treatment profiling. Based on the largest dataset of 33,574 combinational scenarios, we proposed a handy 
webserver, H-RACS, to overcome the above problems. Being loaded with chemical structures and target 
information, H-RACS can recommend potential synergistic pairs between candidate drugs on 928 cell lines of 24 
prevalent cancer types. A high model performance was achieved with AUC of 0.89 on independent 
combinational scenarios. On the second independent validation of DREAM dataset, H-RACS obtained precision 
of 67% among its top 5% ranking list. When being tested on new combinations and new cell lines, H-RACS 
showed strong extendibility with AUC of 0.84 and 0.81 respectively. As the first online server freely accessible 
at http://www.badd-cao.net/h-racs, H-RACS may promote the pre-screening of synergistic combinations for 
new chemical drugs on unexplored cancers. 
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Yet most models require key input of drug-cell 

interaction profiling, such as the pairwise change before 

and after drug treatment on the same cancer cell lines 

[16]. While the expression profiles of drug tests on 

cancer cell lines are still insufficient and scattered, only 

a limited number of drugs are viable to these models. In 

the pressing need for those unexplored drug 

combinations on unexplored cancers, more practical 

methods without input requirement of drug-cell-

treatment have been actively desired. 

 

According to literature searching, three such models 

have been reported so far. The general idea of them is 

to collect known synergistic (positive) and non-

synergistic (negative) combinations on different 

cancers, then construct various features that help to 

differentiate positive from negative combinations. 

Finally, those important features are used to further 

build a prediction model. Specifically, the first model 

was Zhao‟s method proposed in 2011 based on drugs 

information of MeSH terms, therapeutic and side 

effects, together with network features of the drug 

targets [17]. The second was from Li et al, which 

improved Zhao‟s method in specificity and sensitivity 

through integrating drug similarity calculated based 

on drug targets [18]. It is noted that both above 

ignored the difference of cancer context. Soon a more 

comprehensive one, DeepSynergy, was reported in 

2018 considering both drug and cancer information 

[19]. On top of the drug-related features, 

DeepSynergy utilized the basal expression profiles of 

tested cell lines with no drug treatment, which was 

very insightful and promising to screen new drug 

combinations on a wide range of cell lines. But, 

regrettably, the performance was not validated on any 

independent dataset, and low predictive performance 

was found on new or unexplored drug combinations 

or cell lines according to authors‟ claim [19]. 

Furthermore, the page of DeepSynergy only displayed 

the calculated results between 38 testing drugs on 39 

cell lines in the paper, providing no uploading access 

of interested drug list from users. In this sense, it was 

viewed as a “data portal” rather than a prediction tool 

[20]. To summarize, these published models seem still 

inadequate to a large-scale exploration of synergistic 

drugs for cancers. 

 

In addition to important features related to drug 

synergy, another challenge of model performance is the 

data insufficiency of synergistic drugs on cancers. Till 

now, there are mainly three sets of experimental data on 

synergistic effects of anti-cancer drugs. The first was 

released by the Dialogue for Reverse Engineering 

Assessments and Methods (DREAM) consortium in 

2014, regarding 91 drug combinations derived from 14 

compounds on the human diffuse large B-cell 

lymphoma cell line OCI-LY3 [3]. The second was from 

O‟Neil describing synergistic effects of 22,737 

combinational scenarios, between 38 drugs on 39 cancer 

cell lines in 2016 [4]. A combinational scenario is 

tentatively defined as one unique drug combination on a 

unique cell line, regardless of dose variation. Most 

recently, the third data source was published by 

AstraZeneca in 2019 testing 995 drug combinations on 

137 cell lines, producing synergistic results of 20,482 

combinational scenarios [21]. It is noticed that different 

datasets used different standards to judge synergistic 

effects. The early DREAM project took excess over 

bliss (EOB) model by a single-dose response curve, 

while the latter two large datasets, AstraZeneca and 

O‟Neil project, both judge by synergy score calculated 

on multiple doses response surface through Combenefit 

[22–25]. Hence the data of AstraZeneca and O‟Neil can 

be integrated into a more comprehensive and 

representative dataset (A&O) for further model 

construction and testing. 

 

In this work, we built a handy tool, H-RACS, to predict 

synergistic drug combinations on cancers based on the 

largest data of the A&O dataset. External validations 

were made on different sets of independent data, 

including A&O, DREAM data, and those unexplored 

drug combinations and cell lines respectively. Finally, a 

web server was made publicly available as the first 

online tool to predict drug synergy for community 

applications in cancer area. 

 

RESULTS 
 

Model construction and validation 
 

H-RACS was developed to predict the synergistic 

potential of drug combinations on given human cancer 

cell lines, the modelling workflow is illustrated in 

Figure 1. Input datasets include drug structures, 

corresponding target lists, and names of cell lines. The 

features of H-RACS are composed of drug chemical 

descriptors, drug similarities, drug targeting network 

features, and signature genes of basal cell lines. The 

synergy score is calculated as the final output. 

 

Seven machine learning models were firstly trained 

based on two-thirds of the A&O dataset, including 

22,382 combinational scenarios. The remaining 11,192 

combinational scenarios were adopted for the 

independent test. Internal five-fold cross-validation was 

executed for each model. The model performance was 

evaluated qualitatively by classifying synergistic or 

non-synergistic scenarios, and quantitatively by synergy 

score regression. For classification, the overall model 

performance of area under the receiver operator 

characteristics curve (AUC) and accuracy (ACC) were 

https://cn.bing.com/dict/search?q=%2C&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=regrettably&FORM=BDVSP6&mkt=zh-cn
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adopted as parameters for evaluation. For regression, 

the Root Mean Squared Error (RMSE) and consistency 

of R Squared (R
2
) were adopted between predicted and 

experimental results. The higher of AUC, ACC and R
2
, 

the better performance of a model. And for RMSE, the 

lower the better. 

 

Among the seven models, Gradient Boosting Regression 

gave the highest AUC (0.87), ACC (0.91), R
2
 (0.40), and 

the lowest RMSE (18.43), hence was chosen for H-

RACS (Supplementary Figure 1). More details of testing 

models can be found in Supplementary Table 1. As the 

first independent validation, H-RACS was tested on the 

remaining one-third of A&O combinational scenarios. 

The AUC of 0.89 and ACC of 0.91 in classification were 

obtained on the remaining 11,192 scenarios (Figure 2), 

exhibiting high predictive performance. Further, among 

the seven models, the overall RMSE between predicted 

and experimental synergy score is the lowest of 17.78 in 

regression, and R
2
 is the highest, showing the best 

consistency between them. 

 

High precision on DREAM challenge data 
 

Furthermore, H-RACS was tested on a new set of data 

from the DREAM challenge [3]. Here, 78 drug 

combinations derived from 13 compounds were 

predicted by H-RACS because Mitomycin C is a potent 

DNA crosslinker and its targets have not been specified 

(Supplementary Table 2) [26]. The model‟s ability to 

score positive combinational scenarios into the top-

ranking list was evaluated by the accuracy, precision, 

and sensitivity at different cut-offs. It can be seen from 

Figure 3A that, H-RACS obtained a high precision of 

0.67, 0.43 and 0.33 at different cutoffs of 5%, 10% and 

20% of the top ranking lists respectively. Most 

importantly, the two most synergistic pairs in 

experiments were scored exactly into the top two by H-

RACS (Figure 3D). 

 

The performance of H-RACS was compared with that 

of the best model DIGRE from the DREAM challenge 

and the current best model RACS on the DREAM 

dataset. The performances of DIGRE and RACS were 

retrieved from previous literature and are shown in 

Figure 3 [15]. It is worth noting that both of them 

require essential input of the expression profiling 

change after the drug treatment. Despite the  

different loading of input requirement, H-RACS 

outperformed DIGRE on precision and sensitivity at 

different cut-offs of the top-ranking list, as well as the 

overall ACC. 

 

 
 

Figure 1. Workflow for H-RACS illustrating the steps to predict synergy score. 
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In comparison with RACS, RACS still performed better 

than H-RACS on most parameters. Yet H-RACS 

performed as good as RACS with the precision of 0.67 

for the top 5% ranking list. Interestingly, only H-RACS 

captured the two most synergistic combinations in the 

DREAM challenge, which was missed out by both 

RACS and DIGRE (Figure 3E, 3F), indicating the 

outstanding potential of H-RACS to identify the most 

synergistic drug combinations even with less load of 

input data. 

 

Outstanding performance on unexplored drug 

combinations or cell lines 

 

To test the predictive performance of H-RACS on 

unexplored drug combinations, we randomly split A&O 

data into about 2/3 for training and 1/3 for external 

testing datasets by the function of GroupShuffleSplit in 

the module of sklearn.model_selection, considering 

both the number of combinational scenarios and non-

redundant drug combinations [27]. Among the A&O 

dataset of 33,574 combinational scenarios covering 

1,380 drug combinations and 116 cell lines, 920 unique 

drug combinations (22,320 scenarios) were set as 

training data, while the remaining 460 drug 

combinations (11, 254 scenarios) distinct from training 

combinations were kept as the external unexplored drug 

combinations to test H-RACS independently 

(Supplementary Table 3). 

 

Similar data splitting was performed for unexplored cell 

lines. Among the A&O dataset, 77 unique cell lines 

(22,680 scenarios) were set as training data, while the 

remaining from 39 cell lines (10,894 scenarios) non-

overlapping with training cell lines were kept as 

independent testing of unexplored cell lines i lines 

(Supplementary Table 3). The testing results are shown 

in Table 1. H-RACS achieved high classification 

performance with AUC of 0.84 and ACC of 0.90 on 

independent data of unexplored drug combinations. 

Additionally, on external unexplored cell lines, H-RACS 

still gained AUC of 0.81 and ACC of 0.89, suggesting its 

ability to recommend synergistic combinations for those 

unexplored drugs or unexplored cell lines. 

 

 
 

Figure 2. The performance comparison of seven models based on the independent validation dataset. Model performance is 

evaluated by AUC, ACC, R
2
 and RMSE respectively. 
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Figure 3. Models’ comparison on the DREAM challenge dataset. (A) The precision at top 5%, 10%, 15%, 20% ranked combinational 
scenarios of H-RACS, RACS and DIGRE; (B) The sensitivity at top 5%, 10%, 15%, 20% ranked combinational scenarios, and overall accuracy of 
H-RACS, RACS and DIGRE; (C) The overall accuracy of H-RACS, RACS and DIGRE; (D–F) The detailed ranking agreement between the 
predicted results and DREAM experimental results, The red dots are true synergistic drug combinations, while the blue dots are the non-
synergistic ones confirmed from DREAM experiments. The vertical black dashed lines indicate the boundary between the top 16 synergistic 
pairs and non-synergistic ones, while the horizontal black dashed line illustrates the boundary between the top 16 predicted ranking and 
the rest 62 ones. 
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Table 1. Predictive performance of H-RACS on unexplored drug combinations and cell lines. 

Test on  Validation 
Classification Regression 

AUC 
a
  ACC 

b
 RMSE 

c
  R

2
 
d
 

Unexplored drug 

combinations 

Internal 0.87±0.01 0.90±0.00 18.00±0.50 0.40±0.02 

External 0.84 0.90 19.64 0.36 

Unexplored cell lines 
Internal 0.88±0.01 0.91±0.00 18.21±0.30 0.44±0.01 

External 0.81 0.89 21.43 0.21 

a
 Area Under ROC curve 

b
 Accuracy 

c
 Root Mean Squared Error 

d
 R Squared 

 

DISCUSSION 
 

Predicting drug combinations with synergistic anti-

cancer effects has long been desired but remains highly 

challenging. One reason lies in the inherent complexity 

of drug synergy, where synergistic effects occur in a 

highly context-dependent manner. The mechanism was 

only roughly suggested as pharmacodynamics or 

pharmacokinetic related, while more details deserve 

further investigation [28]. Meanwhile, the criteria to 

judge drug synergy is still under development. 

According to the literature, drug synergy could be 

judged by CI index, or synergy score, or others [23, 29]. 

Even the CI index can be derived from different models 

such as Bliss independence model [3, 30], Loewe 

additivity [24], highest single agent (HSA) [31], 

median-effect [32, 33], which further complicates the 

data cleaning when selecting benchmark and testing 

datasets. On the same combinational scenarios, this 

often leads to a contrast conclusion of synergy or not. In 

this work, we just took the well-standardized high-

throughput data as training and testing datasets to avoid 

the inconsistency. 

 

From recent testing, drug related features, cell line 

related features, and drug-cell-interaction features seem 

to all contribute to synergy prediction [9–15]. Those top 

ranking models require drug-cell-interaction profiling as 

a key input, while the profiling/-omics change is 

publicly available for only a small number of drugs on 

limited cell lines. Considering the enormous chemical 

space of interested candidates with treatment profiling 

yet to be explored, pre-screening algorithm is in urgent 

need as an initial hint for further experiments. Here we 

proposed a handy tool, H-RACS, to achieve the above 

goal. Taking gene signatures of basal cell lines without 

drug perturbation, instead of the profiling change before 

and after drug-cell-treatment, H-RACS achieved an 

impressive performance on different sets of independent 

testing data. In particular, on the DREAM challenge 

dataset, it outperformed model DIGRE (the best in 

DREAM challenge) [3], being slightly inferior to 

RACS, currently the best on this dataset [15]. The 

excellent performance of H-RACS may benefit from the 

A&O dataset. In total, A&O dataset of 33,574 

combinational scenarios covered 135 drugs and 116 cell 

lines for 24 cancers. Each scenario was tested multiple 

times in order to define the extent of synergistic effects. 

The data quality, standardized format, diversity and 

abundance provided a solid benchmark to set up 

machine learning model for further extension.  

 

Despite the significant correlation with drug synergy [9], 

the drug-cell-treatment profiling was purposely avoided 

here to increase the model extendibility and portability 

for unexplored drugs or cancers. From the validation on 

DREAM challenge data, it can be seen that H-RACS 

paid a slight price of performance drop (ACC 0.05) as a 

compromise. Now with build-in profiling of 928 cell 

lines covering 24 common cancers, H-ARCS only needs 

users to upload drug information before initiating large-

scale pre-screening between any interested drugs on 

selected cancer cell lines. For more refined prediction, 

we suggest user use the full version of RACS when 

drug-cell-treatment profiling is accessible [15].  

 

It is aware that the current model is only applied to 

chemical drugs. With the subsequent updating of drug 

synergy data and development of common standards to 

define synergistic effects, the model is expected to be 

improved by introducing antibody drugs. Also, further 

efforts will focus on incorporating additional parameters 

to enhance the performance, such as the x-omics 

profiling of cancers, drug adverse effects, drug dosage 

and others.  

 

In summary, we proposed a handy tool, H-RACS, to 

predict drug synergy for cancers. It enables pre-

screening between unexplored drugs on 928 cell lines 

covering 24 cancers for general users in cancer 

community. The advantages of H-RACS lie in low 

requirement of data input, outstanding prediction, 

https://cn.bing.com/dict/search?q=inferior&FORM=BDVSP6&mkt=zh-cn
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sensitive context of cancer subtypes, and most 

importantly, the extendibility to unexplored drugs or 

cell lines. Though further tests are still needed before 

going to clinic applications, the high-throughput 

recommendation system of H-RACS may help to 

reduce experimental cost and increase the searching 

efficiency, so as to facilitate the identification of 

synergistic anti-cancer therapies. 

 

MATERIALS AND METHODS 
 

Datasets and integrating 

 

Three major datasets were involved in this study: the 

AstraZeneca dataset, the O‟Neil dataset, and the 

DREAM challenge dataset. The authorized dataset from 

AstraZeneca was downloaded from AstraZeneca-Sanger 

Drug Combination Prediction DREAM Challenge. And 

the O‟Neil dataset was downloaded from DeepSynergy 

[19]. The DREAM challenge dataset released in 2014 

was downloaded from the supplementary of RACS [15]. 

After the quality check, 10,837 combinational scenarios 

from AstraZeneca were integrated with the O‟Neil 

dataset into A&O data covering 33,574 combinational 

scenarios comprising 1,380 drug combinations and 116 

cell lines (Supplementary Table 4, Supplementary 

Figure 2A–2D). According to the previous publication, 

those with a synergy score above 30 were collected as 

positive scenarios, and the left were negative ones [19]. 

The A&O dataset is used for model construction and 

validation. The Dream dataset is used for further 

independent validation. 

 

Drug SMILES files were downloaded from DrugBank 

[34] and PubChem [25]. Drug targets were collected 

from DrugBank [34], PubChem [25], Therapeutic target 

database (TTD) [35] and DGIdb [36]. Drug targeting 

network was retrieved based on the background protein-

protein interaction (PPI) network integrating six online 

PPI databases (HPRD [37], MINT [38], IntAct [39], 

BioGRID [40], DIP [41], MIPS [42]) [37–42]. The raw 

expression dataset of cancer cell lines was obtained 

from the Cancer Cell Line Encyclopedia (CCLE) 

project in GEO database (accession number: 

GSE36133) [33]. 

 

Features construction and selection 
 

For each combinational scenario, features related to 

drugs and cancer cell lines were calculated respectively 

for modelling. Drug features are composed of chemical 

descriptors, compounds similarities and network 

characteristics of drug targets. A total of 196 chemical 

descriptors were calculated based on the chemical 

structures by RDKIT [43]. Compound‟s similarities 

were described via topological fingerprint similarity, 

Atom Pairs similarity, and Morgan Fingerprints 

similarity by RDKIT [43]. Drug targeting network was 

constructed and seven features of targeting network 

were calculated between drug combinations as they 

were previously reported for drug combination 

prediction [15]. For cancer cell lines, the raw expression 

profiles of cancer cell lines were preprocessed and 

quantile normalized [44]. FARMS method was used to 

call informative genes as the signature genes [45, 46]. 

3,988 signature genes were derived from the 116 cell 

lines covering 11 different cancer types. 

 

Thus, the initial feature set of 4,390 vectors includes 

406 drug-related features and 3,984 signature genes  

of cell lines. Then feature selection was performed by 

two steps. Firstly, those blank features in 90% 

combinational scenarios were removed. Secondly, those 

features correlated with synergy scores were ranked and 

selected as the final feature set. Top 10% 20% 30% and 

50% top ranked features were tested and the top 30% 

vectors were chosen considering both the performance 

and efficiency. The final feature set of 1,275 vectors 

covers 208 drug-related features and 1,067 signature 

genes of cell lines. 

 

Methods 

 

Seven popular machine learning models were screened, 

including gradient boosting regression, random forest, 

support vector machine, linear regression, elastic net, 

kernel ridge regression, and lasso regression. The 

implementation of all methods is based on scikit- 

learn [27]. 

 

Performance metrics 

 

The model performance was evaluated by metrics of 

regression and classification respectively, including 

Root Mean Squared Error (RMSE), R Squared (R
2
), and 

Receiver Operating Characteristic (ROC) curve, the 

area under the receiver operator characteristics curve 

(AUC), accuracy (ACC) typical for classification 

evaluation. 

 

Root Mean Squared Error (RMSE) 

This parameter provides a measure of the standard 

deviation of prediction errors: 

 

   
2

_ _

1

1
,   

   

n

true pred true i pred i

i

RMSE y y y y
N



   (1) 

 

Where ypred_i is the synergy score predicted for the i-th 

combinational scenario, and ytrue_i is the corresponding 

synergy score experimentally validated. N and n is the 

number of combinational scenarios for prediction. 
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R squared (R
2
) 

This parameter provides a measure of the correlation 

between predictions and experimentally validated 

synergy scores: 
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   (3) 

 

Where ypred_i is the synergy score predicted for the i-th 

combinational scenario, and ytrue_i is the corresponding 

synergy score experimentally validated. y  is the mean 

experimentally validated synergy scores of all 

combinational scenarios, N and n is the number of 

combinational scenarios for prediction. 

 

Classification evaluation 

Receiver Operating Characteristic (ROC) curve, the area 

under the receiver operator characteristics curve (AUC) 

and accuracy (ACC) were plotted and calculated to 

evaluate the model‟s performance in classification [27]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The performance comparison of seven models based on five-fold cross-validation on the internal 
training dataset. 
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Supplementary Figure 2. Frequency distributions of synergy scores of A&O datasets. (A) Frequency distribution of synergy score of 
O‟Neil dataset; (B) Frequency distribution of synergy score of AstraZeneca dataset; (C) Frequency distribution of synergy score of A&O 
dataset; (D) Frequency distribution of synergy score of qualified samples in AstraZeneca dataset. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 and 4. 

 

Supplementary Table 1. The hyperparameters of methods. 

Method Hyperparameters 

H-RACS (gradient boosting regression) n_estimators=1000, learning_rate=0.1, max_depth=7, other parameters are default 

Random Forest n_estimators=300, max_depth=35, other parameters are default 

SVM C = 20, Gamma = 0.06, other parameters are default 

Linear Regression parameters are default 

Elastic Net Alpha = 0.04, l1_ratio = 1.00, other parameters are default 

Kernel Ridge Regression Alpha = 1.0, other parameters are default 

Lasso Regression Alpha = 0.03, other parameters are default 

 

Supplementary Table 2. Independent test and comparison result with peers’ methods in Dream challenge dataset. 

 

Supplementary Table 3. Data description for testing H-RACS on unexplored drug combinations and cell lines. 

Category Data usage Combinational scenarios Drug combinations Cell lines 

A&O dataset 
 

33,574 1,380 116 

unexplored drug 

combinations 

Training  22,320 920 116 

External test 11,254 460 116 

unexplored cell lines 
Training 22,680 1380 77 

External test 10,894 1378 39 

 

Supplementary Table 4. A&O dataset. 

 


