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INTRODUCTION 
 

Lung cancer is the leading cause of cancer incidence 

and mortality, accounting for nearly 2.1 million new 

lung cancer cases and 1.8 million deaths worldwide in 

2018 [1]. The two main subtypes of lung cancer are 

small-cell lung carcinoma and non-small-cell lung 

carcinoma (NSCLC), which account for 15% and 85% 

of all lung cancer cases, respectively [2]. NSCLC is 

further classified into squamous cell carcinoma, 

adenocarcinoma, and large cell carcinoma. Adeno-

carcinoma is the most common type of lung cancer that 

accounts for approximately 40% of all lung cancer cases 

[3]. The prognosis of lung cancer patients and their 

treatment is mainly based on the pathological stage of 

the disease [4]. There have been great advances in the 

clinical diagnosis and treatment of NSCLC, but the 

prognosis remains poor [5]. Currently, the standard 

therapy for clinical stage IA non–small cell lung cancer 

is surgical resection with lobectomy and mediastinal 

lymph node (LN) staging [6]. The treatment for 

advanced lung adenocarcinoma patients includes 

targeted therapy and chemo-radiotherapy [7]. Treatment 

with epidermal growth factor receptor (EGFR)-tyrosine 
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ABSTRACT 
 

In this study, we performed single-cell transcriptome data analysis of fifty primary and metastatic lung 
adenocarcinoma (LUAD) samples from the GSE123902 and GSE131907 datasets to determine the landscape of 
inter-patient and intra-tumoral heterogeneity. The gene expression profiles and copy number variations (CNV) 
showed significant heterogeneity in the primary and metastatic LUAD samples. We observed upregulation of 
pathways related to translational initiation, endoplasmic reticulum stress, exosomes, and unfolded protein 
response in the brain metastasis samples as compared to the primary tumor samples. Pathways related to 
exosomes, cell adhesion and metabolism were upregulated and the epithelial-to-mesenchymal-transition (EMT) 
pathway was downregulated in brain metastasis samples from chemotherapy-treated LUAD patients as 
compared to those from the untreated LUAD patients. Tumor cell subgroups in the brain metastasis samples 
showed differential expression of genes related to type II alveolar cells, chemoresistance, glycolysis and 
oxidative phosphorylation (metabolic reprogramming), and EMT. Thus, single-cell transcriptome analysis 
demonstrated intra-patient and intra-tumor heterogeneity in the regulation of pathways related to tumor 
progression, chemoresistance and metabolism in the primary and metastatic LUAD tissues. Moreover, our 
study demonstrates that single cell transcriptome analysis is a potentially useful tool for accurate diagnosis and 
personalized targeted treatment of LUAD patients. 
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kinase inhibitors is more effective for patients with 

EGFR-mutated lung adenocarcinoma and acceptable for 

EGFR-mutated NSCLC with brain metastases [8]. 

However, there is great scope for developing novel 

therapies to improve survival outcomes in NSCLC 

patients, especially those with site-specific metastases 

[9]. Combinatorial therapies show better clinical 

outcomes because they simultaneously block multiple 

cancer-related signaling pathways, including those 

related to drug resistance [10]. Intratumor heterogeneity 

has major implications for diagnosis and therapy of solid 

cancers because a single tumor biopsy may not provide 

complete information regarding the molecular 

characteristics of the primary and metastatic tumors [11]. 

Hence, dissecting the clonal composition of tumors at a 

genetic level is essential for the understanding of the 

biological nature and the developmental status of the 

cancer and subsequently assess prognosis and design 

effective treatment strategy [12]. Single-cell genome 

profiling technology provides the highest sensitivity in 

analyzing the intra-tumoral genetic heterogeneity and 

provides an understanding of the biological processes 

that are activated or suppressed in different clonal 

populations of tumor cells, which can then guide 

personalized targeted treatment strategy for individual 

cancer patients [13]. In this study, we performed single-

cell RNA sequencing data analysis of the GEO LUAD 

patient datasets to determine intra-patient and intra-

tumoral heterogeneity. We also aimed to identify specific 

molecular signatures related to tumor progression and 

chemoresistance that can be relevant in identifying 

potential therapeutic targets and designing personalized 

therapeutic regimens to improve survival outcomes of 

LUAD patients. 

 

RESULTS 
 

Analysis of single-cell transcriptomic profiles from 

primary LUAD and brain metastasis tissue samples 
 

The overall study strategy is shown in Figure 1. We 

analyzed 14 primary LUAD, metastatic LUAD and 

normal lung tissue samples from the GSE123902 dataset 

[14] and 36 primary LUAD, metastatic LUAD and 

normal lung tissue samples from the GSE131907 dataset 

[15]. Overall, we obtained 170831 single-cell 

transcriptomic profiles, including 80002 from primary 

LUAD tissue samples, 35364 from brain metastasis 

tissue samples, and 55465 from normal lung tissue 

samples We analyzed the sample characteristics and 

retained cells that showed >200 and <7000 genes as well 

as <20% mitochondrial genome reads (Figure 2A). We 

integrated the transcriptome data from 108892 tumor 

cells belonging to primary LUAD or brain metastatic 

tissues and 55241 cells from non-tumor lung samples 

into the Seurat object (https://satijalab.org/seurat/) The 

single R algorithm annotated 4014 cells from non-tumor 

lung tissues and 22200 cells from primary LUAD and 

brain metastasis tissues as epithelial cells. We confirmed 

the accuracy of the SingleR cell annotation by comparing 

the expression of several known marker genes in the non-

tumor lung tissues (Figure 2B, 2C). Furthermore, we 

 

 
 

Figure 1. Schematic representation of the study strategy. Our study strategy included quality control, data integration and filtration of 

transcriptome data, cell clustering and identification of heterogeneous tumor cells from the same tumor samples, functional enrichment 
analysis, gene set variation analysis (GSVA), and tumor cell subgroup analysis. 

https://satijalab.org/seurat/
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integrated the data from all cells and analyzed the copy 

number variations (CNV) using the inferCNV R package 

(Figure 2D). Based on these analyses, we designated the 

cell clusters with mostly normal lung cells as normal lung 

epithelial cells, whereas the remaining cell clusters  

with LUAD-related lesions were designated as tumor 

cells for joint analysis. Moreover, we tested several 

epithelial tumor marker genes using Seurat and Single 

Cell Signature Explorer packages (Supplementary Figure 

1). Then, we integrated the tumor and normal lung 

epithelial cells and performed batch correction  

analysis using Seurat (Figure 2E). The general com-

parison methods between samples are shown in 

Supplementary Table 1. 

 

We analyzed the single-cell RNA-seq data using 

inferCNV R package to detect amplifications or 

deletions in chromosomes and identified several copy 

number variations (CNVs) in different chromosomes in 

the tumor samples (Figure 2D). For example, the 

primary LUAD sample, GSM3516669, showed 

amplifications and deletions in chromosome 1 and 

deletions in chromosome 19. Another primary LUAD 

sample, GSM3516662, showed small amplifications in 

chromosome 1. The brain metastasis sample 

GSM3516671, showed amplifications in chromosomes 

1, 2, 12, and 20, and deletions on chromosomes 6, 8, 13, 

and 19. These CNV results demonstrated clear-cut 

differences between tumor cells and normal epithelial 

cells (controls). 

 

Landscape of gene expression heterogeneity in 

primary and brain metastasis LUAD samples 
 

We performed single-cell transcriptome data analysis on 

cells from eighteen primary tumor and ten brain 

 

 
 

Figure 2. Identification of normal lung epithelial cells and tumor cells. (A) Violin plots show genes numbers and the percentage of 

mitochondrial genome per single cell from the primary LUAD and brain metastatic tissues, and the normal lung tissues from the GSE123902 
[13] and GSE131907 [14] datasets. (B) The tSNE plot demonstrates five different cell types in a single non-tumor lung tissue sample and 
highlights annotation accuracy of the Single R package analysis. (C) Heatmap shows the expression of marker genes in different cell types 
from a single non-tumor lung tissue sample. (D) InferCNV plot shows diverse chromosomal copy number variation (CNVs) in the tumor cells 
from primary and metastatic LUAD tissue samples. Normal lung tissue samples are used as controls. (E) Seurat analysis results with batch 
effect correction after integrating primary and metastatic LUAD and normal lung epithelial cells. 
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metastases samples from LUAD patients without 

chemotherapeutic treatment to determine tumor 

heterogeneity at a single cell level. We used the 

FindMarkers function of Seurat and the Wilcoxon rank 

sum test to identify differentially expressed genes 

(DEGs) between cells from primary LUAD and brain 

metastasis samples. As shown in the volcano plot, we 

identified 1050 DEGs, including 801 upregulated and 

249 downregulated genes in the primary LUAD-derived 

cells compared to brain metastasis-derived cells using 

log fold change ≥ 0.25 and adjusted P value <0.05 as 

the selection criteria (Figure 3A). We then performed 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes pathway (KEGG) enrichment analyses for 

all the 1050 DEGs (Figure 3B–3E). We separately 

analyzed the upregulated and downregulated DEGs, 

and identified the functionally enriched or down-

regulated biological processes (BP) and signaling 

pathways in the primary LUAD- and brain metastasis-

derived cells (Supplementary Table 2 and Figure 3F, 

3G). The pathway enrichment analysis showed that 

genes involved in translational initiation, endoplasmic 

reticulum stress, extracellular exosomes, and unfolded 

protein response were upregulated in the brain 

metastases samples. The eukaryotic translation 

initiation factors, namely, EIF1, EIF3E, EIF3H, 

EIF4G2, EIF5, and EIF6, were all upregulated in the 

brain metastasis-derived tumor cells. The most 

upregulated gene in the brain metastases samples was 

defensin beta 1 (DEFB1). A previous study showed 

that DEFB1 is a potential diagnostic biomarker for 

lung cancer [16]. Moreover, enediyne-activated, 

EGFR-targeted human β-defensin 1 shows therapeutic 

efficacy against non-small cell lung carcinoma [17]. 

Our data suggests that DEFB1 is a potential target for 

treatment of brain metastases in LUAD patients. 

Survival analysis of the TCGA LUAD patient dataset 

(n=510) revealed that more than forty upregulated 

DEGs were associated with poor survival outcomes in 

LUAD patients (Supplementary Figure 2A). These 

included annexin A2 (ANXA2), aspartyl-tRNA 

synthetase (DARS), DEAD-box helicase 41 (DDX41), 

dehydrogenase/reductase X-linked (DHRSX), egl-9 

family hypoxia inducible factor 1 (EGLN1), family with 

sequence similarity 103 member A1 (FAM103A1), 

homeobox B7 (HOXB7), p53 apoptosis effector related 

to PMP22 (PERP), proteasome 26S subunit ATPase 6 

(PSMC6), Rac family small GTPase 1 (RAC1), STEAP 

family member 1 (STEAP1), and voltage dependent 

anion channel 1 (VDAC1).  

 

We also analyzed the DEGS between chemotherapy-

treated and untreated LUAD patients with brain 

metastases (Supplementary Figure 3A) and identified 

1167 DEGs, including 435 upregulated and 732 

downregulated genes (Supplementary Table 3). As 

shown in the bubble charts, DEGs enriched pathways 

related to extracellular exosome, cell adhesion and 

metabolic pathways (Supplementary Figure 3B–3E). 

Moreover, we observed significant enrichment of genes 

involved in immune response, especially leukocyte 

activation, which is a positive survival factor that 

inhibits tumor progression (Supplementary Figure 3F, 

3G). The chemotherapy-treated group we analyzed 

including three brain metastasis patients, all of whom 

received chemotherapy with different regimens. Two 

brain metastasis patients were treated with cisplatin and 

vinorelbine, whereas, the remaining one received 

erlotinib. It is plausible that the cytotoxicity of 

chemotherapeutic drugs induces tumor cell apoptosis 

and releases tumor antigens that provoke immune 

responses. 

 

Genes related to the extracellular exosome process were 

upregulated in patients with brain metastasis that did not 

undergo prior chemotherapeutic treatment compared to 

those with primary tumors (Figure 3D) and those with 

brain metastasis that underwent chemotherapy 

(Supplementary Figure 3D). We then further 

investigated the potential therapeutic significance of 

these genes (Supplementary Figure 3H). Clusterin 

(CLU) is a stress-associated cytoprotective protein up-

regulated by various apoptotic triggers in many cancers 

and confers treatment resistance when overexpressed 

[18]. In our results, CLU was highly upregulated in the 

brain metastasis samples from patients that had 

undergone chemotherapy. We compared CLU 

expression in tumor cells from different samples and 

found that CLU expression was highest in tumor cells 

from the GSM3516671 sample, which received 

cisplatin +vinorelbine and associated with chemo-

therapeutic resistance. Therefore, our data suggests that 

clusterin may be a potential therapeutic target for this 

patient. Cathepsin Z (CTSZ) was another gene that is 

upregulated in samples from patients with brain 

metastasis that have undergone chemotherapy 

(Supplementary Figure 3H). CTSZ is a target of the 

antimetastatic drug deguelin, which exerts its anti-

metastatic effect by suppressing of CTSZ expression 

and interrupting the interaction of CTSZ with integrin 

β3 [19]. Overall, our analysis of differentially expressed 

genes in single-cell resolution experiments demons-

trates significant tumor heterogeneity between primary 

and metastatic tumors. 

 

Intertumoural expression profiles across different 

samples 
 

We used gene set variation analysis (GSVA) and 

MSigDB to identify specific oncogenic gene set 

signatures during LUAD progression at a single tumor 

cell level. We first transformed the observed GSVA 
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Figure 3. Functional enrichment analyses of DEGs between primary LUAD and brain metastases without prior treatment.  
(A) The volcano plot shows the upregulated and downregulated DEGs between primary LUAD tissues and brain metastases tissues without 
chemotherapeutic treatment. (B–E) The bubble plots show significantly enriched KEGG pathways, biological processes (BP), cellular 
components (CC), and molecular functions (MF) based on the analysis of the DEGs between primary LUAD tissues and brain metastases 
tissues without chemotherapeutic treatment. (F) The pie chart and pathway network show the results of functional enrichment analysis of 
the downregulated genes in primary LUAD tissues and brain metastases tissues without chemotherapeutic treatment. (G) The pie chart and 
the pathway network show the results of the functional enrichment analysis of upregulated genes in primary LUAD tissues and brain 
metastases tissues without chemotherapeutic treatment. 
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scores into binary scores. The heatmap shows the GSVA 

scores for all cells (Figure 4A). Epithelial-mesenchymal 

transition (EMT) is a critical process during tumor 

progression and metastasis, where the tumor cells 

undergo changes from an epithelial to a mesenchymal 

phenotype [20]. We analyzed the status of EMT-related 

genes in different tumor tissues representing early and 

advanced stages by performing principal component 

analysis (PCA) of single cells. The uniform manifold 

approximation and projection (UMAP) [21] graph shows 

the changes in the expression of EMT-related genes in 

primary tumor and metastasis samples. The 

corresponding GSVA scores for different tumor samples 

are shown in Supplementary Table 4. The EMT gene 

 

 
 

Figure 4. Gene set variant analysis of LUAD patient samples from primary tumors and brain metastases. (A) Heatmap of 50 
cancer hallmark gene sets in primary LUAD and brain metastasis samples. The color index from navy blue to red indicates low to high 
expression of the gene sets. (B) The UMAP graph shows the diversity of EMT gene expression in the primary LUAD and brain metastasis 
samples at different stages of cancer progression. (C) Heatmap shows the mean expression of EMT-associated genes in the primary LUAD and 
brain metastasis samples at different stages of cancer progression. (D) The box plot shows the expression of the EMT pathway genes in the 
primary LUAD, brain metastasis (with or without chemotherapy) samples. (E) The box plot shows the expression of the glycolysis pathway 
genes in the primary LUAD and brain metastasis (with or without chemotherapy) samples. (F) The box plot shows the expression of the 
oxidative phosphorylation pathway genes in the primary LUAD and brain metastasis (with or without chemotherapy) samples 
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signature score in the primary LUAD samples was 

higher than the normal lung tissue samples, whereas, the 

EMT gene signature score of brain metastasis samples 

without prior treatment was higher than the primary 

LUAD samples; moreover, the EMT gene signature 

score for brain metastasis samples of patients that 

underwent chemotherapy was lower than samples from 

brain metastasis patients without prior treatment as well 

as samples from primary tumors (Figure 4D). To further 

understand this phenomenon, we analyzed the 

expression of EMT-associated genes in different tumor 

groups. Expression of the epithelium-specific cell 

surface markers epithelial cell adhesion molecule 

(EPCAM) and keratin 7 (KRT7), and the mesenchymal-

specific markers such as matrix metallopeptidase 1 

(MMP1), cadherin 2 (CDH2), and vimentin (VIM) were 

upregulated in samples from patients with brain 

metastasis without chemotherapy compared to the 

primary LUAD samples (Figure 4C). These results 

demonstrate that the EMT process is significantly 

upregulated in the brain metastasis-related tumor cells 

compared to the primary LUAD cells. It is reported that 

that the chemotherapeutic drug vinorelbine inhibits 

metastasis by downregulating EMT [22]. Therefore, we 

postulate that chemotherapy with cisplatin and 

vinorelbine downregulates EMT in brain metastasis cell 

samples of LUAD patients. Furthermore, glycolysis and 

oxidative phosphorylation were upregulated in the brain 

metastasis samples without prior treatment, but 

glycolysis was downregulated in brain metastasis 

samples with chemotherapy (Figure 4E–4F). 

 

Intratumoural expression heterogeneity 
 

Next, we assessed heterogeneity among tumor cells 

within the same tumor sample by clustering cells into 

different subgroups based on their differential gene 

expression using Seurat. Then, we used Monocle3 to 

construct single cell trajectories and the FindAllMarkers 

function to analyze distinct gene expression patterns for 

each subgroup of tumor cells in a single tumor (Figure 

5A). We analyzed DEGS for each of the 4 subgroups 

(subgroup 1-4) in the brain metastasis sample 

GSM3516671 (Figure 5B). The enriched GO terms and 

KEGG pathways in the four different subpopulations 

are shown in Figure 5C–5E. We then performed GSVA 

for each subgroup (Figure 5F). The GSM3516671 

subgroup 1 with 548 cells out of a total of 806 cells in 

the sample showed upregulation of oxidative 

phosphorylation, prostanoid metabolic process and 

prostagladin biosynthetic process. Prostanoid bio-

synthesis and metabolic processes are related to 

chemotherapy response and induction of tumor cell 

repopulation [23]. The GSM3516671 subgroup 2 was 

enriched in genes related to ribosome and mitochondrial 

functions. However, we also found that several 

upregulated genes were related to chemotherapy 

resistance in subgroup 1 and were associated with poor 

prognosis in LUAD patients of the TCGA dataset based 

on the survival analysis (Figure 6A–6C). Moreover, the 

functional annotation of GSM3516671-subgroup 3 

mostly showed enrichment of genes related to immune 

responses, such as type I interferon signaling pathway, 

negative regulation of inflammatory response, and 

natural killer cell mediated cytotoxicity (Figure 5E). 

This indicates that tumor cells from GSM3516671-

subgroup 3 were recognized and attacked by the 

immune system. However, the number of DEGs 

analyzed in GSM3516671-subgroup 4 was too small to 

perform enrichment analysis. 

 

We also investigated GSM3516665, the stage IV 

primary tumor sample. We re-clustered the 

GSM3516665 primary tumor sample to 2 subgroups. 

Then, we performed functional enrichment analysis of 

the DEGs in the subgroups of cells from GSM3516665 

(Figure 7B). We obtained only two subpopulations in 

the GSM3516665 sample (Figure 7A). GSM3516665-

subgroup 1 was enriched in genes related to lamellar 

bodies and mineral absorption, whereas, GSM3516665-

subgroup 2 was enriched in genes related to 

proteasomes and organelle envelope (Figure 7C). This 

demonstrates differences in the activation of the 

biological processes in the two different tumor cell 

subgroups from the same tumor tissue. Under normal 

circumstances, lamellar bodies are characteristic of the 

type II pulmonary alveolar cells [24]. We found 

upregulation of several genes associated with type II 

pulmonary alveolar cells, including surfactant protein C 

(SFTPC), progastricsin (PGC), aquaporin 4 (AQP4), 

secretoglobin family 3A member 2 or SCGB3A2 [25, 

26] in GSM3516665-subgroup 1 (Figure 7E). The 

results of the inferCNV analysis excluded the 

possibility of subgroup 1 as normal alveolar Type II 

cells (Figure 7D). GSM3516665-subgroup 2 was 

enriched in genes related to metabolic pathways and 

tumor progression, such as EMT, angiogenesis, 

oxidative phosphorylation (OXPHOS), and glycolysis 

(Figure 7F). Genes related to tumor progression, 

including matrix metallopeptidase 1 or MMP1 [27], 

S100 calcium binding protein A2 or S100A2 [28], 

tetraspanin 8 or TSPAN8 [29], and insulin like growth 

factor binding protein 7 or IGFBP7 [30] were 

upregulated in GSM3516665-subgroup 2 (Figure 7G). 

 

We then analyzed the tumor cells from the bone 

metastasis sample GSM3516664, and the adrenal 

metastasis sample GSM3516677. However, we 

identified only 14 tumor cells from GSM3516677 and 

did not perform the downstream functional enrichment 

analysis. We re-clustered the GSM3516664 bone 

metastasis sample and compared the gene expression 
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Figure 5. Functional enrichment analyses of the DEGs in the tumor cell subgroups of the brain metastasis sample, 
GSM3516671. (A) UMAP plot shows the different trajectories of the four tumor cell subgroups in GSM3516671. (B) Heatmap shows the 

differentially expressed genes (DEGs) in the four tumor cell subgroups of the brain metastasis sample, GSM3516671. (C–E) Pie graphs show 
the enrichment analysis for the three tumor cell subgroups of the brain metastasis sample, GSM3516671 (DEGs in the subgroup 4 were not 
sufficient for enrichment analysis). (F) Gene set variation analysis (GSVA) of the 4 tumor cell subgroups in the brain metastasis sample, 
GSM3516671. 
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profiles with those of the primary tumors and  

brain metastases samples in GSE123902 and 

GSE131907 using GSVA. We identified 659 tumor 

cells from the GSM3516664 sample and divided them 

into 3 subgroups based on their gene expression 

trajectories (Supplementary Figure 4A). GSVA 

analysis showed that cancer hallmark gene sets related 

to the inflammatory response, IL6-JAK-STAT3 

signaling, and allograft rejection were upregulated 

(Supplementary Figure 4B). We also analyzed the 

bone metastasis sample, GSE123902, which was 

isolated from the LUAD patient that received 

chemotherapy. The results showed that EMT process 

was upregulated in GSE123902 unlike the brain 

metastases samples from LUAD patients treated  

with chemotherapy, thereby suggesting activation  

of EMT-induced chemo-resistance mechanisms 

(Supplementary Figure 4C). Moreover, in the bone 

metastasis sample (GSM3516664), glycolysis was 

upregulated (Supplementary Figure 4D) and oxidative 

phosphorylation was downregulated (Supplementary 

Figure 4E). This suggests that glycolysis is the 

predominant metabolic pathway in the bone metastasis 

cells from LUAD patients. 

 

 
 

Figure 6. Analysis of upregulated genes in GSM3516671-subgroup 1 cells associated with chemotherapy resistance.  
(A) Increased expression of chemotherapy resistance-associated genes with pseudotime extension of single cell trajectories. (B) Comparative 
analysis of the expression of chemotherapy resistance-associated genes in subgroups 1-4 of the GSM3516671 sample. (C) Survival analysis 
based on the high- or low-expression of these chemotherapy resistance-related genes in the TCGA LUAD dataset (n=510). 
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DISCUSSION 
 

Several investigations are underway to understand the 

factors and mechanisms regulating tumor heterogeneity 

in order to design personalized and optimal targeted 

therapies [31]. Inter- and intra-tumoral heterogeneity is 

closely related to tumor progression and metastasis and 

influences the intrinsic biological characteristics of 

tumors that determine the diagnosis, response to 

targeted therapies, and eventually survival outcomes. 

 

 
 

Figure 7. Analysis of the tumor cell subgroups in the stage IV primary LUAD sample, GSM3516665. (A) UMAP plot shows the 

different trajectories of two tumor cell subgroups from the GSM3516665 sample. (B) Heatmap shows the DEGs between the two tumor cell 
subgroups from the GSM3516665 sample. (C) Pie graphs show the results of the functional enrichment analysis of the DEGs between the two 
tumor cell subgroups from the GSM3516665 sample. (D) InferCNV plot shows significant copy number variations in the chromosomes of the 
two tumor cell subgroups from the GSM3516665 sample in comparison with the normal lung epithelial cells. (E) Heatmap shows the gene set 
variation analysis of the two subgroups from the GSM3516665 sample and the normal lung epithelial cells. The color code in the heat maps 
ranges from navy blue to red and shows progression from low to high expression of the gene sets. (F) Gene expression analysis shows that 
genes associated with the normal type II alveolar Type cells such as SFTPC, PGC, AQP4, and SCGB3A2 are upregulated in the subgroup 1 cells 
from the GSM3516665 sample. (G) Gene expression analysis shows that genes associated with tumor progression such as MMP1, S100A2, 
TSPAN8, and IGFBP7 are upregulated in the subgroup 2 from the GSM3516665 sample. 
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The resolution achieved by single-cell RNA sequencing 

technology involves assessing the gene expression 

profiles of individual tumor cells in a tumor sample, 

which allows identifying different cell clusters, novel 

tumor drivers, responses to therapies, and new 

therapeutic targets. In this study, we performed single-

cell transcriptome analysis to characterize the tumor 

heterogeneity in the primary lung adenocarcinoma and 

brain metastases samples. We found distinct differences 

in the biological processes that are active in the primary 

tumors compared to the metastatic tissues at advanced 

stages. We also identified tumor cell subgroups within 

the same tumor sample with differential cellular 

responses to chemotherapy. We also identified distinct 

cell subgroups in metastatic tissues with gene set 

signature associated with drug resistance.  

 

Previous studies show that exosomal proteins and 

noncoding RNAs including long noncoding RNAs 

(lncRNAs) and microRNAs (miRNAs) promote survival 

of cancer cells, mediates intracellular communication 

during cancer metastasis, and modulates drug resistance 

and immune responses [32, 33]. Our study demonstrates 

that exosome-related genes are upregulated in the brain 

metastases-related cells compared to the primary LUAD-

related cells. Moreover, upregulation of exosome-related 

genes correlates with poor survival times of LUAD 

patients in the TCGA dataset. In our study, brain 

metastasis samples show association between the 

upregulation of several exosomal markers and various 

cancer hallmarks (Supplementary Figure 3H). For 

example, clusterin (CLU) is associated with 

chemoresistance and tumor proliferation in pancreatic 

cancer [34]; insulin like growth factor binding protein 2 

or IGFBP2 [35] is related to signaling pathways 

associated with tumor cell migration; heat shock protein 

90 beta family member 1 or HSP90B1 [36] correlates 

with poor prognosis and lymph node metastases in 

melanoma. These upregulated genes in the brain 

metastasis samples indicate that exosomes carry different 

oncogenic proteins or RNAs that modulate proliferation, 

progression, stemness, chemoresistance, and brain 

metastasis. Members of the carcinoembryonic antigen 

related cell adhesion molecule (CEACAM) family 

including CEACAM6 modulate immune response, tumor 

progression, metastasis and angiogenesis [37]. Exosomal 

MIF levels are significantly higher in the stage I 

pancreatic ductal adenocarcinoma patients who 

eventually develop liver metastasis [38].  

 

One of the most striking characteristics of tumor cells is 

their ability to alter metabolic pathways as an adaptation 

to the changing environmental conditions in order to 

utilize a wide range of nutrients [39]. Since 

reprogramming of metabolic pathways is an essential 

feature of tumor cell growth and progression, key 

metabolic genes and activities are targets for effective 

cancer therapy [40]. Tumor cells prefer to utilize 

glycolysis for their energy needs even in oxygen-rich 

conditions [41]. Cisplatin resistance involves metabolic 

reprogramming through modulation of the ROS and 

PGC-1α signaling pathways in NSCLC cell lines, but, 

treatment with OXPHOS inhibitors such as metformin or 

rotenone improves cisplatin sensitivity [42]. In our study, 

gene set variation analysis showed that chemotherapeutic 

treatment resulted in a switch to oxidative 

phosphorylation in a subset of tumor cells derived from 

brain metastases samples GSM3516671 (Figure 4E–4F).  

 

The gene encoding surfactant protein C (SFTPC) is 

deleted in 71% of the NSCLC tumor tissues [43]. 

Moreover, SFTPC knockdown promotes lung adeno-

carcinoma progression [44]. SFTPC expression was 

significantly reduced in both subgroups of cells from the 

stage IV primary tumor sample, GSM3516665. Analysis 

of the expression of other marker genes suggests that 

GSM3516665 might have originated from the Type II 

alveolar cells. Furthermore, SFTPC expression is lower 

in the GSM3516665-subgroup 2 compared to 

GSM3516665-subgroup 1. This suggests that the 

GSM3516665-subgroup 2 tumor cells are more 

progressed than the GSM3516665-subgroup 1 tumor 

cells. Moreover, tumor cells from this stage IV sample 

show upregulation of genes related to EMT, 

angiogenesis, and metabolic pathways, including those 

that have been previously associated with tumor 

progression such as MMP1, S100A2, TSPAN8, and 

IGFBP2.  

 

We also analyzed chemotherapy-induced transcriptome 

changes in the subgroups of brain metastasis-derived 

tumor cells from patients that underwent chemotherapy. 

Genes related to oxidative phosphorylation and those 

related with chemoresistance and poor prognosis such as 

HNRNPA0, HDAC1, LDHB, AREG, and PSCA were 

upregulated in subgroups of brain metastasis-derived 

tumor cells in chemotherapy treated patients (Figure 6A–

6C). High expression of HDAC1 mRNA is associated 

with multidrug resistance in the neuroblastoma cell lines 

[45]. Moreover, activation of histone deacetylases 

(HDACs) promotes proliferation and progression of 

paclitaxel-resistant NSCLC cells [46]. Moreover, 

inhibition of HDAC1 improves gefitinib sensitivity in the 

gefitinib-resistant NSCLC cells [47]. Our study shows 

that high HDAC1 expression is related to poor prognosis 

in the LUAD patients from the TCGA dataset (Figure 

6C). The brain metastasis samples from LUAD patients 

that received cisplatin+vinorelbine demonstrate 

upregulation of HDAC1 and downregulation of the 

HDAC1 target gene, CDKN1A or P21. This suggests that 

treatment with cisplatin+vinorelbine or paclitaxel induces 

upregulation of HDAC1 and is associated with the 
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resistance of metastatic cells to cisplatin+vinorelbine. 

The subgroup 1 cells from the brain metastasis sample 

shows higher expression of genes related to OXPHOS 

than those related to glycolysis. However lactate 

dehydrogenase B (LDHB), a key glycolytic enzyme, is 

also upregulated in the subgroup1 cells. LDHB catalyzes 

the interconversion between pyruvate and lactate and 

determines the chemotherapy response and prognosis in 

oral squamous cell carcinoma and breast cancer patients 

[48, 49]. Therefore, LDHB upregulation may indicate 

chemoresistance, and upregulating of glycolysis and 

OXPHOS may be associated with metabolic alterations 

in tumor cells in response to chemotherapy. Osimertinib 

overcomes alectinib resistance caused by increased 

amphiregulin (AREG) expression in the leptomeningeal 

carcinomatosis (LMC) model of ALK-rearranged lung 

cancer; AREG levels are also significantly higher in the 

cerebrospinal fluid of patients with alectinib-resistant 

ALK-rearranged NSCLC with LMC [50]. The 

overexpression of EGFR ligands such as AREG is 

associated with crizotinib resistance [51]. We did not 

detect any EGFR mutations in the brain metastasis 

samples, but, we detected AREG upregulation in 

GSM3516671 subgroup 2 (Figure 6B). This suggests that 

amphiregulin induces resistance to cisplatin or 

vinorelbine. The upregulation of HNRNPA0 and PSCA 

is also associated with cisplatin resistance in lung cancer 

[52]. The upregulation of these genes in subgroup 1 

suggests activation of multiple chemoresistance-related 

mechanisms.  

 

We performed gene set variation analysis of all 

subgroups of LUAD cells (Figure 5F). We observed 

consistent upregulation of OXPHOS and glycolysis, 

especially in the metastatic tumor samples without 

chemotherapy including brain metastases and bone 

metastasis samples (Figure 4D, 4E). However, epithelial 

to mesenchymal transition (EMT) and mesenchymal to 

epithelial transition (MET) varied among the different 

subgroups, probably influenced by factors such as 

chemotherapeutic treatment response and drug 

resistance. TGF-β-ID1 signaling inhibits Twist1 and 

promotes metastatic colonization via MET in breast 

cancer, whereas ID1 induces MET in metastatic cells 

during lung colonization [53]. We observed ID-1 

upregulation in subgroup 1, but changes in TGFB1 and 

TWIST1 levels were not significant because of poor 

raw data quality. This phenomenon wherein the 

carcinoma cells switch partially from an epithelial to a 

mesenchymal phenotype is called “partial-EMT”. 

Partial EMT probably occurs because the invasive 

tumor cells need to establish colonies in the meta-

stasized tissues and develop macrometastatic 

outgrowths through re-epithelialization process [54]. 

Combined with multiple marker genes of chemotherapy 

resistance, we speculate that subgroup 1 cells were 

chemoresistant and underwent MET for metastatic 

colonization. However, tumor cells from the bone 

metastasis samples that received chemotherapy were 

significantly enriched for genes related to EMT, 

glycolysis and hypoxia compared the brain metastases 

samples without chemotherapy (Supplementary Figure 

4C). Tumor microenvironment plays an important role 

in changing the biological phenotypes of tumor cells. 

Activation of the PI3K/Akt/HIF-1α pathway contributes 

to hypoxia-induced EMT and chemoresistance in 

hepatocellular carcinoma [55]. Moreover, cancer-

associated fibroblasts contribute to cancer cell survival 

and drug resistance [56]. Our study suggests an 

association between metabolism, cancer-associated 

fibroblasts, EMT and chemoresistance, but further 

experiments were needed to confirm these findings. 

 

In summary, we used single-cell RNA sequencing data 

analysis to elucidate the landscape of lung 

adenocarcinoma heterogeneity in the primary tumors 

and brain metastases. Our results demonstrate single 

cell transcriptional profiles that correlate with the status 

of tumor progression and the chemotherapeutic 

response of each patient. We demonstrate metabolic 

reprogramming including aberrant regulation of 

OXPHOS and glycolysis, upregulation and activation of 

the exosomes, upregulation of chemoresistant genes, 

and partial-EMT by comparing the gene expression 

profiles of cells derived from primary and metastatic 

tumor tissues. Our study cannot eliminate the possibility 

of bias because we analyzed cells from primary tumors 

and brain metastases from different patients. Overall, 

our study demonstrates that single cell transcriptome 

analysis is a useful tool for accurate diagnosis and 

personalized targeted treatment of LUAD patients. 

 

MATERIALS AND METHODS 
 

Data processing 

 

RNA-seq datasets of LUAD patient samples 

We downloaded the single-cell RNA transcription data 

from the GSE123902 [14] and GSE131907 [15] LUAD 

patient datasets in the Gene Expression Omnibus (GEO) 

database. This included single-cell RNA-seq data from 

23 human primary LUAD tissue samples, 15 non-tumor 

lung samples, and 13 brain, 1 bone, and 1 adrenal 

samples of lung adenocarcinoma metastasis. The 10X 

Genomics Chromium Platform was used to generate a 

targeted 5000 single-cell Gel Bead-In-Emulsions 

(GEMs) per sample. The libraries from single cells were 

then sequenced on an Illumina HiSeq2500 system 

according to the 10X Genomics protocol. The raw 

expression matrix was downloaded and imported into 

the Seurat (v3.1.4) R package [57] for downstream 

analysis. Quality control and filtration of datasets was 
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performed to remove the data from low quality cells and 

isolate cells with high-quality data. The raw counts 

were normalized using the LogNormalize method in the 

NormalizeData function of the Seurat package, and 

highly variable genes were identified using the 

FindVariableFeatures function in all datasets. 

 

We also downloaded the raw counts of the RNA-seq 

expression data from 510 lung adenocarcinoma patient 

tissue samples and the corresponding clinical 

information from the TCGA database [58]. 

 

Dataset integration and joint analysis 

 

We performed routine data integration process on the 

two datasets GSE123902 and GSE131907. The primary 

lung adenocarcinoma sample mixed with large cell 

neuroendocrine carcinoma in GSE123902 was excluded 

from the analysis. The remaining 7 primary tumor 

samples, 3 brain metastasis samples and 4 non-tumor 

lung samples from GSE123902 and 15 primary tumor 

samples, 10 brain metastasis samples and 11 non-tumor 

lung samples from GSE131907 were integrated for joint 

analysis. The integrated Seurat object was used to 

obtain batch-corrected gene expression matrix for all 

cells. Then, the joint data analysis was performed and 

visualized. Then, a linear transformation function called 

ScaleData was used to ensure that expression of all 

genes were given equal weight in the downstream 

analyses and highly expressed genes were not dominant. 

Next, principal component analysis (PCA) was 

performed for 50 principal components. The 

FindNeighbors and FindClusters functions were used 

for cell clustering with a graph-based method 

(resolution=5.0). We used the nonlinear dimensionality 

reduction technique called t-distributed stochastic 

neighbor embedding (tSNE) to visualize the clusters 

with the top 50 principal components. 

 

Cell type identification 

 

The Single R package [59] was used to annotate every 

single cell in the cell clusters described above. 

Spearman correlation analysis was used to compare the 

cell expression profiles with that of each reference cell 

sample. The per-label score was defined as a fixed 

quantile (0.8) of the distribution of correlations. 

Spearman correlation analysis was performed between 

unknown cells from our samples and reference cells 

from reference data, and reference cells with the highest 

per-label score was used for the annotation of each 

unknown cells. Reference data for cell annotation was 

obtained from the Human Primary Cell Atlas [60], 

Blueprint [61] and the encyclopedia of DNA elements 

or ENCODE [62]. The log-count matrix was generated 

from Seurat and imported into Single R for cell 

annotation. The cells from the non-tumor, primary 

tumor, and brain metastasis samples annotated as 

epithelial cells (including tumor cells) were integrated 

and re-clustered using Seurat. Then, the data was 

imported to the inferCNV R package for further 

analysis. 

 

Tumor cell identification and isolation 

 

Single R package identified tumor cells as epithelial 

cells. Therefore, we integrated all the epithelial cells 

from the LUAD and normal lung tissue samples for re-

clustering, and the principal component analysis was 

used to identify cell clusters with a 1.0 resolution using 

the original Louvain algorithm and visualized using the 

t-SNE algorithm. The clusters with majority of the cells 

from normal lung tissues were categorized as normal 

lung epithelial cells and the remaining clusters were 

categorized as tumor cells. Then, we used the inferCNV 

R package [63] to assess accuracy of clustering. 

InferCNV compared the genome-wide expression of the 

tumor cell genes with a set of reference cells in order to 

identify large-scale chromosomal copy number 

variations (CNVs). The resulting CNVs were used to 

determine the accuracy of cell clustering classification 

into tumor cell clusters and normal epithelial cells. The 

mean expression threshold was set as 0.1for the 10X 

Genomics single-cell datasets. We also analyzed several 

epithelial tumor marker genes using Seurat and 

SingleCellSignatureExplorer including EPCAM, 

CDH1, KRT7, SLPI, MUC1, WFDC2. The raw 

expression matrix generated from Seurat was used as 

input data for the inferCNV analysis. Pulmonary 

epithelial cells isolated from the normal lung tissue 

samples were used as reference cells. 

 

Analysis of differentially expressed genes (DEGs) 

and functional enrichment 
 

FindMarkers function from the Seurat package was 

used to analyze the DEGs between primary and 

metastatic tumors using log fold change (logFC) ≥0.25 

according to the Wilcoxon rank sum test and an 

adjusted p value < 0.05 according to the Bonferroni 

correction test as threshold parameters. Functional 

enrichment analysis of the DEGs was performed to 

identify the significantly enriched Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways [64] and 

Gene Ontology (GO) terms [65] using the ClueGO and 

CluePedia plug-ins in Cytoscape [20]. 

 

Gene set variant analysis (GSVA) and single cell 

trajectory construction  

 

The Gene Set Variation Analysis (GSVA) was performed 

with the R package [66] for each cell with selected gene 
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sets from the Molecular Signatures Database or MSigDB 

[67]. The GSVA results were visualized using the 

SingleCellSignatureExplorer R package [25]. Monocle3 

was used to construct single cell trajectories [68–70] and 

the results were visualized using UMAP [21]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Gene expression analysis of the epithelial tumor marker genes in the epithelial cells derived from 
normal lung epithelium, primary LUAD and metastatic LUAD tissues. (A) SingleCellSignatureExplorer plot shows the GSVA results of 

the expression of epithelial tumor marker genes in cells derived from the normal lung epithelium, primary LUAD and brain metastatic LUAD 
tissues. (B–G) Violin plots and t-SNE feature plots show the expression of epithelial tumor marker genes in the tumor cells derived from 
primary LUAD and brain metastatic LUAD tissues. 
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Supplementary Figure 2. Survival analysis of the lung adenocarcinoma patients from the TCGA dataset based on the 
expression of the upregulated DEGs in the primary LUAD and metastatic LUAD tissues. The results show that 12 upregulated 

DEGs are associated with poor survival outcomes in the TCGA LUAD dataset (n=510).  
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Supplementary Figure 3. Differentially expressed genes (DEGs) between brain metastatic tissues from untreated and 
chemotherapy-treated LUAD patients and their functional enrichment analysis. (A) The volcano plot shows the DEGs between 

brain metastatic tissue samples from untreated and chemotherapy-treated LUAD patients. (B–E) Bubble plot shows the significantly enriched 
KEGG pathways, biological processes (BP), cellular components (CC), and molecular functions (MF) based on the functional enrichment 
analysis of the DEGs between brain metastatic tissue samples from untreated and chemotherapy-treated LUAD patients. (F) Pie graph and 
pathway network shows the functional enrichment analysis results of the downregulated DEGs between brain metastatic tissue samples 
from untreated and chemotherapy-treated LUAD patients. (G) Pie graph and pathway network shows the functional enrichment analysis 
results of the upregulated DEGs between brain metastatic tissue samples from untreated and chemotherapy-treated LUAD patients. (H) The 
upregulated DEGs in the brain metastases samples from patients treated with chemotherapy are associated with immune response. 
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Supplementary Figure 4. Gene expression analysis of bone metastasis sample GSM3516664 from GSE123902 and 
comparison with the other samples from LUAD patients (GSE123902 and GSE131907). (A) UMAP plot shows the trajectories of 

different subgroups in the bone metastasis sample GSM3516664. (B) Heatmap shows the gene set variation analysis (GSVA) for the  
primary tumor, brain metastases and bone metastasis LUAD patient samples. (C) Box graph shows the status of the EMT process in  
the primary tumor, brain metastases and bone metastasis LUAD patient samples. (D) Box graph shows the status of the glycolysis process  
in primary tumor, brain metastases and bone metastasis LUAD patient samples. (E) Box graph show the status of oxidative phosphorylation 
in primary tumor, brain metastases and bone metastasis LUAD patient samples. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–4. 

 

Supplementary Table 1. Comparison methods between primary tumours and brain metastases. 

Lung adenocarcinoma Normal Primary tumour Brain metastasis Brain metastasis with 

chemotherapy 

chemotherapy No No No Yes 

Intertumoural 

heterogeneity 

DEGs Enrichment analysis (BP, CC, MF, KEGG) 

Survival analysis 

GSVA 

(Table S3) 

Control 

group 

Angiogenesis etc. Epithelial 

mesenchymal 

transition etc. 

Oxidative 

phosphorylation etc. 

Intratumoural 

heterogeneity 

DEGs None Enrichment analysis in subgroups 

GSVA None Gene sets analysis in subgroups 

Monocle None Single cell trajectories between subgroups 

 

Supplementary Table 2. Differentially expressed genes (DEGs) between cells from primary LUAD and brain 
metastasis samples. 

Supplementary Table 3. Differentially expressed genes (DEGs) between chemotherapy-treated and untreated LUAD 
patients with brain metastases. 

Supplementary Table 4. GSVA scores for different tumor samples. 

 


