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INTRODUCTION 
 

The global number of people with age-related cognitive 

decline or dementia is rapidly increasing, due to the 

growing aging population. Previous epidemiological 

studies have shown that daily consumption of dairy 

products prevents age-related cognitive decline [1–4]. 

Some studies have demonstrated that dairy products 

prevent cognitive decline in rodents and humans [5, 6]. 

Indeed, camembert cheese, a dairy product fermented 

with fungi, prevents the development of Alzheimer’s 

disease in a transgenic mouse model [7]. Our group 

identified β-lactopeptide, tryptophan-tyrosine (WY)-

related lactopeptides including WY and glycine-

threonine-tryptophan-tyrosine (GTWY), which improve 

cognitive and mood function and prevent Alzheimer’s 

disease pathology [5, 8, 9]. Especially, β-lactolin of 

GTWY peptide derived from β-lactoglobulin is rich in 

fermented dairy products including camembert cheese, 

blue cheese, and whey enzymatic digestions [5, 10]. 

Orally administered β-lactolin is delivered to the brain 

and inhibits the activity of monoamine oxidase B 

(MAO-B) in mice, thus, increasing the dopamine levels 

in the cortex and the hippocampus [11, 12]. β-lactolin 

improves spatial working and episodic object 

recognition memory in pharmacologically induced 

amnesia in young and aged mice [5]. β-lactolin also 

improves memory impairment and suppresses 
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ABSTRACT 
 

The number of elderly individuals with age-related cognitive decline or dementia is rapidly increasing. Dairy 
product consumption, including β-lactolin, is beneficial for their cognitive function. The underlying 
mechanism of β-lactolin’s effects on human brain activity is yet to be investigated. We examined the β-
lactolin effects on human cerebral blood flow (CBF) using near-infrared spectroscopy (NIRS) in a placebo-
controlled randomized double-blind study, which reported according to the CONSORT guidelines. Fifty 
healthy participants (aged 45–60 years) were randomly allocated into the β-lactolin or the placebo group (n = 
25 each) and supplemented for 6 weeks. During the 6th week, oxy-hemoglobin during the working memory 
tasks was measured using 34-channels (CHs) NIRS. The changes of oxy-hemoglobin, which represents the 
CBF, in CH 23 located at the left dorsolateral prefrontal cortex (DLPFC) during the spatial working memory 
task showed higher statistical significance (false discovery rate (q) = 0.045) in the β-lactolin than in the 
placebo group. The oxy-Hb changes in CH23 have a co-relationship with the working memory task reaction 
time. This clinical trial showed an increase in the CBF in the left DLPFC area during the 6-week β-lactolin 
supplementation. This study contributes to elucidating the underlying mechanisms of β-lactolin on cognitive 
performance. 
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Alzheimer’s pathologies including Aβ-deposition and 

inflammation in the brain in Alzheimer’s transgenic 

5×FAD mice [13]. 

 

In addition to preclinical studies’ demonstrations, our 

previous clinical study showed that supplementation with 

β-lactolin for 6 weeks improves the score of the verbal 

fluency and Stroop tests, evaluating the executive function 

and the inhibition of attention in healthy middle-aged 

adults, respectively, compared with the placebo group in a 

randomized placebo-controlled trial [14]. We also 

demonstrated that the supplementation with β-lactolin 

improves selective and sustained attention (evaluated by a 

visual-cancellation test) and the working memory 

(evaluated by paired-associate learning tests in healthy 

older adults) compared with the placebo group in a 

randomized placebo-controlled trial [6]. These previous 

demonstrations showed that supplementing with β-lactolin 

improves attention, executive function, and memory 

retrieval especially associated with the function of the 

dorsolateral prefrontal cortex (DLPFC). The DLPFC is an 

area in the prefrontal cortex of the brain, which is 

essential for the executive function, such as working 

memory, inhibition, cognitive flexibility, planning, and 

abstract reasoning. Thus, the activation of DLPFC is 

associated with these cognitive functions [15–17]. The 

impairment of the DLPFC’s function is associated with 

cognitive decline in elderly patients and those with 

dementia; therefore, supplementation of β-lactolin might 

be expected to prevent cognitive decline and dementia. 

Conversely, the association of β-lactolin supplementation 

with DLPFC activation is yet to be evaluated. 

 

Prefrontal cortex cerebral nerve activity is evaluated using 

magnetic resonance imaging (MRI), single-photon 

emission computed tomography (SPECT), and near-

infrared spectroscopy (NIRS). NIRS is a non-invasive and 

easy-to-use evaluation; therefore, the number of clinical 

trials using NIRS to measure the DLPFC’s function has 

been increasing in healthy participants [18]. Compared 

with MRI and SPECT, NIRS measures the regional 

cerebral blood flow (rCBF) on the cortical surface. The 

region of the DLPFC, activated by β-lactolin 

supplementation, is the superficial cortex, of which the 

rCBF is detectable by the NIRS. Recent studies using 

NIRS have assessed cortical activation and functional 

connectivity during a visuospatial working memory task 

and auditory working memory, measuring the activity of 

the DLPFC during memory encoding and retrieval [19–

21]. These demonstrations showed that the measurement 

using NIRS is available for the evaluation of the DLPFC 

activity. 

 

In this study, we conducted a randomized placebo-

controlled trial and measured the DLPFC’s activity 

during cognitive tasks to evaluate the effects of β-

lactolin on the rCBF in the DLPFC. We measured the 

oxy-hemoglobin (oxy-Hb) levels during the working 

memory tasks by multi-channel (CH) 34CH NIRS at 0 

and 6 weeks of the interventions to evaluate the 

DLPFC’s activation. To elucidate the underlying 

mechanism of β-lactolin on the previously demonstrated 

cognitive function, we measured the rCBF in healthy 

older adults, similar to the previously performed works. 

These demonstrations would contribute to elucidate the 

associations between the DLPFC’s activation and the 

rCBF with improved cognitive function by the 

supplementation of β-lactolin. 

 

RESULTS 
 

Baseline characteristics of the study group 

 

The flow chart of the participant selection process is 

presented in Figure 1. We recruited 71 Japanese-

speaking healthy older adults aged between 45–60 years 

(male/female = 35/36). Following screening, 50 

participants (male/female = 26/24) were included and 

21 participants were excluded as they withdrew their 

participation (n = 2), met the exclusion criteria (n = 12), 

had suspended dementia (n = 2), were left-handed (n = 

1), had suspected hay fever (n = 1) and irregular 

lifestyle (n = 2), and participated in other clinical trials 

(n = 1). The 50 participants were randomly allocated to 

the β-lactolin and placebo groups and were 

supplemented for 6 weeks. One participant in the β-

lactolin group did not visit at week 6 of the intervention 

period and excluded. Finally, the data of 24 

(male/female = 13/11) and 25 participants (male/female 

= 13/12) in the β-lactolin and the placebo group, 

respectively, were analyzed (Table 1). 

 

rCBF measured using a 34CH NIRS (Primary 

outcome) 

 

At intervention weeks 0 and 6, the rCBF during 

working memory tasks was measured by the 34CH 

NIRS. The changes in the mean z-score of oxy-Hb for 

each task at the region of interest (ROI) are shown in 

Tables 2 and 3 and in Supplementary Tables 1 and 2. 

The baseline oxy-Hb levels in CH11, CH13, CH14, 

CH20, CH22, and CH23 at week 0 of the intervention 

did not differ between the groups (analysis of variance 

[ANOVA]; q = 0.456, 0.701, 0.456, 0.701, 0.456, and 

0.456 [verbal working memory] and q = 0.788, 0.987, 

0.437, 0.915, 0.431, and 0.126 [spatial working 

memory] at a respective channel). Regarding the oxy-

Hb at the CH23 in the spatial working memory tasks at 

week 6 of the intervention, the two-way ANOVA 

showed statistically significant effects of interaction 

between group and time (q = 0.045, Table 3 and Figure 

2). The changes of oxy-Hb in other channels, except for 
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CH14, were higher in the β-lactolin than the placebo 

group in the verbal and spatial working memory tasks 

(Tables 2 and 3). There was no statistically significant 

difference in the oxy-Hb levels at week 0 of the 

baseline. The topography during the spatial working 

memory at week 6 of the intervention is shown in 

Figure 3. CH 23 was located at the left DLPFC area, 

thus, indicating that supplementation with β-lactolin 

increases the rCBF in the DLPFC during spatial 

working memory tasks. Conversely, there was no 

statistically significant difference in the oxy-Hb levels 

in the serial 7 subtractions (serial 7s) and rapid visual 

information processing (RVIP) tasks (data not shown). 

 

Cognitive tasks 

 

Changes in task performance in the verbal and spatial 

working memory tasks during the rCBF measurement 

were shown in Supplementary Tables 1 and 2, 

respectively. Changes in the shortest reaction time in 

verbal working memory tasks showed a statistically 

significant reduction at week 6 of intervention in the β-

lactolin group, compared with those at baseline (paired 

t-test; p = 0.023). This reduction was not observed in 

the placebo group (Supplementary Table 1). Changes in 

the average reaction time in spatial working memory 

tasks tended to be reduced at week 6 of intervention in 

the β-lactolin group, compared with those at baseline 

(paired t-test; p = 0.056) (Supplementary Table 2). 

Conversely, there were no statistically significant 

differences between the groups. The cognitive task 

levels are supposedly adequate to induce an rCBF 

increase with undetectable cognitive function 

differences, as the correct percentages in the verbal and 

spatial working memory tasks were more than 89–95 % 

(data not shown). 

 

Correlation between task performance and cerebral 

blood flow 

 

The correlation between the change in the reaction time 

and the oxy-Hb levels at CH23 during the spatial

 

 
 

Figure 1. CONSORT diagram. We included 50 of the 71 screened participants in this study; they were randomly allocated to the placebo (n = 

25) and β-lactolin (n = 25) groups. One participant dropped out and, therefore, the data of 25 and 24 participants in the placebo and β-
lactolin groups were analyzed, respectively. 
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Table 1. Participants’ characteristics at baseline. 

Characteristics Placebo  β-lactolin p 

Age 52.2 ± 4.3 52.2 ± 4.9 0.996 
Male/Female 13 / 12 13 / 11 0.879 
BMI 22.7 ± 4.1 22.9 ± 3.7 0.894 
MMSE 29.3 ± 1.1 29.0 ± 1.1 0.457 

Data are presented as means ± SD: the placebo (n = 25) and the β-lactolin (n = 24). p-values  
were calculated using unpaired t-tests, except for those for the male/female ratios, who were  
calculated using χ2 tests. 
BMI, body mass index; MMSE, Mini Mental State Examination; SD, standard deviation. 

 

Table 2. Oxy-Hb measurement in DLPFC during verbal working memory task. 

 
Group N Week 0 q  Week 6 q Δ ANOVA q 

CH11 Placebo 24 0.50 ± 0.65 0.456 0.40 ± 0.66 0.991 -0.11 ± 1.09 0.493 

β-lactolin 24 0.19 ± 0.90 0.40 ± 0.75 0.21 ± 1.13 

CH13 Placebo 25 0.61 ± 0.89 0.701 0.82 ± 0.79 0.889 0.21 ± 1.18 0.493 

β-lactolin 23 0.49 ± 0.71 0.94 ± 1.17* 0.46 ± 0.92 

CH14 Placebo 23 -0.14 ± 0.94 0.456 0.04 ± 0.70 0.889 0.18 ± 1.23 0.493 

β-lactolin 24 0.13 ± 0.78 -0.02 ± 0.57 -0.15 ± 0.81 

CH20 Placebo 24 0.31 ± 1.37 0.701 0.34 ± 1.22 0.889 0.03 ± 2.07 0.72 

β-lactolin 24 0.15 ± 1.44 0.21 ± 1.16 0.06 ± 1.50 

CH22 Placebo 25 0.47 ± 0.75 0.456 0.63 ± 0.86 0.889 0.16 ± 1.03 0.493 

β-lactolin 24 0.09 ± 0.86 0.49 ± 0.73 0.40 ± 1.34 

CH23 Placebo 25 0.14 ± 0.65 0.456 0.10 ± 0.61 0.889 -0.05 ± 1.03 0.493 

β-lactolin 24 -0.05 ± 0.67 0.25 ± 0.73 0.30 ± 1.09 

The Z-score of Oxy-Hb measurement at weeks 0 and 6, and changes between weeks 0 and 6 in six channels (CH11, CH13, 
CH14, CH20, CH22, and CH23) during the verbal working memory task. Data are presented as means ± SD. The number of 
participants in each channel was represented. Group differences were identified using ANOVA and FDR correlation. 
Statistically significant differences between baseline and week 6 were identified using paired t-tests. 
ANOVA, analysis of variance; CH, channel; Hb, hemoglobin; FDR, false discovery rate; DLPFC, dorsolateral prefrontal cortex 
 

Table 3. Oxy-Hb measurement in the DLPFC during spatial working memory task. 

 Group N Week 0 q Week 6 q Δ ANOVA q 

CH11 Placebo 25 0.30 ± 0.61 0.788 0.09 ± 0.93 0.337 -0.20 ± 1.17 0.26 

β-lactolin 24 0.19 ± 0.57 0.48 ± 0.74 0.30 ± 0.85 

CH13 Placebo 25 0.47 ± 0.94 0.987 0.36 ± 0.98 0.337 -0.10 ± 1.22 0.26 

β-lactolin 23 0.47 ± 0.81 0.86 ± 1.17
†
 0.39 ± 0.99 

CH14 Placebo 23 -0.35 ± 0.87 0.437 -0.23 ± 0.93 0.543 0.12 ± 1.07 0.585 

β-lactolin 24 -0.03 ± 0.86 -0.04 ± 0.80 0.00 ± 0.99 

CH20 Placebo 24 0.00 ± 1.57 0.915 -0.16 ± 1.17 0.543 -0.16 ± 2.07 0.610 

β-lactolin 23 0.16 ± 2.06 0.14 ± 1.25 -0.02 ± 1.96 

CH22 Placebo 25 0.46 ± 0.74 0.431 0.54 ± 0.80 0.775 0.07 ± 0.95 0.452 

β-lactolin 24 0.15 ± 0.74 0.47 ± 0.82 0.32 ± 0.99 

CH23 Placebo 25 0.36 ± 0.81 0.126 0.18 ± 0.61 0.424 -0.17 ± 0.97 0.045 

β-lactolin 24 -0.22 ± 0.90 0.37 ± 0.37** 0.59 ± 0.94 

Oxy-Hb measurement at weeks 0 and 6, and changes between week 0 and week 6 in 6 channels (CH11, CH13, CH14, CH20, 
CH22 and CH23) during the spatial working memory task. Data are presented as means and ± SD. The number of participants 
in each channel was represented. Group differences were identified using ANOVA and FDR correlation. Statistically significant 
differences between baseline and week 6 were identified using paired t-tests. A value of q < 0.05 is considered statistically 
significant. 
ANOVA, analysis of variance; CH, channel; Hb, hemoglobin; FDR, false discovery rate; DLPFC, dorsolateral prefrontal cortex . 
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working memory task is shown in the Supplementary 

Figure 1. We performed Spearman’s rank correlation 

for changes at 6 weeks to investigate the correlation 

between task performance and the left DLPFC’s activity 

during the spatial working memory task, which showed 

a statistically significant increase in the oxy-Hb levels. 

The reaction time and the oxy-Hb changes tended to be 

negatively correlated at CH23 (Spearman’s rank 

correlation; r = -0.27, p = 0.064) (Supplementary Figure 

1) and showed a statistically significant negative 

correlation with those at CH 20 (Spearman’s rank 

correlation; r = -0.32, p = 0.030, data not shown). This 

result indicated that the left DLPFC’s oxy-Hb is 

positively correlated with task performance (reduction 

of average reaction time). 

 

DISCUSSION 
 

This is the first study to demonstrate the effects of β-

lactolin on the rCBF during cognitive tasks using a 

NIRS. Supplementation with β-lactolin increased the 

rCBF in the DLPFC area during working memory tasks, 

compared with the placebo group in a randomized, 

double-blind, placebo-controlled trial. These results 

 

 
 

Figure 2. Changes of the oxy-Hb levels during spatial 
working memory in the left DLPFC. Oxy-Hb measurement at 

weeks 0 and 6 and changes between weeks 0 and 6 in CH23 
during the spatial working memory task. Data are presented as 
means and ± standard errors for the placebo (n = 25) and the β-
lactolin group (n = 24). Group differences were identified using 
ANOVA and FDR correlation. A value q < 0.05 considered 
statistically significant. ANOVA, analysis of variance; CH, channel; 
Hb, hemoglobin; FDR, false discovery rate; DLPFC, dorsolateral 
prefrontal cortex 

suggested that supplementation with β-lactolin 

promotes DLPFC activity and improves the DLPFC-

associated cognitive functions including memory 

retrieval, attention, and executive function. 

 

The DLPFC is an area in the prefrontal cortex that plays 

an important role in the executive functions for the 

management of cognitive processes [22], such as 

working memory, cognitive flexibility [23], planning 

[24], inhibition, and abstract reasoning. Previous 

randomized controlled trials performed by our team 

demonstrated that supplementation with β-lactolin 

improved the executive function [14], selective and 

sustained attention [6], and associative working 

memory [6] in healthy older adults, as evaluated using 

the verbal fluency, Stroop, visual cancellation, and 

paired-associated tests, respectively. These functions 

are closely related to the function of the DLPFC. It is 

reported that damage to the DLPFC impairs working 

memory [25], attention [26], planning [27], motivation 

to perform self-improvement and social activities, and 

causes disinterest in their surroundings [28]. 

Dysfunction of the DLPFC is associated with 

schizophrenia [29], depression [30], stress [31], and 

Alzheimer’s disease [32]. Such dysfunction also 

reduced the rCBF in the DLPFC, especially its left side. 

It has been reported that rCBF activation was impaired 

in the left DLPFC and the number of task errors 

increased with aging, during the card sorting test in the 

elderly [33]. It has also been reported using SPECT that 

the rCBF in the left DLPFC is associated with full-scale 

intelligence quotient, perceptual reasoning, and 

processing speed in patients with moyamoya disease 

[34]. In addition, a report stated that the rCBF in the left 

DLPFC is required for the spatial rather than the verbal 

working memory in the elderly [35]. Taken together, it 

means that increased rCBF in the left DLPFC area 

produced by supplementation with β-lactolin is 

associated with improved cognitive function in older 

adults, as demonstrated in previous studies [6, 14]. 

Conversely, in this study, the rCBF in the DLPFC, 

during serial 7s and RVIP, was not changed by the 

supplementation of β-lactolin. Serial 7s and RVIP in the 

trial increased the rCBF in all area channels. In the z-

score analysis, the rCBF at the DLPFC areas was 

relatively low and could not have been adequately 

evaluated. Serial 7s and RVIP tasks require attention 

associated with the function of the parietal and the 

frontal area. A report indicated that the RVIP task 

activates the rCBF in the fronto-parietal lobes in the 

experiment using positron emission tomography [36], 

potentially making it difficult to effectively evaluate the 

DLPFC’s activation by these tasks with the multi-

channel NIRS. To conclude the mechanisms of neural 

activation by β-lactolin supplementation, further studies 

are needed to investigate the effects of β-lactolin on the 
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DLPFC and in other fronto-parietal areas using 

adequate cognitive tasks. 

 

Recent studies demonstrated that transcranial direct 

current stimulation to the DLPFC improves working 

memory, attention inhibition, and executive function 

in patients with Alzheimer’s disease [37–39]. 

Repeated stimulation to the left DLPFC using 

transcranial magnetic stimulation also improves 

depressive and anxious symptoms in medication-naïve 

patients with depression [40]. Conversely, such 

stimulations are required during surgery; however, 

they have not been approved as a therapy. Other non-

invasive approaches to activate the DLPFC have 

gained increased attention. A recent study showed that 

working memory-training improves functional 

connectivity and the rCBF during rest in a clinical trial 

[41]. Some nutrients improve the rCBF in the frontal 

cortex in a clinical trial. For instance, it is reported that 

supplementation with Ginkgo biloba in older adults 

promotes rCBF and cognitive performance [42]. 

Conversely, there are limited approaches to promote 

rCBF in the DLPFC. Supplementation with β-lactolin 

will be a promising approach to promote rCBF in  

the DLPFC and improve cognitive function in the 

elderly. 

 

The functions of the DLPFC are activated by 

neurotransmitters including dopamine, serotonin, 

norepinephrine, and Gamma-aminobutyric acid. 

Deficient neurotransmitters impair working memory, 

planning, inhibition, and decision making, especially 

dopamine, which is distributed mostly in the frontal 

cortex and is associated with its functions [43]. Aging 

reduces the dopamine levels in the frontal cortex, 

leading to cognitive decline [44]. Treatments that 

increase the dopamine levels improve cognitive 

function. The dopamine D1 receptors are mostly 

involved in working memory tasks [45]. Their levels in 

the frontal and parietal cortices are reduced by age and 

are associated with impaired working memory 

performance [46]. Additionally, in patients with 

Parkinson’s disease, L-dopa ameliorates high-level 

cognitive deficits by increasing the rCBF in the DLPFC, 

thus, suggesting that the dopamine system is involved in 

cognitive function improvement in the DLPFC [47]. 

Our previous preclinical studies demonstrated that oral 

β-lactolin administration activated the dopaminergic 

neurons and increased the dopamine levels in the cortex 

and the hippocampus, resulting in improved spatial 

working memory and object recognition memory in a 

rodent model. Orally administered β-lactolin is 

delivered to the brain through the blood-brain barrier 

and inhibits MAO-B, increases the dopamine levels, 

and improves impaired memory [5, 48]. The blockade 

of the dopamine D1 receptor attenuates the effects of β-

lactolin to improve cognitive function in 

pharmacologically induced amnesiac mice. Moreover, 

our preclinical study showed that the dopamine levels in 

the cortex were reduced in Alzheimer’s disease model 

5×FAD mice. Treatment with β-lactolin or Trp-Tyr of 

its core sequence increased the cerebral dopamine 

levels, reduced the cerebral amyloid β levels, and 

improved the impaired object recognition memory [8, 

13]. These reports underscored the benefits of β-lactolin 

for improving the dopamine levels and increasing rCBF 

in the DLPFC via the dopaminergic system, thereby 

attenuating cognitive decline and dementia. 

 

 
 

Figure 3. Topographic images of oxy-Hb during spatial working memory. (A and B) The topographic maps during the spatial working 

memory task for oxy-Hb reveal the distribution of rCBF at week 6 of the intervention for both groups (placebo and β-lactolin, respectively). 
Hb, hemoglobin; rCBF, regional cerebral blood flow.  
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There were several limitations in this study. The rCBF 

in the left DLPFC area during the spatial working 

memory was significantly higher in the β-lactolin than 

in the placebo group but the verbal working memory 

was higher though not statistically significant. This trial 

indicated that β-lactolin supplementation activates the 

left DLPFC function; however, the area increased by β-

lactolin was limited to the left side of the DLPFC 

(CH23). To conclude the effects of β-lactolin on the 

rCBF of the DLPFCs during working memory tasks, 

further studies are required to evaluate the effects of β-

lactolin on the DLPFC activities during working 

memory tasks, involving a larger study population using 

NIRS, MRI, or SPECT. 

 

In conclusion, this study is the first to demonstrate that 

supplementation with β-lactolin increases the rCBF in 

the left DLPFC area during working memory tasks. As 

such, supplementation with β-lactolin may be an 

effective approach to improve rCBF and promote 

cognitive function associated with the DLPFC, leading 

to prevention from dementia. 

 

MATERIALS AND METHODS 
 

Ethics and registration 

 

The study was conducted in accordance with the 

Declaration of Helsinki and Ethical Guidelines for 

Medical and Health Research Involving Human 

Participants. Written informed consent was obtained 

from all participants. This trial was approved by the 

ethics committee of the Japanese Conference of Clinical 

Research (JCCR, Tokyo, Japan) and registered on the 

11
th

 of January 2019 in the database of UMIN prior to 

enrollment (Registration No. UMIN000035521; 

Registration title. A study to evaluate the impact of test 

food ingestion on rCBF). 

 

Participants 

 

We recruited 71 Japanese-speaking healthy older adults 

between 45 and 60 years of age (male/female = 35/36). 

Right-handed participants, as determined by the Japanese 

version of the Flinders Handedness survey (FLANDERS), 

were included [49]. Participants with minimal body 

movement during the rCBF measurement were 

preferentially included. The exclusion criteria were as 

follows: visual or hearing impediments, suspected 

dementia, anamnesis of cranial nerve disease, diagnosis of 

depression or depressive symptoms, menopausal 

symptoms or hormone treatment, irregular lifestyle (e.g., 

shift work), high consumption of alcohol (> 20 g/day), use 

of cigarettes, experience of the neuropsychological tests 

within 1 year, current treatment for cognitive functions, 

regular consumption of drugs or health functional 

supplements affecting cognitive functions including 

docosahexaenoic acids and gingko (> once a week), 

regular consumption of protein supplements (> once a 

week), anamnesis of severe disease requiring regular 

treatment, allergy or sensitivity to milk, and pregnancy or 

breastfeeding. The inclusion and exclusion criteria were 

checked during the screening steps using a questionnaire, 

Mini Mental State Examination (MMSE) (excluded if 

score ≤25), interviews by the principal investigator, and 

the data of rCBF measurement. Previous studies 

evaluating other functional ingredients, such as gingko, 

docosahexaenoic acids, and resveratrol,  required 10–30 

participants to detect statistically significant differences in 

rCBF (α = 0.05) [42, 50, 51]. To ensure sufficient 

statistical power after stratification, at least 25 participants 

were required per group. 

 

Experimental supplements 

 

The test tablets containing 1.8 mg of β-lactolin in the 

whey enzymatic digestion were prepared by Kirin 

Holdings Co., Ltd (Tokyo, Japan) according to the 

previous study [6]. The amount of β-lactolin, one of the 

Trp-Tyr-related  β-lactopeptides, was measured by the 

LC/MS/MS method using synthetic GTWY peptide 

(Peptide Institute, inc., Osaka, Japan) as a standard. 

The tablets were ingested every day for 6 weeks. As a 

previous work showed that supplementations with β-

lactolin for 6 weeks improved the cognitive function, in 

we supplemented β-lactolin for this specific period. In 

placebo tablets, whey enzymatic digestions were 

substituted with the same amount of maltodextrin. The 

test and placebo tablets were indistinguishable by size, 

shape, and taste. The amount and periods of β-lactolin 

supplementation and tablet composition were 

equivalent to the previous trials because the current 

study aimed to investigate the mechanism of the 

previous findings [6, 14]. 

 

Procedures 

 

The trial was performed according to a randomized, 

placebo-controlled, double-blind, parallel-group 

comparative design. Questionnaires for the 

inclusion/exclusion criteria and lifestyle data, 

measurements of blood pressure, height, body weight, 

MMSE, rCBF, and medical interviews for safety 

assessments by a principal investigator were performed 

during the screening step. Selected participants were 

randomly allocated to the β-lactolin or placebo group 

with a computer program that ensured similar age, sex, 

MMSE, and oxy-Hb values between the study groups. 

The study group allocator was not involved in the 

assessment of eligibility, data collection, or analysis. 

The participants, research staff, and outcome assessors 

were blinded to group allocations until data analyses 
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had been completed. During the intervention period, the 

participants were instructed to maintain regular 

lifestyles, avoid taking any drugs and new health 

functional supplements affecting cognitive function or 

CBF, and avoid taking protein supplements. 

Compliance was monitored using participant diaries. On 

the day of the rCBF measurement, the participants were 

instructed to completely avoid consuming caffeine and 

ingesting any foods and beverages, except for water, 2 h 

prior to the start of the tests. Data were collected at the 

Breast-health clinic (Tokyo, Japan) between January 

and March 2019. This study was conducted by the 

contract research organization, KT Medical Co., Ltd.  

 

Measurements of cerebral blood flow (Primary 

outcome) 

 

The rCBF was measured using a 34CH NIRS system 

(WOT-HS34M, NeU Corporation, Tokyo, Japan), 

which used continuous wave laser diodes with two 

wavelengths (730 and 850 nm) as light sources and was 

able to detect concentration changes in oxy-Hb, 

deoxygenated hemoglobin (deoxy-Hb), and their sum 

(total-Hb). The transmitted light was detected every 100 

ms with avalanche photodiodes located at 30 mm from 

the sources, forming 34 measurement channels. The 

probes of the NIRS were placed on the participants' 

frontal region, with the lowest probes being positioned 

along the Fp1-Fp2 line, as defined by the international 

10–20 system used in electroencephalography. This 

probe arrangement can measure the Hb changes in the 

approximate surface regions bilaterally in the DLPFC 

(Brodmann’s areas 9 and 46), which was cover at CH11, 

CH13 and CH14 in the right side and CH20, CH22 and 

CH23 in the left side. The participants were fitted with 

the NIRS headset, of which the probe position was in 

accordance with the previous report, and the rules of 

tasks were explained to them as described below [52]. 

Moreover, the participants completed a 5-min rest 

period and, then, completed the task session. They 

performed eight, eight, one, and one trials of verbal 

working memory, spatial working memory, serial 7s, 

and RVIP tasks, respectively, as described in the 

following section, for a total of approximately 20 min 

(Supplementary Figure 2). Each session was separated 

by a short break (approximately 30 s). At weeks 0 and 6 

of the intervention, the procedures measuring rCBF 

were performed in the same way. Τhe participants were 

seated in a comfortable chair in a quiet room and 

instructed to maintain this position during the tasks. 

 

Data analysis of cerebral blood flow 

 

Analyses were performed using a plug-in-based analysis 

software, the platform for optical topography analysis 

tools (developed by Hitachi ARL.; run on MATLAB, The 

MathWorks, Inc., Natick, MA, USA). Oxy-Hb was the 

most sensitive variable to concentration changes in the 

regional rCBF, and provided the strongest correlation with 

the BOLD signal among the three NIRS parameters [53, 

54]. Thus, we analyzed the changes in the oxy-Hb levels, 

as the best indicator of brain activity. In the present study, 

the changes of oxy-Hb were considered as those of the 

CBF. First, we calculated the relative values of 

concentration changes in oxy-Hb for each channel based 

on the modified Beer-Lambert law, using light signals 

transmitted at the two wavelengths. These signals were 

expressed as the product of the changes in Hb 

concentration (mM) and optical path length (mm) in the 

activation region (effective optical path length). 

 

The NIRS system measured changes in the concentration 

of oxy-Hb and deoxy-Hb from the starting baseline. The 

baseline was obtained from the first (1.0) and the last 

(10.0) s of each block and was described in detail as 

follows. A Butterworth band-pass filter (0.02–0.80 Hz) 

was, then, applied to the oxy-Hb signals to remove low-

frequency drift/oscillation and high-frequency system 

noise. In the verbal and spatial working memory tasks, the 

time-continuous data of Hb-signals were divided into 

24.5-s task blocks, which consisted of a 1.0-s pre-task 

period (starting at 1.0 s before task period), an 8.5-s task 

period, and a 15.0-s post-task period (starting after task 

period). Similarly, in the serial 7s task, a set of 196.0 s 

task blocks, which consisted of a 1.0-s pre-task, a 180.0 s-

task, and a 15.0-s post-task period. In the RVIP task, a set 

of 216.0-s task blocks, which consisted of 1.0-s pre-task, 

200.0-s task, and 15.0-s post-task periods. Median filter 

methods were used to remove minor motion artifacts 

(window size, 2.0 s), and a baseline correction was 

performed using linear fitting based on two baseline 

periods: the first (1.0) s and the last (10.0) s of each block. 

For the verbal and spatial working memory tasks, 

individual time-course data for the oxy-Hb concentrations 

were averaged over the eight trials of each task. The data 

from each channel were converted into z-scores to reduce 

the impact of participant and channel differences and to 

compare appropriately [55]. The z-score was calculated 

using the mean and standard deviation of changes in the 

oxy-Hb concentrations. Consequently, the mean and the 

standard deviation were adjusted to a z-score of 0 and 1 

for every channel, respectively. In this study, the ROI 

regarding the NIRS data were arranged into two regions: 

the right (CH 11, 13, and 14) and the left DLPFC area 

(CH 20, 22, and 23) [52, 56, 57]. Six channels were 

analyzed during the working memory tasks in the present 

study. 

 

Cognitive tasks 

 

During measurements of rCBF, the participants 

performed four cognitive tasks: the verbal working 
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memory, the spatial working memory [52, 58], the 

serial subtraction, and the RVIP [59, 60]. Before each 

task, the participants performed short trials to become 

familiarized with the procedures. 

 

The verbal and the spatial working memory tasks 

were presented through a stimulus presentation 

system (SP-POST01; NeU Corporation, Tokyo, 

Japan), which provided an identical delayed-response 

paradigm (Supplementary Figure 3). In both tasks, 

each trial started with a 1.5 s presentation of the 

target stimuli (S1), which was followed by a 7.0 s 

delay. A probe stimulus (S2) was, then, presented for 

2.0 s or until the participants responded. The reset 

intervals between S2 and the next S1 were from 16 to 

24 s. The mark of a cross was presented on the center 

of the screen during the reset intervals. In addition, a 

visual cue (changing the color of the fixation cross) 

was presented for 0.5 s prior to target stimulation 

(S1) and auditory cues (1000 and 800 Hz pure tones 

of 100 ms duration) were presented prior to S1  

and S2. 

 

In the verbal working memory, four Japanese characters 

in Hiragana were presented as S1 in Supplementary 

Figure 2, and a Japanese character in Katakana was 

presented as S2 in Supplementary Figure 2. The 

participants were instructed to judge whether the 

character presented as S2 corresponded to any of the 

characters in S1 and, then, to press the appropriate 

button as quickly as possible. As the characters in S1 

and S2 were presented in different Japanese 

morphograms (i.e., Hiragana/Katakana), the participants 

were prompted to make their judgments based on the 

phonetic information of the characters, not by their form. 

The task was scored for the shortest reaction and the 

average reaction time. 

 

In the spatial working memory task, S1 was the location 

of four red squares out of eight locations, and S2 was 

the location of a red square (Supplementary Figure 2). 

The participants decided whether the red location 

presented in S2 was included in the S1. The shortest and 

average reaction times were recorded. 

 

The serial subtraction and the RVIP task were presented 

on a touchpad using the Computerized Mental 

Performance Assessment System software 

(Northumbria University, Newcastle, UK). In the serial 

7s, the participants had to keep subtracting 7 from a 

random starting number between 800 and 999 as 

quickly as possible. The starting number was cleared by 

the entry of the first response, and the three-digits 

thereafter were displayed as asterisks. The task’s 

duration was 3 min and was scored for the number of 

correct and total responses. In RVIP, the participants 

monitored a continuous series of single digits to respond 

to three consecutive odds or even digits as quickly as 

possible, which were projected on the screen at a rate of 

100/min in a pseudo-random order for 3 min. The task 

was scored for the correct answer rate and the average 

reaction time.  

 

Statistical analysis 

 

Statistical analyses of the rCBF were performed for 

six channels of the ROI using the R statistical 

software (R Foundation for Statistical Computing, 

Vienna, Austria). Statistical significance of the rCBF 

and task performance were evaluated by a mixed-

design two-way ANOVA with a between-participant 

factor of treatment (β-lactolin and placebo) and a 

within-subject factor of period (pre and post). We 

used the false discovery rate (FDR) method to correct 

for multiple comparisons [61] with a threshold of 

FDR (q) < 0.05. Statistical analyses of other data were 

performed using SAS 9.4 (SAS Institute Inc., Cary, 

NC, USA) and differences between the groups were 

identified using unpaired t-tests. The comparisons of 

the test period (pre and post) were examined with the 

paired t-test. To evaluate the correlations between the 

oxy-Hb signal changes and task performance, 

Spearman’s rank correlation was performed according 

to the previous report [62]. Differences were 

considered statistically significant when p < 0.05 or q 

< 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Correlation between task performance and rCBF. Scatter plot showing correlation between the changes in 

average reaction time during the spatial working memory task and the changes in oxy-Hb at CH23 during the task. r: Spearman’s rank 
correlation coefficient. P-values were calculated using Spearman’s rank correlation. rCBF, regional cerebral blood flow. 
 

 

 
 

Supplementary Figure 2. Measurement flow. rCBF during working memory tasks was measured using a 34CH NIRS. CH, channel; NIRS, 

near-infrared spectroscopy; rCBF, regional cerebral blood flow; RVIP, rapid visual information processing.  
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Supplementary Figure 3. Schematic diagram of the verbal and spatial working memory tasks. Images for the verbal and spatial 

working memory tasks are shown. The 24.5-s periods between the arrows were used for the analysis. 
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Supplementary Tables 
 

 

Supplementary Table 1. Reaction time in verbal working memory task.  

 
Group Week 0 p Week 6 p Δ ANOVA p 

Average  

reaction time (ms) 

Placebo 1415.9 ± 301.1 
0.915 

1408.7 ± 320.8 
0.488 

-7.3 ± 255.1 
0.391 

β-lactolin 1426.1 ± 356.5 1348.7 ± 276.4 -77.4 ± 310.0 

Shortest  

reaction time (ms) 

Placebo 1018.4 ± 190.2 
0.455 

1007.7 ± 215.3 
0.69 

-10.7 ± 176.4 
0.165 

β-lactolin 1060.5 ± 201.0   982.5 ± 224.6 *   -78.0 ± 156.8 

Average and shortest reaction time during the verbal working memory task. Data are presented as means ± SD for the 
placebo (n = 25) and the β-lactolin groups (n = 24). Group differences were identified using ANOVA. Time differences were 
identified using paired t-tests; *p < 0.05. ANOVA, analysis of variance; SD, standard deviation. 
 

Supplementary Table 2. Reaction time in spatial working memory task.  

 
Group Week 0 p Week 6 p Δ ANOVA p 

Average  

reaction time (ms) 

Placebo 1571.0 ± 196.4 
0.645 

1507.3 ± 197.3 
0.244 

-63.7 ± 242.1 
0.466 

β-lactolin 1539.5 ± 273.7 1419.7 ± 311.6† -119.9 ± 291.7 

Shortest  

reaction time (ms) 

Placebo 1104.9 ± 213.0 
0.836 

1036.8 ± 195.8 
0.817 

-68.1 ± 196.0 
0.979 

β-lactolin 1091.7 ± 233.2 1021.6 ± 259.1 -70.1 ± 323.4 

Average and shortest reaction times during the spatial working memory task. Data are presented as means and ± SD for the 
placebo (n = 25) and β-lactolin groups (n = 24). Group differences were identified using ANOVA. Time differences were 
identified using paired t-tests; †p < 0.1. ANOVA, analysis of variance; SD, standard deviation. 
 


