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INTRODUCTION 
 

Cellular senescence is a state of permanent cell cycle 

arrest imposed on cells upon a wide range of potentially 

dangerous stressors and serving as a potent tumour 

suppressor mechanism [1, 2]. Recently, several studies 

reported the occurrence of cellular senescence in 

developing tissues of mammals (mice and humans), 

birds (chick and quail) and amphibians (xenopus and 

axoltl) in non-pathological conditions raising the 

possibility of an evolutionary origin of senescence as a 

positive morphogenetic and tissue remodelling force 

operating during development [3–6]. In this sense, the 

presence of cellular senescence during the early 

development of zebrafish was also reported recently [7]. 

Based on the detection of senescence-associated  

β-galactosidase (SA–β–gal) activity, a well-established 

senescent cell marker [8], these authors reported the 
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ABSTRACT 
 

Cellular senescence is considered a stress response imposing a stable cell cycle arrest to restrict the growth of 
damaged cells. More recently however, cellular senescence was identified during mouse embryo development 
at particular structures during specific periods of time. This programmed cell senescence has been proposed to 
serve developmental and morphogenetic functions and to potentially represent an evolutionary origin of 
senescence. Cellular senescence has also been described to take place during bird (chick and quail) and 
amphibian (xenopus and axoltl) development. Fish however, have been described to show a very narrow and 
restricted pattern of developmental cell senescence. Here we carried out a detailed characterization of 
senescence during zebrafish development and found it to be conserved and widespread. Apart from yolk and 
cloaca, previously described structures, we also identified senescence in the developing central nervous system, 
intestine, liver, pronephric ducts, and crystalline. Interestingly, senescence at these developing structures 
disappeared upon treatment with senolytic compound ABT-263, supporting their senescent identity and 
opening the possibility of studying the contribution of this process to development. In summary, our findings 
extend the description of developmentally-programmed cell senescence to lower vertebrates contributing to 
the notion of the relevance of this process for embryo development. 
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presence of SA–β–gal staining only in the yolk and in 

the developing intestine. This is a much more restricted 

pattern of SA–β–gal than those reported in rodents and 

amphibians, in which this staining is observed in a 

variety of developing tissues including the neural tube 

or the pronephros among others [9]. Previously, other 

authors had used SA–β–gal staining in zebrafish to 

carry out a genetic screen to identify genes regulating 

cellular senescence [10]. If one compares the images of 

SA–β–gal from both studies, there is a clear discrepancy 

in the intensity and on the variety of labelled structures, 

although the later study did not report a detailed 

inspection of their SA–β–gal stainings. Here, we carried 

out a careful examination of the occurrence of SA– 

β–gal staining in developing zebrafish and found it to be 

widespread in a number of developing structures. 

 

RESULTS 
 

First, we analysed the spatio-temporal pattern of SA– 

β–gal staining in zebrafish from 2 to 11 days post-

fertilization (dpf) (Figure 1). In whole-mounts, the 

intensity of SA–β–gal staining was weaker in 2 dpf 

animals and increased as development progressed, with 

the strongest intensity observed from 7 dpf onwards 

(Figure 1). In agreement with the results reported 

previously, we observed strong SA–β–gal staining in 

the yolk, a staining that disappeared as development 

progressed in concordance with the transient nature of 

this structure (Figure 1) [7]. SA–β–gal staining was also 

observed in the digestive system of developing 

zebrafish. As seen in whole-mount preparations from 5 

dpf onwards, SA–β–gal staining was particularly strong 

in the caudal (cloacal) end of the intestine (Figure 1), 

which is also in agreement with the previous results [7], 

but the analysis of whole-mounts and transverse 

sections indicated that SA–β–gal staining is also present 

in the oesophagus (Figure 1) and the rostral intestine 

(Figure 1 and 2a) of developing zebrafish. The intensity 

of staining in the oesophagus and intestine was weaker 

in 2-3 dpf animals and increased with age (Figure 2A). 

 

Interestingly, whole-mounts and transverse sections also 

revealed the presence of SA–β–gal staining in other 

structures that were not previously reported by Villiard 

and co-workers [7]. Whole-mount preparations showed 

clear SA–β–gal staining in the central nervous system 

(CNS) of developing zebrafish (Figure 1). This staining 

was weaker in 2 dpf animals and became progressively 

stronger as development progressed. In the spinal cord, 

SA–β–gal staining was stronger in the ventral portion of 

the cord and weaker in its dorsal portion (Figure 2B). 

This dorso-ventral difference in the spinal cord was 

clear from 5 dpf onwards (Figure 2B). Strong SA–β–gal 

staining was also observed in the outer layer of the 

crystalline lens of the eye, in the glomerulus and the 

caudally extending pronephric ducts, and in the liver. 

SA–β–gal staining was observed in the crystalline at all 

the analysed stages (Figure 2C), in the liver from 3-4 

dpf onwards (Figure 2D), and in the glomerulus and 

pronephric ducts at all the analysed stages being weaker 

in 2 dpf embryos (Figure 2E). SA–β–gal staining in 

these structures might have been missed by previous 

authors that mainly used whole-mounted preparations to 

analyse cellular senescence in developing zebrafish. The 

difference in intensity of staining along development for 

various structures reinforces the idea of a transitory  

 

 
 

Figure 1. Photomicrographs of whole-mounted 
developing zebrafish showing the presence of SA–β–gal 
staining. Representative images of 2, 3, 4, 5, 6, 7 and 11 dpf 
zebrafish are shown. The asterisks indicate the presence of 
intense SA–β–gal staining in the yolk. Thin arrows indicate the 
presence of intense SA–β–gal staining in the caudal (cloacal) end 
of the intestine. Thick black arrows indicate the presence of SA–
β–gal staining in the brain. Thick empty arrows indicate the 
presence of SA–β–gal staining in the spinal cord. Arrowheads 
indicate the presence of SA–β–gal staining in the liver. Circles 
indicate the presence of SA–β–gal staining in the oesophagus. 
Scale bar: 200 µm. Images are a composition of different pictures 
taken under the microscope overlapped together and modified 
using the same parameters. 



 

www.aging-us.com 17897 AGING 

 
 

Figure 2. Photomicrographs of transverse sections of developing zebrafish showing the presence of SA–β–gal staining in 
different organs. (A) Photomicrographs showing the presence of SA–β–gal staining in the rostral part of the intestine.  
(B) Photomicrographs showing the presence of SA–β–gal staining in the spinal cord. (C) Photomicrographs showing the presence of strong 
SA–β–gal staining in the outer layer of the crystalline and weak SA–β–gal staining in the brain. (D) Photomicrographs showing the presence of 
SA–β–gal staining in the liver. Note that the intensity of staining in the liver is weaker in 2 dpf animals. (E) Photomicrographs showing the 
presence of SA–β–gal staining in the pronephric ducts. Note that the intensity of staining in the pronephric duct is weaker in 2 dpf animals. 
Dorsal is to the top in all sections. Abbreviations: B: brain, C: crystalline, I: intestine, N: notochord, L: liver, PD: pronephric ducts, R: retina, Y: 
yolk. Scale bars: 50 µm. 
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process taking place at precise developmental stages 

and disappearing after culminating its role. This is for 

example evident for the liver and cloaca at 11 dpf 

(Figure 1). 

 

To rule out artefactual SA–β–gal staining, we decided 

to use a senolytic agent to remove senescent cells. 

Senolytics are compounds with a specific senescent cell 

killing activity. We treated 5 dpf larvae for 24h with 

ABT-263 (Navitoclax), an inhibitor of antiapoptotic 

proteins Bcl-2, Bcl-xL and Bcl-w with senolytic 

activity [11]. SA–β–gal staining of treated animals 

revealed a dramatically reduced staining along all the 

described structures (Figure 3A). In addition, we 

measured the whole embryo expression of cdkn1a and 

cdkn2ab, the genes coding for cell cycle regulators p21 

and p16, respectively, known markers of cellular 

senescence. Levels of cdkn1a were clearly lower at 2 

dpf, when SA–β–gal staining was weaker, compared to 

7 dpf, a time at which SA–β–gal intensity was higher, 

nicely correlating with our stainings (Figure 3B). In 

contrast, ABT-263 treatment of 2 dpf embryos for 2 

days prevented the increase in the expression of cdkn1a 

and cdkn2ab (another cell cycle inhibitor linked to 

senescence), reinforcing the idea of the existence of 

developmental senescence taking place in zebrafish 

embryos (Figure 3C). 

 

DISCUSSION 
 

The identification of developmentally-programmed 

senescence in mouse embryos opened new perspectives 

 

 
 

Figure 3. (A) Photomicrographs of whole-mounted developing zebrafish (5 dpf) stained for SA–β–gal in the absence (upper panels) or 
presence (lower panels) of senolytic compound ABT-263 for 24 h. Right panels show an amplified area showing a detail of positive structures. 
Scale bars: 50 µm. P: pronephric ducts; L: liver; I: intestine; Y: yolk. (B) Expression levels by QPCR of cdkn1a (left panel) and cdkn2ab (right 
panel) genes at 2 and 7 dpf relative to the housekeeping gene rps11. (C) Expression levels by QPCR of cdkn1a (left panel) and cdkn2ab (right 
panel) genes relative to the housekeeping gene rps11 at 4 dpf after treatment with ABT-263 or vehicle (VEH) for 48 h. Data in (B) and (C) 
correspond to the average ± s.d. Statistical significance was assessed by the two-tailed Student ś t-test: *** p < 0.001; ** p < 0.01. Samples 
were assessed in triplicates of pools of 30 larvae. 
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on our understanding of this process. Senescence 

during embryo development has been observed in the 

context of organ regression, modulating cell population 

balance, and promoting tissue growth [12]. The 

observation of senescence operating on a context of 

tissue remodelling and sculpting structures in the 

embryo provides clues about a putative physiological 

role in the adult organism during tissue repair and in 

processes of regeneration, a possibility that has already 

been proved [13, 14]. It offers also a novel angle to 

consider the protumorigenic contribution of persistent 

senescence in line with the classical view of aberrant 

tissue repair signalling as the basis of cancer.  
 

In this context, we wondered to which extent is this 

developmental senescence conserved in distant 

vertebrates, such as the zebrafish, a valuable animal 

model to study development. The initial description of 

senescence in zebrafish embryos revealed a very 

restricted and confined pattern of expression, although 

the analysis was not complete and relied on whole 

mount SA–β–gal stainings alone. We provide a detailed 

analysis of the structures showing SA–β–gal staining in 

developing zebrafish extending previous observations 

by other authors [7] to other tissues and organs, and 

reinforcing the relevance of developmentally-

programmed cell senescence as a highly conserved 

phenomenon in vertebrates. The different fixing, 

staining and analytic conditions used in this study could 

explain the wider identification of developmental 

senescence. Still, the direct detection of senescence 

marker expression in the identified structures is lacking 

and could provide very valuable information. In 

addition, we show that senolytic treatment of embryos 

is effective removing these senescent cells, an untested 

possibility that offers now the opportunity to address 

directly the role of this process during embryogenesis. 
 

These results, together with the identification of 

developmental senescence in amphibians, salamanders, 

birds and mammals, support the notion that cell 

senescence emerged early during the evolution of 

vertebrates to favour tissue remodelling and 

morphogenesis. 

 

MATERIALS AND METHODS 
 

Animals 
 

Embryos were obtained from breeding of wild-type AB 

adult zebrafish. Animals were maintained in a 

controlled environment in a 14h light/10h dark cycle at 

28°C [15]. The protocols used in this study were 

performed in compliance with the EU animal 

experimentation regulation (EU, 2010) and were 

approved by the Bioethics Committee for Animal 

Experimentation CEEA-LU (Universidade de Santiago 

de Compostela, Spain).  

 

Senescence-associated β-galactosidase activity  
 

Determination of SA–β–gal activity was performed 

through the widely used X-gal staining method. Whole-

mount stainings were performed essentially as 

originally described [8]. Briefly, larvae between 2 and 

11 dpf (n=10 for each developmental time) were fixed 

for 20 min (room temperature) in 2% formal-

dehyde/0.2% glutaraldehyde, washed and incubated 

overnight at 37ºC with freshly made SA– 

β–gal solution: 1 mg of 5-bromo-4-chloro-3-indolyl 

beta-D-galactoside (X-Gal) per mL (Fisher Scientific), 

40 mM citric acid/sodium phosphate pH 6.0, 5 mM 

K3Fe[CN]6, 5 mM K4Fe[CN]6, 150 mM NaCl, and  

2 mM MgCl2. After staining, some larvae were washed 

with PBS, mounted with glycerol and photographed 

with an Olympus microscope. Other animals were 

rinsed in PBS, cryoprotected with 30% sucrose in PBS 

overnight at 4 ºC, embedded in Tissue Tek (Sakura, 

Torrance, CA, USA), frozen in liquid nitrogen-cooled 

isopentane and cut serially on a cryostat (16 μm 

sections) in the transverse plane. Sections were mounted 

on Superfrost ® Plus glass slides (Menzel, Braun-

schweig, Germany) using Mowiol ® (Sigma). 

 

ABT-263 treatment 
 

ABT-263 (Navitoclax; a generous gift from Abbvie) 

was added directly to the water to a final concentration 

of 2 μg/mL for 24 h to 5 dpf larvae before fixation and 

SA–β–gal staining as above, or for 48 h for QPCR. 

Treated animals were embedded in paraffin for 

sectioning and further histological examination using 

classical eosin staining. 

 

Gene expression analysis 
 

To measure RNA expression by quantitative RT-PCR, 

samples (pools of n=30; at 2, 4 or 7 dpf larvae) were 

disrupted using TissueLyser II and total RNA was 

extracted using the NucleoSpin® RNA kit (Macherey-

Nagel) following the indications of the provider and 

DNAse treatment. After RNA quantification on 

nanodrop, the RNA was retrotranscribed into cDNA 

according to the manufacturer’s protocol (High-Capacity 

cDNA Reverse Transcription Kit, Applied Biosystems). 

Quantitative Real Time-PCR was performed using SYBR 

Green Power PCR Master Mix (Applied Biosystems) in 

an AriaMx real-time PCR system (Agilent technologies). 

Relative quantitative RNA was normalized using the 

housekeeping gene rps11. The primers used were: rps11-

F: 5’-ACAGAAATGCCCCTTCACTG-3’; rps11-R: 5’-

GCCTCTTCTCAAAACGGTTG-3’; cdkn1a-F: 5’-
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CGCAAACAGACCAACATCAC-3’; cdkn1a-R: 5’-

ATGCAGCTCCAGACAGATGA-3’; cdkn2ab-F: 5’-

CCGCACGGTGTCAATGAATC-3’; cdkn2ab-R: 5’-

ATTTTCCCCCTCTCCAGGTG-3’. 

 

Statistical analysis 

 

Samples were assessed in triplicates and statistical 

significance was assessed by the two-tailed Student ś  

t-test: *** p < 0.001; ** p < 0.01. 
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