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INTRODUCTION 
 

Gliomas are the most common malignant tumor type of 

the central nervous system which account for about 

80% of primary malignant brain tumors [1]. According 

to the criteria of the World Health Organization 

(WHO), gliomas are divided into four grades (WHO 

Grade I, II, III and IV) [2]. WHO Grade I gliomas, 

mainly including pilocytic astrocytomas, are considered 

to be benign tumors [3]. WHO grade II/III gliomas 

tumors that include infiltrative astrocytomas and 

oligodendrogliomas mostly occur in the adult cerebral 

hemisphere [4]. The median overall survival (OS) of 

patients with Grade II glioma patients is about 6-12 

years, while the patients with Grade III glioma is 

reduced to 3 years (30-40 months) [5, 6]. WHO grade 

IV glioblastoma multiforme (GBM), the most malignant 

glioma type with, accounts for approximately 50% of 

glioma cases, and has a median survival time of 14.2 

months [7]. Although surgical treatment combined with 

radiotherapy and chemotherapy methods has made great 

strides, the overall prognosis of patients with glioma has 

not significantly been improved [8]. The social burden 

of Grade II/III gliomas is more serious due to the poor 

quality of life caused by surgery and the high recurrence 

rate. However, the current research is mostly focused on 

the GBM, but research on the Grade gliomas is very 

limited. 

 

In recent years, researchers have made remarkable 

progress in the field of immunotherapy in blood and 

many other solid tumors, which provide a new choice 
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ABSTRACT 
 

Glioma is the most common malignant tumor in the central nervous system. Evidence shows that clinical efficacy 
of immunotherapy is closely related to the tumor microenvironment. This study aims to establish a 
microenvironment-related genes (MRGs) model to predict the prognosis of patients with Grade II/III gliomas. 
Gene expression profile and clinical data of 459 patients with Grade II/III gliomas were extracted from The Cancer 
Genome Atlas. Then according to the immune/stromal scores generated by the ESTIMATE algorithm, the patients 
were scored one by one. Weighted gene co-expression network analysis (WGCNA) was used to construct a gene 
co-expression network to identify potential biomarkers for predicting the prognosis of patients. When adjusting 
clinical features including age, histology, grading, IDH status, we found that these features were independently 
associated with survival. The predicted value of the prognostic model was then verified in 440 samples in CGGA 
part B dataset and 182 samples in CGGA part C dataset by univariate and multivariate cox analysis. The clinical 
samples of 10 patients further confirmed our signature. Our findings suggested the eight-MRGs signature 
identified in this study are valuable prognostic predictors for patients with Grade II/III glioma. 
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for the glioma therapy [9–11]. Through immunotherapy, 

especially immune checkpoint inhibitors, significant 

responses were observed in different types of tumors 

[12, 13]. More and more evidence show that the effect 

of immunotherapy is not only associated with tumor 

cells, but also to the tumor microenvironment (TME). 

The tumor microenvironment refers to the surrounding 

tissue around tumor cells, including cytokines 

hormones, extracellular matrix and a series of immune 

and stromal cells, which have important influence on 

gene expression and clinical prognosis [14]. In view of 

these latest findings, novel therapies for immune 

responses are at present being developed and glioma 

microenvironment as a potential therapeutic target has 

been paid more and more attention [15–17]. 

 

With the development of sequencing technology, high-

throughput genomic analysis platforms provide 

promising tools for clinical oncology research. 

Compared with traditional clinical characteristics, 

genomics indicators are uniform and objective. 

Multiple genes signature can be used in combination to 

provide additional prognostic information [18–21]. 

Yoshihara et al. calculate the expression of specific 

molecular biomarkers in immune cells and stromal 

cells to generate an estimation algorithm with 

immune/stroma/ESTIMATE score to predict the matrix 

components and immune cell infiltrating cells in TME 

[22]. The immune score is closely related to the degree 

of immune cell infiltration. The higher the scores, the 

more immune cells infiltration. The stromal score 

stands for tumor matrix components. The higher the 

score, the more the matrix around the tumor. The 

ESTIMATE score is the sum of the immune score and 

the stromal score. The higher the score, the lower the 

purity of the tumor. This method is the most widely 

used and most convincing method currently used, and it 

has been experimentally confirmed that it is consistent 

with the actual situation of the tissue surrounding the 

tumor [23, 24]. 

The weighted gene co-expression network analysis 

(WGCNA) is a powerful tool to construct free-scale 

gene co-expression networks which is widely used to 

analyze large-scale datasets [25]. Thus, we establish 

Grade II/III glioma prognosis signature, and 

investigated the clinical application of the model using 

the microenvironment-related genes (MRGs). 

 

RESULTS 
 

Immune scores and stromal scores are significantly 

associated with Grade II/III glioma patients’ overall 

survival 

 

459 patients with Grade II/III glioma in the TCGA 

database with a follow-up time greater than 3 months 

were included in the present research. The stromal 

scores ranged from -1816.74 to 1716.82, immune scores 

were -1722.93 ~ 2189.02, and ESTIMATE scores were 

~3512.4 to 3775.10 according to the ESTIMATE 

algorithm. K-M analysis was done to reveal the 

correlation between the scores and survival by dividing 

459 patients into high and low score groups with the 

median score (low score group:230; high score 

group:229). The overall survival of Grade II/III glioma 

patients with low immune scores was significantly 

higher than that of patients with high immune scores 

(P=0.002) (Figure 1A). The same trend occurs in the 

high stromal (P < 0.001) (Figure 1B) and ESTIMATE 

(P=0.0012) (Figure 1C) score group. 

 

Co-expression module construction 
 

459 samples from TCGA were clustered using the 

average linkage method to assess microarray quality and 

filter outliers. The power of β = 6 was chose as the soft-

threshold (scale-free R2 = 0.97; Figure 2A–2C). 7 

modules were clustered by average linkage hierarchical 

clustering. Yellow module was selected for further 

analysis, which was highly correlated with ESTIMATE

 

 
 

Figure 1. Associations of immune (A), stromal (B), and ESTIMATE (C) scores on overall survival in Grade II/III gliomas. 
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score (Figure 2D). The enrichment analysis conducted in 

this study indicated that the genes in the yellow module 

were enriched in the positive regulation of leukocyte 

chemotaxis, myeloid leukocyte differentiation, and T 

cell proliferation (Figure 3). We did not select this grey 

module for further analysis for it contained too many 

genes to be processed in the next step, although the 

module was also significantly related to the ESTIMATE 

scores. 

 

Identification of a MRGs signature 

 

The 46 genes in the yellow module were considered to 

be related to the ESTIMATE scores and were conduct 

to the further research. Then Lasso-penalized Cox 

analysis with 10-fold cross-validation was performed 

to narrow the genes for prediction of the OS (Figure 

4A). Eight microenvironment-related genes were 

identified (Figure 4B). Kaplan-Meier analysis in the 

TCGA and CGGA part C dataset indicated that all the 

8 genes significant correlation with survival time of 

the patients (Figures 5, 6). The predictive model was 

defined as the linear combination of the expression 

levels of the 8 MRGs signature weighted by their 

relative coefficient in the multivariate Cox regression 

model, as risk score = (-0.092 * expression level of 

HCK) + (0.101 * expression level of HAVCR2) + 

(0.063 * expression level of CD37) + (−0.128 * 

 

 
 

Figure 2. Determination of soft-thresholding power and identification of modules associated with ESTIMATE scores in 
WGCNA. (A) Analysis of the scale-free fit index for various soft-thresholding powers (β). (B) Checking the scale-free topology when β=6.  
(C) Dendrogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (D) Heatmap of the correlation 
between module eigengenes and clinical traits of Grade II/III glioma cancer. 
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Figure 3. Function enrichment analysis based on PPI network. Functional annotations indicated that 46 genes in yellow modules 
were mostly involved in positive regulation of leukocyte chemotaxis, T cell proliferation and myeloid leukocyte differentiation. 
 

 
 

Figure 4. Flow chart and 10-fold cross-validation for tuning parameter selection. (A) 10-fold cross-validation for tuning parameter 

selection in the Lasso model. (B) LASSO coefficient profiles of the 46 prognostic genes. A vertical line is drawn at the value chosen by 10-fold 
cross-validation. 
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expression level of LPAR5) + (0.290 * expression level 

of NAGA) + (−0.005 * expression level of C1QC) + 

(0.023 * expression level of FCER1G) + (−0.040 * 

expression level of AIF1). Risk score is determined by 

MRGs combined with survival time in TCGA dataset. 

The higher the risk score, the greater the ESTIMATE 

score, which means more immune cell infiltration and 

more stromal composition, and the shorter the survival 

time. 

 

Analysis of the MRGs signature in the TCGA cohort 

and CGGA cohort 
 

The patients in the TCGA cohort were divided into 

high-risk group (n=229) and low-risk group (n=230) 

according to the risk score. We then evaluated the 

prognostic difference between the two groups by 

Kaplan-Meier curve based on the log-rank test. The 

results showed that the prognosis of the high-risk group 

was far worse than that of the low-risk group (P<0.001) 

(Figure 7A). We also made a heat map to describe the 

expression modules of MRGs in the two groups (Figure 

7B). Then we sorted the risk scores of patients in the 

TCGA cohort, and marked the survival time and 

survival status of the samples in the dot plot. We found 

that the number of deaths in the high-risk group was 

much greater than that in the low-risk group, and their 

survival time was generally lower than that of the low-

risk group. Then we performed ROC curve analysis to 

evaluate the ability of the MRGs signature as a 

detection method, and its area under the curve (AUC) 

reached 0.8 (Figure 7D), which illustrated the reliability 

of our MRGs signature. 

 

After evaluating the expression characteristics of MRGs, 

we further performed univariate and multivariate Cox 

 

 
 

Figure 5. Overall survival of genes in Grade II/III glioma patients in the TCGA cohort. (A) HCK. (B) HAVCR2. (C) CD37. (D) LPAR5. (E) 

NAGA. (F) C1QC. (G) FCER1G. (H) AIF1. 
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regression analysis to evaluate the role of MRGs 

signature in the prognosis of glioma patients. Univariate 

Cox analysis showed that MRGs risk score, age, the 

histology, the glioma grade, IDH gene mutant status and 

Karnofsky_score were closely associated to the prognosis 

of patients with Grade II/III glioma. The variables with 

P<0.05 in the univariate analysis were used for 

multivariate Cox analysis, and the results showed that 

MRGs signature were an independent risk factor when 

the clinical characteristics above were taken into 

consideration. (Table 1). In the CGGA part B and C 

cohorts, the MRGs risk score was still an independent 

prognostic factor (Tables 2, 3). These results indicated 

that the MRGs signature could be an independent 

prognosis characteristic of the patients with Grade II/III 

glioma. 

 

In experimental verification, we randomly selected 10 

cases with a follow-up time of more than 3 months, and 

divided them into two groups according to their survival 

time (5 patients per group). All sample information is 

shown in the Supplementary Table 1. QPCR experiment 

was carried out to measure the mRNA expression of 8 

MRGs in the ten patients. The results showed that the 

high survival group had lower risk score than that of the 

low survival group (Figure 8; P<0.001). This experiment 

verified the good clinical application value from another 

aspect of our MRGs signature. 

 

 
 

Figure 6. Overall survival of genes in Grade II/III glioma patients in the CGGA Part C cohort. (A) HCK. (B) HAVCR2. (C) CD37. (D) 

LPAR5. (E) NAGA. (F) C1QC. (G) FCER1G. (H) AIF1. 
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Immune infiltration of risk score 

 

After identifying prognostic value of the risk score, we 

performed correlation analysis between the MRGs 

signature and immune cell infiltration for Grade II/III 

glioma in Figure 9. The risk score was significantly 

correlated with the infiltration of CD4 + T cells, CD8 + 

T cells, dendritic cells, macrophages and neutrophil 

cells (all P < 0.05), suggesting that the level of immune 

infiltration was generally increased. 

 

DISCUSSION 
 

Solid tumors consist of tumor cells and non-tumor tissue. 

Non-tumor tissue outside of tumor cells is often referred 

to as the tumor microenvironment. The composition of 

the solid tumor is usually determined by the pathologist 

through visual assessment, which may be affected by 

histopathological sensitivity, interobserver variability, 

and accuracy. With the development of high-throughput 

sequencing platform, the research on molecular 

mechanism of tumor is changing with each passing day. 

In addition to routine pathological assessments, advances 

in genomics have introduced many computational 

methods based on polygenic data to determine the tumor 

microenvironment [26]. These methods are highly 

consistent with pathologists' observations and are widely 

used in the study of various tumors. 

 

Previous researches have studied the value of 

microenvironment-related gene signal models in 

predicting the prognosis of patients with different types 

 

 
 

Figure 7. Prognostic analysis of the TCGA cohort. (A) Kaplan-Meier curve analysis of the high-risk and low-risk groups. (B) Expression 

patterns of risk genes in the prognostic model. (C) Risk score distribution of patients in the prognostic model and survival status scatter plots 
for patients in the prognostic model. (D) ROC curve analysis of the prognostic model. 
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Table 1. Univariate and multivariate analysis of prognosis factors in TCGA. 

Variables 
Univariate Multivariate 

HR (95%CI) P* HR (95%CI) P* 

Age(<45vs≥45) 3.252(2.157,4.902) <0.001 3.519(2.227,5.559) <0.001 

Gender (Male vs Female) 0.958(0.653,1.405) 0.825   

Race (White vs Black) 1.650(0.764,3.560) 0.202   

Grade (G2 vs G3) 3.174(2.084,4.834) <0.001 2.154(1.293,3.586) 0.003 

Histology (Astrocytoma vs 

Oligodendroglioma) 
0.532(0.343,0.824) 0.005 0.512(0.313,0.839) 0.008 

IDH_mutant (Yes vs No) 6.866(2.138,22.05) 0.001 3.800(1.245,11.60) 0.019 

K_SCORE (<90 vs≥90) 0.423(0.267,0.669) <0.001 0.491(0.297,0.812) 0.006 

Chemotherapy(Yes vs No) 0.549(0.304,0.991) 0.046 1.455(0.738,2.868) 0.279 

Radiation (Yes vs No) 0.487(0.269,0.881) 0.017 1.498(0.733,3.062) 0.268 

Risk_score (Low vs High) 3.252(2.046,5.168) <0.001 2.713(1.675,4.394) <0.001 

HR: Hazard ratio; CI: Confidence interval. 
 

Table 2. Cox proportional hazards regression model analysis of overall survival in CGGA Part B. 

Variable 
Univariate analysis  Multivariate analysis 

Wald P  Wald P 

Risk_score 19.623 <0.001  13.265 <0.001 

Gender (Male vs Female) 0.213 0.645    

Age 0.734 0.391    

Grade (II vs III) 37.623 <0.001  38.283 <0.001 

Histology 34.323 <0.001  0.308 0.579 

IDH1_mutant (Yes vs No) 19.332 <0.001  0.020 0.889 

1p19q_codeletion_status (Yes vs No) 27.873 <0.001  0.391 0.532 

Radiotherapy (Yes vs No) 3.007 0.083  0.047 0.829 

Chemotherapy (Yes vs No) 0.480 0.488    

MGMT 1.607 0.205    

 

Table 3. Univariate and multivariate analysis of prognosis factors in CGGA Part C dataset. 

Variables 
Univariate  Multivariate 

HR (95%CI) P*  HR (95%CI) P* 

Age(<45vs≥45) 1.877(1.210,2.912) 0.005  1.312(0.760,2.260) 0.330 

Gender (Male vs Female) 1.510(0.982,2.322) 0.061    

Grade (G2 vs G3) 3.688(2.373,5.730) <0.001  4.201(2.349,7.513) 0.003 

Histology (Astrocytoma vs 

Oligodendroglioma) 
0.151(0.067,0.343) <0.001  0.184(0.075,0.451) <0.001 

IDH_mutant (Yes vs No) 2.691(1.720,4.210) <0.001  1.146(0.633,2.075) 0.653 

Chemotherapy (Yes vs No) 2.395(1.488,3.854) <0.001  1.067(0.604,1.886) 0.824 

Radiation (Yes vs No) 0.449(0.248,0.816) 0.009  0.383(0.201,0.730) 0.003 

Risk_score (Low vs High) 3.133(1.984,4.947) <0.001  1.958(1158,3.310) 0.012 
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of malignant tumors. Qi established a prognostic model 

based on 9 microenvironment-related genes and 

predicted the survival of patients with ovarian cancer. 

The results showed that the model could independently 

distinguish patients with different death risks. They 

further studied the relationship between these nine genes 

and immune cell infiltration, supporting the important 

role of the ovarian cancer TME in the occurrence and 

development of tumor cells. Xie et al. used 12 

microenvironment-related genes to construct a breast 

cancer prognostic risk model and found that the model 

can accurately stratify patients with different survival 

outcomes [27]. All of these indicate that tumor 

microenvironment-related genes play key roles in the 

tumor prognosis, and are prognostic indicators 

potentially. However, the value of microenvironment-

related genes for Grade II/III gliomas remains to be 

elucidated. 

 

 
 

Figure 8. Risk score of high and low survival time group. 8 MRGs mRNA level was performed by quantitative PCR. GAPDH was used for 

normalization. 

 

 
 

Figure 9. Analysis of the correlation between the risk score and immune cell infiltration in the TCGA cohort. (A) B cells. (B) 

CD4+ T cells. (C) CD8+ T cells. (D) Dendritic cells. (E) Macrophages. (F) Neutrophils. 
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Through high-throughput expression profiling, 

WGCNA, lasso, and multivariate Cox analysis, we 

acquired eight genes (HCK, HAVCR2, CD37, LPAR5, 

NAGA, C1QC, FCER1G and AIF1) to construct the 

MRGs signature in Grade II/III glioma patients. We 

first evaluated characteristics of the microenvironment-

related genes in TCGA and found that the survival rate 

in the high-risk group was significantly lower than that 

in the low-risk group which indicated that the MRGs 

signature could accurately stratify patients with 

different survival outcomes. The ROC analysis results 

showed the signature had a good predictive effect on 

glioma prognosis. In addition, the multivariate Cox 

regression model showed that the MRGs signature was 

an independent risk factor when the clinical 

characteristics such as age, pathological type, grade, 

IDH mutation, and K-score were taken into 

consideration. Similar results were observed when 

verifying in the CGGA Part B and Part C cohort. These 

results indicated that the MRGs signature was a novel 

and important pathway in predicting tumor immune 

infiltration and patient survival outcome in Grade II/III 

glioma. predict survival and. It may be utilized as a 

prognosis stratification tool added to the current system 

due to the good prospect of clinical application. 

 

Previous studies have shown that immune infiltration is 

an important factor in determining glioma response and 

prognosis. We analyzed the correlation between the 

MRGs signature and infiltration of immune cells. 

Convincingly, we found that the MRGs risk score was 

positively correlated with several common types of 

infiltration immune cells (B cells, CD4 + T cells, CD8 + 

T cells, neutrophils, macrophages and dendritic cells). 

Further research needs to be done to explore the 

relationship among MRGs and immune infiltration and 

the impact of glioma prognosis. 

 

The biological functions of some MRGs have been 

elucidated in glioma and other tumors. The protein 

expressed by HCK is a tyrosine kinase in Src family. 

This protein is mainly present in the hematopoietic 

system, especially in B-lymphoid and myeloid lineages 

cells. It may play a critical role in helping couple Fc 

receptors in immune cells [28]. HCK protein regulates 

the phagocytosis of neutrophils through the G protein-

coupled IL8 receptor. In macrophages, HCK protein can 

regulate the immune response by enhancing their 

proliferation, migration and secretion of IL6 and the 

macrophages of the HCK knockout mice showed weak 

phagocytosis [29, 30]. Previous studies have shown that 

in leukemia breast and colon cancer the up-regulation of 

HCK protein is often accompanied by higher tumor 

grades and the prognosis of patients is mostly poor [31–

33]. But the role of HCK in glioma is still unknown. The 

protein encoded by HAVCR2 (also named Tim-3) 

belongs to the immunoglobulin superfamily, and TIM 

family. It is a Th1-specific cell surface protein that 

regulates macrophage activation, and inhibits Th1-

mediated auto- and alloimmune responses, and promotes 

immunological tolerance [34]. TTim-3 along with PD-1 

marks exhausted CD4 and CD8 T cells in experimental 

models and in humans [35–37]. Studies indicated that 

the percentage of Tim-3 and PD-1 co-expressing T cells 

in tumors and blood of GBM patients increased 

compared with healthy group [38]. Although anti-Tim-3 

alone is not enough to produce a therapeutic response, 

the combined application of anti-Tim-3 and anti-PD-1 

antibodies can significantly improve the survival rate of 

a syngeneic mouse orthotopic glioma model [39]. CD37 

is a member of the tetra-spanning superfamily and is 

involved in the cell adhesion, movement, differentiation, 

intercellular communication and immune response. In 

addition, it also participates the interaction between B 

and T cells and the production of immunoglobulin G 

[40]. CD37 is highly expressed on the surface of most 

CLL and NHL cases, which is an attractive target for 

immunotherapy [41]. However, its role in glioma is still 

unclear. LPAR5 acts as a rhodopsin class of G protein-

coupled transmembrane receptors [42]. ATX-LPAR 

signaling axis is reported to induce MMP-9 expression 

in hepatocellular carcinoma (HCC) subsequently 

enhancing the invasive capacity of these cells [43]. 

NAGA encodes the lysosomal enzyme alpha-N-

acetylgalactosaminidase, which cleaves alpha-N-

acetylgalactosaminyl moieties from glycoconjugates 

[44]. At present, there are very few researches on 

NAGA. C1QC protein is the C-chain polypeptide of 

C1q. C1QC is mainly involved in complement-mediated 

innate and adaptive immune response. Study showed 

that C1q promotes the maturation of dendritic cells (DC) 

through the combination of pathogen-associated 

molecular patterns and danger-related molecular 

patterns, and then interacts with different molecules on 

the surface of dendritic cells in the early stages of 

immunity [45]. FCER1G, also known as FcRγ, is a 

component of the immunoglobulin E receptor and IL-3 

receptor complex. FCER1G mainly participates in 

biological processes of allergic inflammation signals and 

can regulate the activation of neutrophils and platelets 

[46]. FCER1G plays a tumor-promoting role in  

various tumors such as leukemia and solid tumors of the 

renal and Meninges [47–50]. AIF1, also called IBA1, 

encodes a protein that binds actin and calcium. The 

function of AIF1 protein is closely related to the 

activation of macrophages and is a specific marker for 

the activation of macrophages and microglia in the 

central nervous system [51]. It is reported that in 

hepatocellular carcinoma macrophages overexpressing 

AIF1 promoted tumor migration and proliferation of 

tumor cells [52]. In vitro study showed that AIF1 

promoted tumor growth via the NF-κB/cyclin D1 
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pathway [53]. The biological roles of most MRGs remain 

largely unclear in Grade II/III glioma. Further studies are 

required to explore the underlying mechanisms of the 

MRGs on glioma. 

 

There are several differences between our work and 

previous research. First, we focused on the 

microenvironment-related genes expression pattern in 

Grade II/III gliomas using ESTIMATE algorithm. This 

is the first application of the algorithm to Grade II/III 

gliomas. Secondly, unlike articles with other single 

analysis methods, we use multiple algorithms (including 

estimation algorithms, WGCNA, and lasso regression) 

to identify microenvironment-related genes. Finally, the 

results were verified using two independent databases 

and a small sample experiment, making our conclusion 

more reliable. 

 

Inevitably, our research has some shortcomings. Firstly, 

we use the retrospective data from public databases that 

have not been validated in prospective study. Secondly, 

the mechanisms of the MRGs on Grade II/III glioma 

needs further experimental research in vitro and in vivo. 

Additionally, due to the small number of patients in 

experimental verification, the signature still needs to be 

verified by larger samples. 

 

CONCLUSIONS 
 

To sum up, we discovered 8 microenvironment related 

genes, and constructed a signature to group patients at 

low and high risk of low survival time. This feature may 

have potential significance in evaluating the prognosis 

of Grade II/III glioma patients. 

 

MATERIALS AND METHODS 
 

Data processing 

 

The TCGA -LGG level 3 gene expression profiles and 

the clinical data of 529 samples of Grade II/III glioma 

patients were acquired from the TCGA data 

coordination center (https://portal.gdc.cancer.gov/) [54]. 

A total of 19767 protein coding genes were quantified 

by fragments per kilobase of exon per million reads 

mapped (FPKM). The ESTIMATE algorithm in the R 

project was applied to calculate the stromal and immune 

scores of each glioma sample in the TCGA dataset. 440 

Grade II/III glioma samples including RNA sequencing 

in the CGGA part B dataset and 182 Grade II/III glioma 

samples in the CGGA part C dataset was acquired to 

verify the signature (http://www.cgga.org.cn/) [55, 56]. 

Cases with a follow-up time greater than 3 months were 

used for later analysis. 10 simples from Renmin 

Hospital of Wuhan University with clinical data was 

used for experimental validation. 

Co-expression network construction and 

identification of clinical significant modules 
 

The R package ‘limma’ was applied to preprocess the 

downloaded raw data including background 

adjustment and normalization. Using the R package 

‘WGCNA’, we further processed the dataset by 

variance analysis. 14828 genes by P-value were 

screened out due to the low sensitive of the WGCNA 

analysis in low expression changes genes amid 

samples. The remaining 4895 genes were chosen for 

further analysis. The gene co-expression network was 

constructed by WGCNA package in R using the 

expression data profile of these 4 895 genes. 6 was 

selected as the soft threshold to convert the co-

expression similarity matrix into an adjacency matrix. 

Then the topological matrix was developed by using 

the topological overlap measure (TOM) in the R 

project. The minimum size of genes for each  

module was set as 30. The feature genes of modules 

are calculated, and the similar modules are clustered 

and merged according to the module dissection 

threshold. Finally, the correlations between gene 

modules and clinical traits were calculated and 

visualized through a heatmap. The modules which is 

positively related to ESTIMATE scores was selected 

for further analysis. 

 

Gene ontology and pathway enrichment analysis 

 

ClueGO (v2.5.5) is a Cytoscape (v3.7.1) plugin that 

visualizes the non-redundant biological terms for large 

clusters of genes in a functionally grouped network. 

CluePedia (v1.5.3) is a functional module of ClueGO 

[57, 58]. Biological process (BP), cellular component 

(CC) and molecular function (MF) functional groups in 

GO terms and KEGG pathways analysis of selected 

genes were enrolled and visualized using ClueGO and 

CluePedia. The pathways with adj-P < 0.05 were 

visualized in Cytoscape. 

 

Construction of the MRGs prognostic signature 

 

The Least Absolute Shrinkage Sum Selection Operator 

(LASSO) is an analysis method that accurately sets the 

regression coefficients of many irrelevant features to 

zero, thereby reducing interference variables. It is an 

important method and has many applications in 

regression analysis [59, 60]. The LASSO regression 

analysis was performed by R package ‘glmnet’. In the 

analysis, genes in the module which is positively related 

to ESTIMATE scores were used as the input. Eight 

genes were got from the LASSO regression. Then, 

multivariate Cox regression analysis was performed to 

evaluate the weight coefficient of the genes and 

constructed a prognostic risk model. 

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
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ESTIMATE scores-based gene signature 

 

Overall survival was analyzed by R package ‘survival’ 

using Kaplan-Meier method, and the log-rank test was 

performed to explore qualitative variables as appropriate 

of the differences of survival between groups. Time-

dependent receiver operating characteristics (ROC) 

analysis using the R package ‘survivalROC’ was carried 

out to investigate the prognostic accuracy of MRGs 

signature. Immune infiltrate data of Grade II/III glioma 

cases containing the level of 6 types of tumor-infiltrating 

immune cells (B cells, CD4+ T cells, CD8+ T cells, 

neutrophils, macrophages and dendritic cells) was 

obtained from the Tumor Immune Estimation Resource 

(https://cistrome.shinyapps.io/timer/) [61]. 

 

Quantitative polymerase chain reaction 
 

10 human glioma simples were obtained from the 

Department of Neurosurgery, Renmin Hospital of Wuhan 

University. Quantitative PCR of the 8 genes mRNA level 

was perform using Bio Rad CFX Connect Real-Time 

System. GAPDH was used for normalization. 

 

Statistical analyses 
 

Statistical analyses were performed using SPSS v25.0 

(SPSS Inc. Chicago, IL, U.S.A.). The univariate and 

multivariate analysis was performed by cox regression 

model. Hazard ratios (HRs) with their respective 95% 

confidence intervals were calculated by Wald test. All 

tests were two-sided and P <0.05 was considered 

statistically significant. 
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Supplementary Table 1. Clinical data. 


