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INTRODUCTION 
 

Worldwide, type 2 diabetes mellitus (T2DM)  

in individuals older than 65 years is gradually 

becoming a prevalent public concern [1, 2] because  

of its severe disability and mortality in the aging 

population [3]. Additionally, increasing age 

aggravates the risk of impaired fasting glycemia 

associated with glucose intolerance level, which 

potentially contributes to the onset of T2DM [4–6]. In 

this regard, T2DM is an age-related metabolic 
disorder involving severe complications, especially 

cardiovascular and neurodegenerative diseases 

occurring in the elderly [7, 8]. 
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ABSTRACT 
 

Type 2 diabetes mellitus (T2DM) is an age-related metabolic disease that is of increasing concern. Gut microbiota 
might have a critical role in the pathogenesis of T2DM. Additionally, Hippo signaling has been associated strongly 
with the progression of T2DM and the aging process. We adopted db/db male mice as a T2DM model, and the gut 
microbiota of db/db and m/m mice were transplanted successfully into pseudo germ-free mice. Furthermore, 
Hippo signaling, including mammalian sterile 20-like protein kinases 1 (MST1), large tumor suppressors 1 (LATS1), 
Yes-associated protein (YAP), and phosphorylation of YAP (p-YAP) in peripheral tissues were significantly altered 
and highly correlated with blood glucose in db/db mice. Interestingly, the host after gut microbiota 
transplantation from db/db mice showed decreased MST1 and LATS1 levels, and p-YAP/YAP ratio in the heart, 
liver, and kidney compared to those from m/m mice. Negative correlations between fasting blood glucose and 
Hippo signaling levels in selected peripheral tissues also were identified. These findings suggest that alterations in 
Hippo signaling in selected peripheral tissues may contribute to the development of T2DM, and that therapeutic 
interventions improving Hippo signaling by gut microbiota transplantation might be beneficial for the treatment 
of T2DM and other age-related metabolic diseases. 



 

www.aging-us.com 24157 AGING 

We previously reported that abnormal composition of 

gut microbiota greatly contributed to cognitive decline in 

streptozotocin-induced diabetic mice and Alzheimer’s 

disease’s (AD) mouse model-senescence-accelerated 

mouse prone 8 mice [9, 10]. Although the role of gut 

microbiota in age-related diseases has not yet been 

elucidated, evidence has shown that transplantation of 

gut microbiota from healthy donors effectively improved 

age-related neurodegenerative disorders, such as AD 

[11] and Parkinson’s disease [12, 13]. Furthermore, a 

new concept has been proposed that the gut–brain axis is 

responsible for the complex relationship between gut 

microbiota and the central nervous system [14–16]. It is 

therefore that gut microbiota might be highly related 

with neurodegenerative diseases attributing to its 

environmental role in energy metabolism. 

 

There also is a causal linkage between T2DM 

characterized by insulin resistance and obesity in 

pathology and gut microbiota dysbiosis [17–19]. 

According to our previous study, alterations in gut 

microbiota composition contributed to T2DM 

development in db/db mice, and transplantation of gut 

microbiota could alleviate the metabolic parameters, 

consisting of fasting glycemia, body weight, food and 

water intake [20]. The metabolic parameters of a 

systemic body appear to be on a downward trend with 

increasing age due to the decline in metabolic rates [21, 

22]. Accordingly, dysregulation of metabolism with 

increasing age eventually becomes a predisposing factor 

for T2DM [7], combined with the abnormal composition 

and function of gut microbiota. 

 

Hippo signaling is recognized as a key regulator of 

organ size and tissue homeostasis [23, 24]. It comprises 

mammalian sterile 20-like protein kinases 1 and 2 

(MST1/2), large tumor suppressors 1 and 2 (LATS1/2), 

Yes-associated protein (YAP), and transcriptional 

coactivator with PDZ-binding motif [25, 26]. 

Furthermore, Hippo signaling also has a pivotal role in 

modulation of cellular proliferation and apoptosis that 

can in turn regulate metabolic homeostasis [27]. A 

clinical study enrolling nine healthy subjects and nine 

patients with T2DM demonstrated 778 differentially 

expressed genes in the livers, and Hippo signaling was a 

key pathway in the progression of T2DM [28]. In our 

previous study, aberrant expressions of Hippo signaling 

were detected in selected cerebral and peripheral tissues 

in streptozotocin-induced diabetic mice accompanied by 

cognitive dysfunction [29]. Hippo signaling also is 

involved in the mechanisms underlying the aging 

process, under the interaction with other signaling 

pathways, such as AMP-activated protein kinase and the 

sirtuin pathways [30]. Hence, a study of the relationship 

between Hippo signaling and age-related metabolic 

disorders, such as T2DM, is urgently needed. 

Although recent work has uncovered novel mechanisms 

of mitochondrial dysfunction in peripheral tissues 

implicated in T2DM progression [31], the role of 

peripheral organs in T2DM development remains 

ambiguous. Considering the critical role of liver and 

muscle tissues in energy synthesis and metabolism  

[32, 33], combined with the close relationship between 

gut microbiota and T2DM, we identified expressions of 

Hippo signaling in selected peripheral tissues, including 

heart, liver, kidney, muscle, and gut in db/db mice and 

pseudo germ-free mice after gut microbiota 

transplantation. Furthermore, correlation analyses were 

carried out between fasting glycemia and expressions of 

Hippo signaling in selected peripheral tissues to verify 

the causal linkage. 

 

RESULTS 
 

Comparisons of metabolic parameters between 

db/db and m/m mice 

 

We adopted db/db mice as a T2DM mouse model and 

m/m mice as control subjects. Metabolic parameters, 

including blood glucose, body weight, and food and 

water intake, between the db/db and m/m mice were 

evaluated after 1 week of acclimation. Fasting blood 

glucose, body weight as well as food and fluid intake 

were significantly increased in db/db mice than those of 

m/m mice (Figure 1A–1D). 

 

 
 

Figure 1. Comparisons of metabolic parameters in db/db 
and m/m mice. (A) Blood glucose. (B) Body weight.  

(C) Food intake. (D) Water intake. Data are shown as mean ± SEM 
(n = 6). *P < 0.05, **P < 0.01, or ***P < 0.001. N.S., not 
significant. 
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Expressions of Hippo signaling in selected peripheral 

tissues between db/db and m/m mice 
 

Expressions of Hippo signaling, consisting of MST1, 

LATS1, p-YAP, and YAP were determined in selected 

peripheral tissues between db/db and m/m mice 

(Figure 2A−2E). Compared to m/m mice, db/db mice 

showed a significant decrease in MST1, LATS1, and 

p-YAP/YAP ratio in the heart, liver, and gut (Figure 

2A, 2B, 2E). Although the MST1 level in kidney and 

muscle tissues failed to show a significant change 

between db/db and m/m mice, the LATS1 levels and 

p-YAP/YAP ratio in db/db mice were significantly 

lower than those in m/m mice (Figure 2C, 2D). 

Correlations between fasting blood glucose and 

Hippo signaling levels in selected peripheral tissues 

between db/db mice and m/m mice 

 

Considering the pivotal role of fasting blood glucose in 

the progression of T2DM, correlations between fasting 

blood glucose and Hippo signaling levels were analyzed 

(Figure 3A−3E). Intriguingly, there were significant 

negative correlations between fasting blood glucose and 

MST1 and LATS1 levels in the heart and muscle (Figure 

3A, 3D), as well as LATS1 levels and p-YAP/YAP ratio 

in the liver and kidney (Figure 3B, 3C). However, there 

was no significant correlation between fasting blood 

glucose and Hippo signaling levels in the gut (Figure 3E). 

 

 
 

Figure 2. Hippo signaling levels in peripheral tissues between db/db and m/m mice. MST1, LATS1, p-YAP/YAP ratio, and YAP in the 

heart (A), liver (B), kidney (C), muscle (D), and gut (E). Data are shown as mean ± SEM (n = 6). *P < 0.05, **P < 0.01, or ***P < 0.001. 
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Impacts on metabolic parameters by fecal 

transplantation into pseudo germ-free mice 
 

After the establishment of pseudo germ-free mice, fecal 

transplantation were conducted from db/db and m/m 

mice (Figure 4A). Then, metabolic parameters were 

measured on day 28 as reported previously [20]. 

Obviously, as compared to m/m or vehicle group, 

fasting glycemia, body weight, food and fluid intake 

were significantly elevated in db/db group. However, 

there were no dramatic alterations among four groups 

on day 1 and 15 (Figure 4B–4E). 

 

Hippo signaling levels in selected peripheral tissue 

after fecal transplantation in pseudo germ-free mice 
 

After fecal transplantation, MST1 and LATS1 levels, 

and p-YAP/YAP ratio in selected peripheral tissues were 

determined by Western blot in pseudo germ-free mice 

(Figure 5A−5E). Intriguingly, a significant decrease in 

these values was observed in the liver tissue of db/db 

mice compared with values in the vehicle or m/m group 

(Figure 5B). MST1 levels and p-YAP/YAP ratio were 

significantly decreased, and there was a slight decrease 

in LATS1 level in the hearts of the db/db group 

compared to values in the m/m group (Figure 5A). 

Regarding kidney tissue, a significant decrease was 

identified in the MST1 and LATS1 levels, and p-

YAP/YAP ratio in the db/db group compared to those in 

m/m group (Figure 5C). Additionally, the MST1 level 

and p-YAP/YAP ratio in muscle of the db/db group 

showed a significant decrease compared to those in the 

vehicle group, whereas no significant difference was 

detected in LATS1 level among the four groups (Figure 

5D). Although the MST1 level was significantly lower 

in the gut of the db/db than in the vehicle groups, there 

was no statistical difference in MST1 and LATS1 levels, 

and p-YAP/YAP ratio between the db/db and m/m 

groups (Figure 5E). However, Hippo signaling 

expression in all selected peripheral tissues failed to 

show a significant alteration among the control, vehicle, 

and m/m groups (Figure 5A−5E). 

 

Correlations between fasting blood glucose and 

Hippo signaling levels in selected peripheral tissues 

after fecal transplantation in pseudo germ-free mice 

 

A significant correlation was noted between fasting 

blood glucose and MST1, LATS1 levels, and p-

YAP/YAP ratio in the heart, liver, and muscle tissues, 

as analyzed in selected peripheral tissues after fecal 

transplantation from db/db and m/m mice into pseudo 

germ-free mice (Figure 6A, 6B, 6D). A significant 

 

 
 

Figure 3. Correlations between fasting blood glucose and Hippo signaling levels in peripheral tissues between db/db mice 
and m/m mice (n = 12). MST1, LATS1, and p-YAP/YAP ratio in the heart (A), liver (B), kidney (C), muscle (D), and gut (E). 
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negative correlation was found between fasting blood 

glucose and LATS1 levels in the kidney and gut. 

However, there were no significant correlations 

between fasting blood glucose and MST1 level and p-

YAP/YAP ratio (Figure 6C, 6E). 

 

 

DISCUSSION 
 

It is generally acknowledged that aging plays a 

predisposing role in the dysregulation of glucose 

metabolism [34]. Age-related insulin- sensitivity 

decline, accompanied by hyperglycemia, might 

disequilibrate glucose homeostasis, possibly triggering a 

potential onset of T2DM [35]. It is notable that, the 

prevalence of T2DM in the aged patients especially 

those over 65-year-old is rising more than 25% [36, 37]. 

In this regard, T2DM is recognized as an age-related 

metabolic disease. In this study, C57 BL/KS db/db male 

mice were adopted as a T2DM rodent model to further 

investigate the mechanisms involved in T2DM 

progression. Although various animal models have been 

adopted in the study of T2DM, db/db mice are 

confirmed as a genetically diabetic rodent model 

because of the missense mutations of leptin receptors 

[38, 39], pathologically characterized by leptin 

resistance, namely imbalance between higher 

circulatory levels of leptin and lower leptin receptors 

[40]. Consequently, the levels of fasting glycemia, body 

weight, food and fluid intake were significantly elevated 

in db/db mice than m/m mice, which are in agreement 

with the clinical features in T2DM patients [41]. 

 

In fact of growing incidence of T2DM in elderly 

populations, more attentions have focused on the 

intricate pathogenesis of T2DM that mainly attributed 

to genetic susceptibility and environmental risk factors 

[42, 43]. Recently, multiple lines of studies have 

revealed that gut microbiota, a pivotal role in 

environmental factors, essentially contributed to the 

development of metabolic disorders, as well as age-

related neurologic disorders [44]. Despite the obscure 

 

 
 

Figure 4. Alterations in the metabolic parameters after fecal transplantation in pseudo germ-free mice. (A) Schedule of our 

study. Mice were treated orally with fecal microbiota from db/db or m/m mice for 14 consecutive days after receiving large doses of 
antibiotics for 2 weeks. Peripheral tissues were collected for subsequent experiments on day 29. (B) Blood glucose. (C) Body weight. (D) Food 
intake. (E) Water intake. Data are shown as mean ± SEM values (n = 7). *P < 0.05, **P < 0.01, or ***P < 0.001. CONT, control; GF, germ-free. 
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mechanism of gut microbiota in age-related diseases, 

several lines of evidence suggested that gut microbiota 

transplanted from healthy donors can effectively 

alleviate T2DM progression [45] and age-related 

neurodegenerative disorders, including AD and 

Parkinson’s disease [11, 13]. In our study, pseudo germ-

free mice after gut microbiota transplantation from 

db/db mice showed a significant increase in fasting 

 

 
 

Figure 5. Hippo signaling levels in peripheral tissues after fecal transplantation among pseudo germ-free mice. (A) MST1,  

p-YAP/YAP ratio, and YAP in the heart. Also shown are MST, LATS1, p-YAP/YAP ratio, and YAP in the liver (B), kidney (C), muscle. (D), and gut 
(E). Data are shown as mean ± SEM (n = 7). *P < 0.05, **P < 0.01, or ***P < 0.001. CONT, control. 
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blood glucose, body weight, and food and fluid intake 

compared with those in the controls as described 

previously [20]. Therefore, there is possibly a  

potential linkage between gut microbiota and T2DM 

development. 

 

Peripheral tissues, such as skeletal muscle and liver, are 

considered as vital tissues in regulation of glucose 

metabolism [46]. In this regard, severe impairments in 

liver and muscle may result in the abnormality of 

glucose intake and usage combined with insulin 

resistance, which triggers the onset of diabetes [47]. 

Additionally, evidence has revealed that Hippo 

signaling is a vital regulator in the peripheral insulin 

pathway, maintaining glucose homeostasis by mediating 

the expressions of MST1, LATS1, or YAP [48]. 

Therefore, we detected the MST1 and LATS1 levels, 

and p-YAP/AYP ratio in the heart, liver, kidney, 

muscle, and gut tissues of db/db and pseudo germ-free 

mice after fecal transplantation. Negative correlations 

were found between fasting blood glucose and Hippo 

signaling. Interestingly, we observed lower Hippo 

signaling levels in the heart, liver, and gut in db/ db 

mice than those in the control group. Additionally, the 

host after gut microbiota transplantation from db/db 

mice showed decreased MST1 and LATS1 levels, and 

p-YAP/YAP ratio in the heart, liver, and kidney than 

those in m/m mice. These findings were consistent with 

the role of Hippo signaling in glucose metabolism via 

downregulation of YAP [49]. Collectively, aberrant 

expressions of Hippo signaling in selected peripheral 

tissues might contribute to the development of T2DM. 

 

It is acknowledged that Hippo signaling is mediated by 

G protein coupled receptor pathway, and epinephrine or 

glucagon can stimulate Gs-coupled receptors, thus 

activating Lats1/2 kinase and inhibiting YAP function 

in vitro trials of multiple cell lines [50]. Therefore, since 

glucagon or epinephrine, a nonspecific activator, 

indirectly affects Hippo signaling, we did not observe 

the effects of Hippo signaling activators on glucose 

regulation. 

 

Our study has several limitations. First, we should adopt 

more mice to minimize the difference among the 

groups. Second, all age groups especially the aged ones 

are needed. Third, tissues, including adipose tissues and 

various brain tissues, also should be evaluated by 

various techniques, including immunohistochemistry 

and quantitative polymerase chain reaction. Moreover, 

 

 
 

Figure 6. Correlations between fasting blood glucose and Hippo signaling levels in peripheral tissues after fecal 
transplantation in pseudo germ-free mice (n = 28). MST1, LATS1 and p-YAP/YAP ratio in the heart (A), liver (B), kidney (C), muscle (D), 

and gut (E). 
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antagonists of Hippo signaling, or interference plasmid 

with lentivirus vectors that knockdown Hippo signaling 

were not conducted in this study. It is therefore further 

investigations are urgently needed. 

 

To conclude, our results revealed that the aberrant 

expressions of Hippo signaling in selected peripheral 

tissues may trigger the onset of T2DM. Thus, 

therapeutic interventions improving Hippo signaling by 

gut microbiota transplantation might be beneficial to the 

treatment of T2DM, which provides a new insight into 

the study of age-related metabolic disorders in the near 

future. 

 

MATERIALS AND METHODS 
 

Animals 

 

8-week-old male db/db mice (Lepr-KO/KO, n = 6), 

m/m mice (Lepr-WT/WT, n = 6) of the C57 BL/KS 

strain, and C57BL/6J male mice (n = 40) (Beijing Vital 

River Laboratory Animal Technology, Beijing, China) 

were housed 3-5 per cage under controlled lighting 

conditions (12 h light: 12 h darkness cycle), with free 

access to rodent feed and water. Housing conditions 

were in a specific pathogen–free (SPF) facility at a 

consistent temperature (22° C ± 2° C) combined with a 

relative humidity of 60% ± 5%. All experimental 

protocols and animal handling procedures were 

conducted strictly according to the recommendations in 

the Guide for the Care and Use of Laboratory Animals, 

published by the National Institutes of Health 

(Publications No. 80-23, revised in 1996). This study 

was approved by the Experimental Animal Committee 

of Tongji Hospital, Tongji Medical College, Huazhong 

University of Science and Technology (Wuhan, China). 

 

Measurements of metabolic parameters 

 

During the experiments, body weight, food and fluid 

intake were detected via electronic scales each week, 

and fasting glycemia (Fasting for 8 h) was measured 

from a tail vein blood sample via a OneTouch Ultra 

blood glucose meter (LifeScan Diabetes Institute, 

Chesterbrook, PA, USA). 

 

Establishment of pseudo germ-free mouse model 

 

C57BL/6J male mice (n = 40) weighing 20-25 g were 

treated with large doses of broad-spectrum antibiotics 

(ampicillin 1 g/L, neomycin sulfate 1 g/L, 

metronidazole 1 g/L; Sigma-Aldrich Co., St. Louis, 

MO, USA) by ad libitum for 2 weeks before fecal 
transplantation [9, 10, 20]. During the experiment, the 

drinking water with dissolved antibiotics was replaced 

every 2 days [51, 52]. 

Fecal transplantation 

 

During the establishment of pseudo germ-free mouse 

model, fecal samples can be prepared and stored  

at −80° C [9, 53]. Each mouse was respectively in a 

clean cage with sterilized filter paper for fecal 

collection [10, 20]. The feces were collected 

immediately into a sterilized centrifuge tube after 

defecation. Then, 1 g fecal samples from db/db or m/m 

mice were mixed with 10 ml saline solution, vortexed, 

and 0.2 ml of the suspension was administered to 

pseudo germ-free mice by oral gavage for 14 

consecutive days [54]. 

 

Western blotting 
 

To prepare total protein extracts, selected peripheral 

tissues (heart, liver, kidney, right anterior foot muscle, 

and gut) were quickly collected after sacrifice and 

lysed in RIPA buffer (150 mM sodium chloride, Triton 

X-100, 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate [SDS], 50 mM Tris, pH 8.0) mixed 

with protease and phosphatase inhibitors. The 

concentration of proteins in the supernatants was 

quantified through a BCA protein assay kit (Boster, 

Wuhan, China). Protein samples were denatured in 

loading buffer and resolved by 10% SDS-

polyacrylamide gel electrophoresis, and transferred 

onto polyvinylidene difluoride membranes (Millipore, 

Bedford, MA, USA). Membranes were blocked in 5% 

bovine serum albumin for 1 hour before incubation 

with primary antibody overnight at 4° C. Membranes 

were washed with TBST and incubated with secondary 

antibodies at room temperature for 1.5 hour. The 

signals of proteins were then visualized by an 

ChemiDocXRS chemiluminescence imaging system 

(Bio-Rad, Hercules, CA, USA). The following 

antibodies were used: rabbit anti-MST1 (1:1000; 

Proteintech, Wuhan, China), rabbit anti-LATS1 

(1:1000; Absin Bioscience Inc., Shanghai, China), 

rabbit anti-p-YAP (1:1000; Cell Signaling 

Technology, Danvers, MA, USA) and rabbit anti-YAP 

(1:1000; Proteintech, Wuhan, China), and horseradish 

peroxidase-conjugated goat anti-rabbit IgG antibody 

(1:5000; Affinity, Cincinnati, OH, USA). 

 

Statistical analysis 

 

Data are shown as mean ± standard error of the  

mean. Statistical analyses were conducted using 

GraphPad Prism 7 (GraphPad Software, San Diego, 

CA, USA). Data were analyzed by 1- or 2-way 

analysis of variance or unpaired t-test. Correlation 

analyses were performed using Pearson’s product–

moment coefficient. The P < 0.05 was considered 

statistically significant. 
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Abbreviations 
 

AD: Alzheimer’s disease; LATS1: large tumor 

suppressors 1; MST1: mammalian sterile 20-like protein 

kinases 1; p-YAP: phosphorylation of Yes-associated 

protein; T2DM: type 2 diabetes mellitus; YAP: Yes-

associated protein. 
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