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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the most common 

primary liver cancer in adults, and is the leading cause 

of cancer-related mortality worldwide [1, 2]. It is well-

known that HCC is a group of highly heterogeneous 

diseases, and the prognosis of individual patients varies 

greatly [2]. Clinically, tumor stage, histological grade, 

and molecular subtype are used to evaluate prognostic 

factors of patients with HCC. However, these 

clinicopathological features cannot accurately provide 

information to predict the prognosis, which may lead to 

inaccurate judgment regarding the prognosis and 
inappropriate treatment of patients [3, 4]. Therefore, 

there is an urgent need to identify new molecular 

markers to predict the prognosis of patients with HCC, 

which would be conducive in terms of accurate patient 

treatment. 

 

Metabolic reprogramming is considered a new feature of 

cancer cells [5]. Catabolism and anabolism are key to 

cancer cells, which ensure their energy supply and 

biomass synthesis by reprogramming their micro-

environment [6–8]. Numerous major metabolic 

pathways occur in the liver, including glycolysis, 

tricarboxylic acid cycle, oxidative phosphorylation, and 

amino acid catabolism [9]. Therefore, elucidating the 

relationships involving metabolism and HCC is essential 

for understanding the pathogenic mechanisms in 

tumorigenesis [10]. Previous studies have discussed the 

important role of metabolic disorders in cancer biology 

[11–13]. However, systemic metabolic reprogramming 
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ABSTRACT 
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high- and low-risk groups. Furthermore, gene set enrichment analysis revealed that significantly-enriched gene 
ontology terms and pathways involving high-risk patients were focused on regulation of nucleic and fatty acid 
metabolism. Taken together, our study identified five metabolic genes related to survival, which can be used to 
predict the prognosis of patients with hepatocellular carcinoma. These genes may play essential roles in 
metabolic microenvironment regulation, and represent potentially important candidate targets in metabolic 
therapy. 
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and its prognostic value in the progress of HCC need 

further study. 

 

In this study, we used mRNA expression data of 

patients with HCC from The Cancer Genome Atlas 

(TCGA) database to develop a metabolic prognostic 

signature. These metabolism-related risk signatures can 

independently and effectively identify patients with 

HCC at a high-risk of unfavorable outcomes. In 

addition, performing gene set enrichment analysis 

(GSEA) determined the most relevant biological 

processes and metabolic pathways involved in the 

pathological process of HCC establishment. These 

results may provide new ideas for studying the 

prognosis of HCC, and for individualized metabolic 

treatment. 

 

RESULTS 
 

TCGA HCC dataset profile 

 

We downloaded the data of 371 HCC cases from TCGA 

database, including 50 normal datasets and 374 tumor 

datasets. The tumor datasets were then randomly divided 

into a training set (n = 249) and a testing set (n = 125). 

After removal of cases with survival time < 30 days, or 

incomplete clinical information, a total of 221 cases with 

identified clinical characteristics were enrolled in this 

study. Clinical information concerning the patients in the 

training and testing sets is presented in Table 1. There 

were no statistical differences regarding clinical data 

between training and testing sets (P-value > 0.05). 

 

Identification of differentially expressed metabolic 

genes in the training set 

 

A total of 944 metabolic genes were extracted from the 

training set. After screening, we identified 173 

differentially expressed metabolic genes in the tumor 

dataset, compared with the normal dataset, including 

147 upregulated and 26 downregulated metabolic genes, 

using | logFC | > 1.5, P-value < 0.05, FDR < 0.05 as the 

screening criteria. The top 10 differentially expressed 

metabolic genes are illustrated in Table 2. A heat map 

representing these differentially expressed metabolic 

genes is shown in Figure 1. 

 

Identification of prognosis-associated metabolic genes 

 

In order to identify genes most closely related to 

prognosis in HCC, univariate Cox regression analysis 

was performed with the P-value strictly set to 0.001. A 

total of 8 prognosis-associated metabolic genes were 

identified in the training set, including POLA1, RRM2, 
UCK2, CAD, ACYP1, G6PD, ENTPD2 and TXNRD1. 

The hazard ratio (HR) of these genes were > 1, which 

indicated that these genes were associated with higher 

risk of poor overall survival outcomes (Table 3 and 

Figure 2). 

 

Construction of LASSO Cox regression model 

 

A total of five prognosis-associated metabolic genes were 

enrolled in the LASSO Cox regression model, including 

POLA1, UCK2, ACYP1, ENTPD2 and TXNRD1.  

The risk score = 0.224526000042292 *expression of 

POLA1 + 0.0430802421098465 *expression of UCK2  
+ 0.133617317495605 *expression of ACYP1 + 

0.0735585351730793 *expression of ENTPD2 + 

0.00710372438454236 *expression of TXNRD1. Patients 

were divided into high and low-risk groups based on the 

median risk score of the training set. 

 

Validation of training set survival analysis by 

utilizing testing set data 

 

Kaplan-Meier analysis demonstrated that high-risk 

group members had a worse overall survival outcome 

compared to the low-risk group, in both the training 

(Figure 3A) and testing sets (Figure 3B). The P-values 

were < 0.05, which validated the effectiveness of the 

risk score in survival analysis based on the LASSO Cox 

regression model. Additionally, data from the Gene 

Expression Omnibus (GEO) database showed that the 

high-risk group had a poorer overall survival outcome 

(Supplementary Figure 1). 

 

Validation of risk score, survival status distribution, 

and heat map of the training set utilizing testing set 

data 

 

Each patient was ranked based on their risk score (top 

of Figure 4A, 4B). The risk score was elevated from left 

to right in both the training and testing sets. The 

distribution of the survival status of each patient 

demonstrated that the higher the risk score, the shorter 

the survival time and the fewer surviving patients in 

both the training and testing sets (middle of Figure 4A, 

4B). Heat maps showed that the expression of the five 

prognostic genes was upregulated in high-risk groups in 

both the training and testing sets (bottom of Figure 4A, 

4B). Validation of risk score, survival status 

distribution, and heat map generation using TCGA data 

were also performed by utilizing data from the GEO 

database. The result further confirmed the prognostic 

value of the risk score (Supplementary Figure 2). 

 

Univariate and multivariate Cox analysis 

 
Univariate and multivariate Cox regression analyses 

were conducted to test whether the prognostic ability of 

the five metabolic genes was independent of clinical 
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Table 1. Clinical characteristics of patients. 

Variables 
Training set 

 (n=148) 
Testing set 

 (n=73) 
Entire set 
 (n=221) 

P-value 

Age, n (%)    

0.052 < 65 yrs 95 (64.19) 53 (72.60) 148 (66.97) 

≥ 65 yrs 53 (35.81) 20 (27.40) 73 (33.03) 

Gender, n (%)    

0.709 Female 45 (30.41) 24 (32.88) 69 (31.22) 

Male 103 (69.59) 49 (67.12) 152 (68.78) 

Futime, (25%-75%) 558 (351-1457) 612 (408-1145) 581 (364-1323) 0.393 

Fustat, n (%)    

0.242 alive 98 (66.22) 54 (73.97) 152 (68.78) 

dead 50 (33.78) 19 (26.03) 69 (31.22) 

Grade, n (%)    

0.377 

G1 16 (10.81) 11 (15.07) 27 (12.22) 

G2 70 (47.30) 26 (35.62) 96 (43.44) 

G3 55 (37.16) 33 (45.21) 88 (39.82) 

G4 7 (4.73) 3 (4.11) 10 (4.52) 

Stage, n (%)    

0.456 

Stage I 70 (47.30) 38 (52.05) 108 (48.87) 

Stage II 36 (24.32) 10 (13.70) 46 (20.81) 

Stage III 40 (27.03) 24 (32.88) 64 (28.96) 

Stage IV 2 (1.35) 1 (1.37) 3 (1.36) 

T, n (%)    

0.401 

T1 71 (47.97) 38 (52.05) 109 (49.32) 

T2 37 (25.00) 10 (13.70) 47 (21.27) 

T3 32 (21.62) 23 (31.51) 55 (24.89) 

T4 8 (5.41) 2 (2.74) 10 (4.52) 

M, n (%)    

0.991 M0 146 (98.65) 72 (98.63) 218 (98.64) 

M1 2 (1.35) 1 (1.37) 3 (1.36) 

N, n (%)    

0.991 N0 146 (98.65) 72 (98.63) 218 (98.64) 

N1 2 (1.35) 1 (1.37) 3 (1.36) 

Abbreviations: T: Tumor; N: Node (regional lymph node); M: Metastasis. 
P-value > 0.05 indicates that there is no statistical difference in clinical data between training group and testing group. 

 

data in both the training and testing sets. For each 

dataset, we included age, gender, tumor grade, tumor 

stage, TNM staging, and risk score as explanatory 

variables. Univariate Cox regression analysis 

demonstrated that the risk score was related to the poor 

overall survival of patients with HCC (HR training set= 
3.471, HR testing set = 4.373, P-value < 0.05). As the risk 

score increased, the risk of poor survival outcomes 

elevated (Figure 5A, 5D). The results of multivariate 

Cox regression analysis showed that the risk score could 

be treated as an independent risk factor to predict 

overall survival outcome in patients with HCC (HR 

training set= 3.200, HR testing set = 4.993, P-value < 0.05, 

Figure 5B, 5E). Receiver operating characteristic (ROC) 

analysis was performed to evaluate the efficacy of the 
multivariate Cox regression analysis. The area under  

the curve (AUC) of the risk score from the ROC curve 

was higher compared to other clinical characteristics 
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Table 2. The top 10 up-regulated and down-regulated genes. 

Gene ConMean TreatMean LogFC P-Value FDR 

Down-regulated genes 

CYP26A1 6.5695 0.655653 -3.32478 1.44E-20 1.14E-19 

CNDP1 6.560749 0.894874 -2.8741 4.44E-22 4.50E-21 

CYP2C19 3.085339 0.430674 -2.84076 1.36E-15 5.00E-15 

CYP1A2 162.061 24.16823 -2.74535 3.90E-23 5.74E-22 

DBH 10.7885 1.70276 -2.66355 1.51E-23 2.50E-22 

NAT2 25.52141 4.919365 -2.37516 1.94E-24 4.92E-23 

LRAT 1.0943 0.223422 -2.29217 5.65E-24 1.21E-22 

CYP2C8 449.4618 92.74891 -2.2768 1.96E-25 9.03E-24 

AADAT 11.03725 2.482022 -2.15279 5.26E-24 1.15E-22 

LCAT 68.11541 16.46416 -2.04865 4.16E-25 1.53E-23 

Up-regulated genes 

CEL 0.033783 0.597751 4.145164 6.33E-15 2.15E-14 

TYRP1 0.0086 0.1793 4.381821 2.01E-04 2.79E-04 

CKMT1A 0.006888 0.150314 4.447752 6.00E-07 1.03E-06 

MIOX 0.025308 0.650612 4.684158 8.17E-11 1.92E-10 

ACP4 0.013881 0.386036 4.797518 7.10E-12 1.87E-11 

CKMT1B 0.007145 0.224978 4.976801 8.85E-04 1.17E-03 

GAD1 0.002933 0.122091 5.379313 4.09E-14 1.32E-13 

ALDH3A1 0.752937 44.25674 5.877225 3.85E-04 5.21E-04 

UGT1A10 0.00825 0.673831 6.351786 1.26E-03 1.64E-03 

RDH8 0.002213 0.222531 6.652179 3.41E-07 5.94E-07 

 

 
 

Figure 1. Heat map of differentially expressed genes in the training set. A total of 147 upregulated and 26 downregulated metabolic 

genes were identified in the tumor dataset compared to the normal dataset, using | logFC |> 1.5, P-value < 0.05, FDR < 0.05 as the screening 
criteria. 
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Table 3. Prognostic associated metabolic genes. 

ID HR HR.95L HR.95H P-value 

POLA1 1.470951 1.284508 1.684457 2.40E-08 

RRM2 1.052166 1.027998 1.076901 1.79E-05 

UCK2 1.137793 1.088132 1.189719 1.43E-08 

CAD 1.132149 1.074487 1.192906 3.26E-06 

ACYP1 1.37746 1.208838 1.569603 1.53E-06 

G6PD 1.010954 1.006035 1.015896 1.20E-05 

ENTPD2 1.092836 1.048756 1.13877 2.38E-05 

TXNRD1 1.012026 1.006645 1.017436 1.11E-05 

 

(AUC training set = 0.845, AUC testing set = 0.786), implying 

a robust prognostic capacity of the constructed 

predictive model in predicting overall survival  

(Figure 5C, 5E). 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analyses of the five 

metabolic genes 

 

To determine the biological implications of the five 

metabolic genes, KEGG pathway and GO term analyses 

were performed. KEGG pathway analysis results showed 

that these five genes were associated with DNA 

replication and pyruvate metabolism. GO term 

enrichment indicated that the five genes were associated 

with nucleobase metabolic process such as pyrimidine 

nucleobase metabolic processes, DNA strand elongation, 

nucleoside kinase activity, and DNA polymerase activity 

(Table 4). Enrichment analyses demonstrated that the five 

metabolic genes may affect the prognosis of patients with 

HCC by inducing tumor cell proliferation. 

 

External validation using online database 

 

Consistent with our results, POLA1, UCK2, ACYP1, 

ENTPD2 and TXNRD1 were found to be significantly 

overexpressed at the mRNA level in HCC in the 

TIMER database (Figure 6). Protein expression, as 

 

 
 

Figure 2. Forest plot of prognosis-related metabolic genes screened using univariate Cox regression analysis. The hazard ratio 
of these genes was > 1 indicating poor overall survival outcomes. P-value < 0.001. 
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Figure 3. Kaplan-Meier survival analysis involving prognostic metabolic genes in HCC. (A) Kaplan-Meier curve of the training set. 

(B) Kaplan-Meier curve of the testing set. P-values were < 0.05, indicating that overall survival was significantly different between patients at 
high- and low-risk. 
 

evaluated using immunohistochemical staining, was 

explored using the Human Protein Atlas (HPA), which 

showed that POLA1, ACYP1, ENTPD2 and TXNRD1 

were overexpressed in HCC (Figure 7A). UCK2 protein 

expression was not identified in HPA. However, genetic 

alterations curated in the cBioportal database 

demonstrate that UCK2 possesses the most frequent 

amplification mutation in HCC (Figure 7B). Taken 

together, aberrant expression of the five genes in HCC 

was further validated. 

 

 
 

Figure 4. Ranking of risk scores, survival status distribution, and heat map for prognosis-associated metabolic genes of patients with HCC in 

the training set (A) and testing set (B), which demonstrated that the higher the risk score, the shorter the survival time and fewer the 
surviving patients, and the expression of the five prognostic genes was upregulated in high-risk groups in both the training and testing sets. 
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Figure 5. Forrest plot of univariate and multivariate Cox regression analyses, and evaluation of receiver operating curve 
(ROC) analysis in HCC. Forrest plot of univariate Cox regression analysis of the training set (A) and training set (D). Forrest plot of 
multivariate Cox regression analysis of the training set (B) and testing set (E). ROC analysis of the training set (C) and training set (F). 
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Table 4. GO and KEGG analyses of the five metabolic genes. 

 Term P-value 

KEGG Pathway DNA replication 8.97E-03 

Pyruvate metabolism 9.71E-03 

GO-BP nucleobase metabolic process  1.50E-03 

pyrimidine nucleobase metabolic process  2.00E-03 

lagging strand elongation  2.00E-03 

pyrimidine nucleoside salvage  3.00E-03 

pyrimidine-containing compound salvage  3.00E-03 

DNA strand elongation 3.25E-03 

nucleoside salvage  3.50E-03 

pyrimidine nucleoside biosynthetic process  3.74E-03 

pyrimidine-containing compound metabolic process  3.74E-03 

nucleobase-containing small molecule catabolic process  3.74E-03 

GO-MF nucleoside kinase activity 3.50E-03 

DNA-directed DNA polymerase activity  4.99E-03 

DNA polymerase activity  5.24E-03 

nucleobase-containing compound kinase activity  7.48E-03 

 

GO and KEGG analyses of high-risk patient genes 

using GSEA 

 

To explore the potential mechanism of HCC 

pathological process, GO and KEGG analyses via 

GSEA were performed using the training set. The 

results of GO analysis demonstrated that genes of high-

risk patients were mainly enriched in gene silencing, 

regulation of gene expression epigenetic, regulation of 

cell cycle phase transition, mitotic nuclear division, and 

mRNA processing, whereas genes of low-risk patients 

were mainly enriched in monocarboxylic acid catabolic 

process, protein activation cascade, fatty acid catabolic 

process, alpha amino acid catabolic process, and 

regulation of lipoprotein lipase activity (Figure 8A). 

The results of KEGG analysis showed that genes of 

high-risk patients were mainly enriched in cell cycle, 

p53 signaling pathway, RNA degradation, pyrimidine 

metabolism, and base excision repair. Genes of low-risk 

patients were mainly enriched in fatty acid metabolism, 

primary bile acid biosynthesis, peroxisome proliferator-

activated receptor signaling pathway, retinol 

metabolism, and glycine, serine, and threonine 

metabolism. (Figure 8B). 

 

Development of a nomogram 

 

Based on these results, we developed a predictive 

model, and generated a graphical nomogram with the 

training set data. Risk scores, combined with other 

clinical information, including age, gender, tumor 

grade, TNM staging, were incorporated into the 

nomogram to predict the probability of 1-, 2- and 3-year 

survival of patients with HCC (Figure 9). The C-index 

was 0.70, 0.77, and 0.83 for the T stage, risk score, and 

nomogram, respectively. The AUC of the nomogram 

for 1-, 2-, and 3-year OS were 0.91, 0.88 and 0.89, 

respectively (Table 5). This indicated that combining 

our prognostic signature with TNM staging increased 

the AUC for predicting 1-, 2-, and 3-year OS. 

 

DISCUSSION 
 

Metabolic deregulation as an emerging cancer cell 

hallmark 

 

HCC is the most common primary liver cancer, and the 

third leading cause of cancer deaths worldwide [14]. 

Due to limited symptoms in the early stages, and 

limitation of current biomarkers, 75% of patients with 

HCC are usually diagnosed at an advanced stage, with a 

pessimistic overall survival rate [15]. Additionally, the 

treatment responses of patients in advanced stages are 

usually poor [16]. Hence, it is essential to diagnose 

HCC at the early stage, and there is an urgent need to 

develop novel diagnostic or prognostic biomarkers for 

HCC. Compelling evidence has suggested that 

metabolic deregulation is an emerging hallmark of 

cancer cells because of its important roles in cell 

growth, proliferation, angiogenesis, and invasion [17]. 

Accumulating evidence demonstrates that the metabolic 

alterations in neoplastic cells are closely related to 

mortality risk in cancer [18, 19]. Based on this, we 
screened five novel prognosis-related metabolic genes, 

and constructed an overall survival predictive model 

using data of patients with HCC from TCGA database. 
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Figure 6. mRNA expression of the five prognosis-related metabolic genes in cancers. Data are from the TIMER database 
(https://cistrome.shinyapps.io/timer/) [50]. The expression of POLA1, UCK2, ACYP1, ENTPD2 and TXNRD1 was significantly upregulated at the 
mRNA level in HCC. 

https://cistrome.shinyapps.io/timer/
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Univariate and multivariate Cox regression analyses 

suggested that the prognostic capacity of the five 

metabolic genes was independent of other clinical data. 

Kaplan-Meier analysis and the AUC in the ROC curve 

demonstrated effective stratification of low- and high-

risk patients according to different overall survival 

results, suggesting robust prognostic value involving 

these metabolism-related genes. 

 

Genetic testing of prognosis-related genes is more 

accurate, convenient, and affordable for cancer 

diagnosis and treatment 

 

Recent studies have shown that clinical features such as 

age, gender, tumor grade, and metastatic diagnosis are 

insufficient to accurately predict the outcome of patients 

with HCC [20]. TNM staging is still an important 

clinical method for predicting the prognosis of patients 

with HCC. In our analysis, the AUC of risk score was 

larger than TNM staging in both the training and testing 

sets. Furthermore, we developed an easy-to-use 

nomogram integrating risk score and other clinical 

information to facilitate the prediction of overall 

survival. In the current study, the combined nomogram 

for predicting 1-, 2-, and 3-year OS was superior to both 

the gene signature and TNM staging, with a higher C-

index and AUC of ROC. Moreover, we further 

compared our prognostic gene signature with other gene 

signatures. The AUC of a Long et al. (2018) [21] model 

is 0. 7674, 0.7040, 0.6919 at 1, 3 and 5-years, and the 

AUC reported in a model by Qiao et al. (2019) [22] is 

0.71, 0.69 at 3 and 5-years. ROC analysis indicated that 

 

 
 

Figure 7. Expression and genetic alterations in the five prognosis-related metabolic genes. (A) The representative protein 
expression of the four genes in HCC and normal liver tissues. Data are from the Human Protein Atlas (http://www.proteinatlas.org) [51] 
database. Data for UCK2 were not found in the database. (B) Genetic alterations to the five genes in TCGA-LIHC. Data are from the cBioportal 
for Cancer Genomics (http://www.cbioportal.org/) [52, 53]. 

http://www.proteinatlas.org/
http://www.cbioportal.org/
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our model had better performance, where the AUC for  

1-, 2-, 3-years was 0.8, 0.78 and 0.75, respectively. The 

prognostic model in this study substantially improved 

the accuracy of HCC diagnosis, thereby providing a 

reliable basis for formulating a reasonable treatment 

plan. Recently, gene signatures based on aberrant 

mRNA have gained much attention and shown great 

potential in cancer prognosis [23, 24]. Gene combination 

testing can complete the genetic analysis of patients, and 

facilitate treatment planning accordingly, which has

 

 
 

Figure 8. GO and KEGG enrichment analyses via GSEA of the training set. (A) Top five GO terms in high- and low-risk patients.  

(B) Five representative metabolism-associated KEGG pathways in high- and low-risk patients. The curves above the abscissa represent GO 
terms and KEGG pathways enriched by genes in high-risk patients. 
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promoted the realization of individualized treatment 

[25]. Additionally, as could be easily acquired using 

mRNA of merely five genes, such signatures could be a 

cost-effective complement to expensive metabolic 

imaging such as (18)F-fluorodeoxyglucose-positron 

emission tomography to reflect metabolic activity in 

HCC [26, 27]. Therefore, carrying out genetic testing 

can be more advantageous, providing guidance to 

improve cancer treatment efficiency. 

 

Prognosis-related metabolic genes, and GO and 

KEGG enrichment analyses lay down the groundwork 

for future therapeutic approaches 

 

GSEA results demonstrated that the functions and 

pathways of upregulated genes of patients at a high-risk 

of HCC were mainly focused on the regulation of 

nucleic acid metabolism, as well as fatty acid 

metabolism. A total of five prognosis-associated 

metabolic genes were included in the LASSO Cox 

regression model, including POLA1, UCK2, ACYP1, 
ENTPD2 and TXNRD1. Furthermore, functions and 

pathways related to these genes echoed the results of 

GSEA: Nucleotide metabolism and POLA1, UCK2, 
ENTPD2 and TXNRD1: Unrestricted cell proliferation is 

a characteristic typical of cancer. Purine and pyrimidine 

are the basic components of nucleotides in cell 

proliferation; therefore, impaired purine and pyrimidine 

metabolism is associated with the cancer progression 

[28]. POLA1 encodes DNA polymerase α, the enzyme 

responsible for initiating DNA synthesis during  

the S phase of the cell cycle [29]. The encoded  

protein of UCK2 catalyzes phosphorylation of uridine 

and cytidine to uridine monophosphate (UMP) and 

cytidine monophosphate (CMP), respectively [30]. 

Ectonucleoside triphosphate diphosphohydrolase 2 

(ENTPD2) is related to pathways involved in ATP/ITP 

metabolism, and metabolism of nucleotides [31]. 

Pathway that related to TXNRD1 is gene expression 

[32]. Many researchers have shown that these genes 

promote HCC cell migration and invasion, are 

associated with poor patient survival, and might 

represent novel potential targets in HCC therapy [33–

42]. Fatty acid metabolism and ACYP1: Cancer cells 

must rewire cellular metabolism to satisfy the demands 

of growth and proliferation. In addition to the indefinite

 

 
 

Figure 9. Nomogram for predicting the survival of patients with HCC. A straight line was drawn up to the axis labeled Points to 

determine the corresponding points. This process was repeated for each of the remaining axes, drawing a straight line each time to the 
Points axis. The points received for each predictive variable were added and this number was located on the Total Points axis. A straight line 
was drawn down from the Total Points to the 1-, 2- and 3-year survival axes to determine the predicted survival probabilities of patients. 



www.aging-us.com 22211 AGING 

Table 5. Comparison of the nomogram with the TNM and risk score. 

Model T N M risk score Nomogram 

1-year AUC 0.77 0.49 0.51 0.80 0.91 

2-year AUC 0.71 0.49 0.51 0.78 0.88 

3-year AUC 0.75 0.49 0.52 0.75 0.89 

C-index 0.70 0.51 0.50 0.77 0.83 

 

proliferation of tumor cells, the expression of metabolic 

enzymes may also be regulated by increases in gene 

copy number in cancer cells [43]. The overexpression of 

ACYP1, which is involved in lipid metabolism, is 

associated with unfavorable prognoses in patients with 

HCC [44]. With the development of gene therapy, it is 

also a beneficial to adopt genetic inhibition of these 

metabolic genes to prevent the proliferation of HCC 

cells and induce apoptosis in vitro. 

 

External information from online databases validated 

that the expression of these five prognosis-related 

metabolic genes is upregulated at the DNA, mRNA and 

protein levels, which is consistent with our analyses. In 

future, further experiments will be performed to explore 

the roles of these five metabolic genes as a whole in the 

pathogenesis, prognosis, and treatment of HCC. 

 

CONCLUSIONS 
 

Taken together, our results have identified five 

prognosis-related metabolic genes useful for predicting 

survival outcomes in HCC, based on TCGA data, which 

reflected that these genes might be involved in 

dysregulation of the metabolic microenvironment, and 

might be treated as novel biomarkers for metabolic 

therapy in HCC patients. 

 

MATERIALS AND METHODS 
 

Downloading mRNA expression profiles and clinical 

information 

 

RNA sequencing data of HTSeq-FPKM and relevant 

clinical information of our HCC cohort were 

downloaded from TCGA database (https://portal.gdc. 

cancer.gov/). Next, the entire TCGA-HCC data set was 

randomly divided into a training set and a testing set, 

both of which had similar clinical characteristics (Table 

1).  
 

Extraction of metabolic genes from the TCGA-HCC 

database 
 

The file c2.cp.kegg.v7.1.symbols.gmt was downloaded 

from the GSEA website (http://software.broadinstitute. 

org/gsea/index.jsp). The metabolic genes were obtained 

from METABOLISM pathways in c2.cp.kegg.v7.1. 

symbols.gmt. Then the mRNA expression of metabolic 

genes in the TCGA-HCC database was extracted. 

 

Identification of differentially expressed metabolic 

genes in the training set 

 

The R package “limma” was used to screen the 

differentially expressed metabolic genes [45]. The 

expression of candidate metabolic genes in the training 

set was used to identify differentially expressed 

metabolic genes. The screening criteria was set as 

|logFC| > 1.5, P-value < 0.05 and FDR < 0.05. 

 

Identification of prognostic associated metabolic 

genes in the training set 

 

Univariate Cox regression analysis was performed using 

the R package "survival" to determine metabolic genes 

related to prognosis in the training set. The overall 

survival outcomes of genes with hazard ratio (HR) <1 

are better, while the overall survival outcomes of genes 

with HR> 1 are worse. The statistical significance was 

based on P-value < 0.001. 

 

Construction of Lasso Cox regression model 

 

The R package “glmnet” and “survival” were used for 

the construction of Lasso Cox regression model. To 

calculate the risk score of every patient, Lasso Cox 

regression model was constructed with the prognostic 

related metabolic genes screened by univariate Cox 

regression analysis [46]. The formula of risk score was 

as follows: risk score = the sum of each coefficient of 

mRNA multiple each expression of mRNA. Patients 

were divided into high and low-risk groups based on the 

median risk score of the training set. 

 

Survival analysis based on the stratification of low 

and high-risk scores 

 

The Kaplan-Meier method was used for survival 

analysis, and log-rank test was used to evaluate the 

overall survival difference between high and low-risk 

groups. The R package “survival” and “survminer” 

were used to perform survival analysis. Risk score 

curves were generated according to the risk score of 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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each patient. In order to validate the survival analysis of 

the training set, the Kaplan-Meier method was 

performed on the testing set to evaluate the overall 

survival difference between high and low-risk groups. 

 

Validation of risk score via univariate and 

multivariate Cox analysis 

 

Clinicopathological characteristics and risk scores were 

included in univariate and multivariate Cox regression 

analyses to validate whether the risk score could be 

regarded as an independent risk factor to predict overall 

survival outcome. This factor can be used as 

independent risk factor when P-values < 0.05. 

 

Validation of risk score by drawing receiver 

operating characteristic curve 

 

R package “survivalROC” was used to draw receiver 

operating characteristic curve (ROC curve). The 

robustness of risk score for overall survival prediction 

model was evaluated by comparing the area under the 

curve (AUC) in the ROC curves of clinicopathological 

characteristics and risk score. 

 

GO analysis 

 

GO analysis can be divided into three parts: molecular 

function, biological process, and cellular component, 

which respectively describe the molecular functions of 

potential gene products, the biological processes 

involved, and the cellular environment in which they 

are located. Enrichment analysis was performed via 

David v.6.8 (https://david.ncifcrf.gov/) database [47, 

48]. David v.6.8 for annotation, visualization, and 

integrated discovery provides a comprehensive set of 

functional annotation tools to understand the biological 

meaning behind long lists of genes. 

 

Pathway analysis 

 

The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis of prognostic genes can 

enrich the significant pathways and help to find the 

biological regulatory pathways for significant 

differences in experimental conditions. The David 6.8 

(https://david.ncifcrf.gov/) database also can be used for 

the enrichment of pathway. 

 

External validation of the prognostic genes 

expression using online database 

 

The expression of the prognostic genes in the gene 
signature was further validated at the DNA level in  

the cBioportal database (http://www.cbioportal.org/),  

at the mRNA level in the TIMER database 

(https://cistrome.shinyapps.io/timer/), and at the protein 

level in the Human Protein Atlas database 

(https://www.proteinatlas.org/). 

 

GO and KEGG analyses by GSEA 

 

GSEA v4.0.3 for Windows, c5.bp.v7.1.symbols.gmt and 

c2.cp.kegg.v7.1.symbols.gmt were downloaded from the 

GSEA website (http://software.broadinstitute.org/gsea/ 

index.jsp). GSEA software (version 4.0.3) was used to 

perform GO and KEGG analyses [49]. The gene sets 

databases c5.bp.v7.1.symbols.gmt and c2.cp.kegg.v7.1. 

symbols.gmt were selected as GO and KEGG GMT 

files, respectively. CLS file was prepared according  

to the high and low-risk groups based on the median 

risk score of training set. GCT file was prepared  

with the mRNA expression matrix of HCC downloaded 

from the TCGA database. And permutations was set  

as 1000. 

 

Development of risk prediction model 

 

According to training set data, we developed a 

nomogram combing risk scores with clinical 

information for prediction of overall survival at 1, 2 and 

3 years for patients with HCC. The R package “rms” 

was used to produce the nomogram. The concordance 

index (C-index) were used to investigate the 

discrimination of the nomogram (by a bootstrap method 

with 1,000 resamples). Tumor-node metastasis (TNM) 

staging, risk score, and the combined model including 

TNM and the risk score were compared with time-

dependent receiver operating characteristic curve (time-

ROC curve), C-index. 

 

Statistical methods 

 

Independent sample t-test and nonparametric independent 

sample test were performed on the clinical data of  

the training set and testing set, to evaluate statistical 

difference of clinical data between the two groups. 

Survival analysis was performed using Kaplan-Meier 

method, and log-rank test was used to evaluate the 

overall survival difference between high and low-risk 

groups. Univariate and multivariate Cox regression 

analyses were implemented to examine whether the 

prognostic value of metabolic genes signature was 

independent. To assess the prognostic performance of 

the metabolic genes risk score signature, we conducted 

receiver operating characteristic (ROC) analyses. 
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SUPPLEMENTARY MATERIALS 
 

METHODS 
 

Downloading mRNA expression profiles and clinical 

information 

 

We downloaded 387 cases from the GEO database and 

obtained the gene expression matrix of the GSE10143 

series. The cases of non-hepatocellular carcinoma were 

deleted and there were 80 cases of hepatocellular 

carcinoma. The mRNA expression profiles and clinical 

information of the 80 cases were obtained.  

 

RESULTS 
 

Validation of training set survival analysis by 

utilizing data from the GEO database 

 

Data from the GEO database (GSE10143) showed that 

high-risk group had a worse overall survival outcome 

by Kaplan-Meier analysis (Supplementary Figure 1). 

The P-values were < 0.05, which validated the 

effectiveness of the risk score in survival analysis based 

on the lasso Cox regression model. 

 

Validation of risk score, survival status distribution 

and heatmap of the training set by utilizing data 

from the GEO database 

 

Every patient was ranked based on the risk score (top of 

Supplementary Figure 2). The risk score was elevated 

from left to right. The distribution of the survival status 

of each patient demonstrated that the higher the risk 

score, the shorter the survival time and the fewer alive 

patients in GSE10143 dataset (middle of Supplementary 

Figure 2). The heatmaps showed that the expression of 

the five prognostic genes was up-regulated in high-risk 

groups in GSE10143 dataset (bottom of Supplementary 

Figure 2). 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Survival analysis by Kaplan-Meier method of the prognostic metabolic genes in HCC. The P-values 

were < 0.05, indicating the overall survival was significantly different between patients with high-risk and low-risk. 
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Supplementary Figure 2. The ranking of risk score, survival status distribution and heatmap for prognostic associated 
metabolic genes of patients with HCC in GSE10143 dataset, which demonstrated that the higher the risk score, the shorter 
the survival time and the fewer alive patients. 


