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INTRODUCTION 
 

Renal cell carcinoma (RCC), one of the most common 

urinary system tumors, accounts for approximately 3% 

of all adult cancers and is responsible for more than 

400,000 new diagnoses and 140,000 cancer-related 

deaths annually worldwide [1]. Kidney renal clear cell 

carcinoma (KIRC), the most common pathological 

subtype of RCC, is associated with high mortality rates 

and poor prognosis because of its aggressive growth and 

high metastasis rates [2]. Because KIRC patients 

usually not do not respond to traditional radiotherapy or 

chemotherapy, surgery remains the most effective 

method for managing KIRC at present [3]. However, 
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ABSTRACT 
 

Dysregulated expression of RNA-binding proteins (RBPs) is strongly associated with the development and 
progression of multiple tumors. However, little is known about the role of RBPs in kidney renal clear cell 
carcinoma (KIRC). In this study, we examined RBP expression profiles using The Cancer Genome Atlas database 
and identified 133 RBPs that were differentially expressed in KIRC and non-tumor tissues. We then 
systematically analyzed the potential biological functions of these RBPs and established PPIs. Based on Lasso 
regression and Cox survival analyses, we constructed a risk model that could independently and accurately 
predict prognosis based on seven RBPs (NOL12, PABPC1L, RNASE2, RPL22L1, RBM47, OASL, and YBX3). Survival 
times were shorter in patients with high risk scores for cohorts stratified by different characteristics. Gene set 
enrichment analysis was also performed to further understand functional differences between high- and low-
risk groups. Finally, we developed a clinical nomogram with a concordance index of 0.792 for estimating 3- and 
5-year survival probabilities. Our results demonstrate that this risk model could potentially improve 
individualized diagnostic and therapeutic strategies. 
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20% to 30% of patients who undergo initial curative 

nephrectomy subsequently experience local or distant 

recurrence within five years [4]. While recurrence and 

metastasis of KIRC are associated with poor prognosis, 

promising new diagnostic tools and molecular-targeting 

agents have been developed over the past few decades 

[5]. KIRC is diagnosed primarily based on radiological 

examination and, when necessary, renal biopsy, but it is 

difficult to meet clinical requirements and achieve early 

detection with only these methods [6]. Novel effective 

biomarkers for early screening and diagnosis are 

therefore needed to improve therapeutic efficacy and 

patient quality of life. 

 

While regulation of gene expression plays a crucial role 

in various biological processes, the impact of post-

transcriptional gene regulation has attracted con-

siderable attention recently [7]. For example, RNA-

binding proteins (RBPs) regulate gene expression post-

transcriptionally primarily by binding to RNA and 

forming ribonucleoprotein complexes [8]. RBPs are 

expressed in almost all cells, and more than 1,500 RBP 

genes accounting for about 7.5% of all protein-coding 

genes have been identified by high-throughput 

screening of the human genome [9]. Several possible 

functions have been proposed for RBPs, including RNA 

splicing, processing, transport, stability, localization, 

and degradation [10]. In addition, alterations in RBPs 

are strongly implicated in several human diseases. 

However, the precise roles RBPs play in tumor 

development and progression remain largely unknown. 

 

In recent years, an increasing number of studies indicate 

that the expression of many RBPs is not only 

dysregulated in tumors compared to corresponding 

normal tissues, but is also closely related to tumor 

development and patient prognosis [11–13]. For 

example, MSI2 influenced breast cancer cell growth by 

binding to specific sites in ESR1 RNA and by 

increasing ESR1 protein stability [14]. Functional 

genomics analyses of RBPs identified the splicing 

regulator SNRPB as an oncogenic candidate in 

glioblastoma [15]. Yan et al. reported that KHSRP 

promoted tumor growth and metastasis in non-small cell 

lung cancer. Knockdown of KHSRP significantly 

reduced lung cancer cell proliferation, migration, and 

invasion in vitro and in vivo, and survival analysis 

showed that patients with high KHSRP expression 

levels had poor prognoses [16]. Although RBPs that 

may act as key regulators of tumor progression have 

been identified, only a small fraction of all human RBPs 

have been investigated in depth thus far. A systematic 

and comprehensive analysis of RBPs would not only 

provide new insights into the molecular mechanisms of 

tumor progression, but might also help identify 

innovative drug targets. 

In this study, we identified multiple differentially 

expressed RBPs associated with KIRC using high-

throughput bioinformatics analysis of data obtained 

from The Cancer Genome Atlas (TCGA). Subsequently, 

we evaluated relationships between expression profiles 

of differentially expressed RBPs and KIRC patient 

prognosis and constructed a risk model that served as an 

independent factor for predicting KIRC prognosis. 

Based on risk scores calculated using the model, we 

then established a nomogram for use as quantitative tool 

that could help physicians predict clinical outcomes and 

provide personalized treatments. Our results 

demonstrate that this risk model may serve as a 

promising prognostic indicator in KIRC patients. 

 

RESULTS 
 

Identification of differentially expressed RBPs in 

KIRC patients 
 

RNA-seq and clinical data from 539 tumor and 72 

normal samples were downloaded from TCGA 

database. A total of 1542 RBPs were included in the 

present study. Of these, 133 RBPs with |log2FC| > 1.0 

and FDR < 0.05 were considered differentially 

expressed genes; 98 were upregulated and 35 were 

downregulated. A heatmap and volcano plot showing 

expression distributions of these differently expressed 

RBPs are shown in Figure 1A, 1B. 

 

GO and KEGG pathway enrichment analysis of 

differentially expressed RBPs 
 

To comprehensively understand the potential functions 

and molecular mechanisms of these RBPs, we carried 

out GO and KEGG pathway analysis both for all of the 

differentially expressed RBPs together and after 

separating them into upregulated and downregulated 

RBP groups. Regarding biological processes (BP), total 

differentially expressed RBPs were mostly enriched in 

RNA catabolic process, RNA splicing, mRNA catabolic 

process, nuclear-transcribed mRNA catabolic process, 

and SRP-dependent co-translational protein targeting to 

the membrane (Figure 1C). In addition, upregulated 

differentially expressed RBPs were significantly 

enriched in RNA catabolic process and both 

SRP−dependent and general co-translational protein 

targeting to the membrane, while downregulated RBPs 

were mostly enriched in regulation of mRNA metabolic 

process, regulation of RNA splicing, and RNA splicing 

(Table 1). Regarding cellular components (CC), the 

upregulated differentially expressed RBPs were 

significantly enriched in cytosolic ribosome, ribosomal 

subunit, and cytosolic large ribosomal subunit, while 

the downregulated RBPs were notably enriched in 

mitochondrial matrix, cytoplasmic ribonucleoprotein 
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granule, and ribonucleoprotein granule (Table 1). In the 

molecular function (MF) category, the upregulated 

differentially expressed RBPs were associated with 

catalytic activity acting on RNA, structural constituent 

of ribosome, and nuclease activity, while the 

downregulated RBPs were enriched in mRNA 3'−UTR 

binding, translation regulator activity, and poly(U) RNA 

binding (Table 1). 

KEGG pathway enrichment analysis revealed that all 

differentially expressed RBPs were significantly 

associated with ribosome, mRNA surveillance pathway, 

RNA transport, and influenza A (Figure 1D). More 

importantly, although upregulated differentially expressed 

RBPs were also mainly enriched in ribosome, RNA 

transport, and influenza A (Table 1), no significant 

enrichments were identified for downregulated RBPs. 

 

 

 

Figure 1. Differentially expressed RBPs in kidney renal clear cell carcinoma and functional enrichments. (A) Heatmaps of the 
differently expressed RBPs. Red and blue colors indicate higher and lower gene expression values, respectively. T indicates tumor tissues and 
N indicates non-tumor tissues. (B) Volcano plot of the differentially expressed RBPs. Red and blue colors indicate upregulated and 
downregulated RBPs, respectively. (C) Circos plot demonstrating relationships between selected GO-BP terms and associated RBPs. (D) Circos 
plot demonstrating relationships between selected KEGG terms and associated RBPs. Symbols for differentially expressed RBPs are shown on 
the left side of the graph. RBPs are ordered based on their logFC values. Relationships between RBPs and terms are indicated by colored 
connecting lines. 
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Table 1. GO and KEGG enrichment analysis of aberrantly expressed RBPs. 

 Term P value  

Up-regulated RBPs   

Biological processes RNA catabolic process 4.21E-24 

 cotranslational protein targeting to membrane  3.07E-18 

 SRP−dependent cotranslational protein targeting to membrane 1.71E-18 

Cellular component cytosolic ribosome 2.28E-21 

 ribosomal subunit 2.35E-17 

 cytosolic large ribosomal subunit 1.27E-16 

Molecular function catalytic activity acting on RNA 6.64E-16 

 structural constituent of ribosome 3.87E-16 

 nuclease activity 7.75E-10 

KEGG pathway ribosome 4.39E-16 

 mRNA surveillance pathway < 0.05 

 influenza A < 0.05 

Down-regulated RBPs   

Biological processes regulation of mRNA metabolic process 3.42E-09 

 regulation of RNA splicing 1.21E-07 

 RNA splicing 1.19E-06 

Cellular component mitochondrial matrix < 0.01 

 cytoplasmic ribonucleoprotein granule < 0.001 

 ribonucleoprotein granule < 0.001 

Molecular function mRNA 3'−UTR binding 6.82E-07 

 translation regulator activity < 0.001 

 poly(U) RNA binding 2.32E-05 

 

PPI network construction and key module analysis 
 

Next, we further explored the effects of the 133 

differentially expressed RBPs in KIRC using a PPI 

network. Interaction relationship data for the RBPs were 

downloaded from the STRING tool and imported into 

Cytoscape for visualization. The PPI network consisted 

of 108 nodes and 463 edges (Figure 2A). We then 

analyzed the co-expression network further to identify 

possible key modules using the MODE plugin and 

identified the three most significant modules (Figure 

2B). GO-BP enrichment analysis revealed that the RBPs 

from module 1 were highly associated with SRP-

dependent co-translational protein targeting to the 

membrane, co-translational protein targeting to the 

membrane, and protein targeting to the ER. The RBPs 

in module 2 were mainly enriched in DNA methylation 

involved in gamete generation, DNA alkylation, and 

DNA methylation. The RBPs in module 3 were mainly 

enriched in regulation of RNA splicing, RNA splicing, 

and alternative mRNA splicing via the spliceosome 

(Figure 2C). 

 

Identification of prognostic RBPs and construction 

of the prognostic risk model 

 

The PPI network was used to identify 108 key 

differentially expressed RBPs. A univariate Cox 

regression analysis of their prognostic value identified 

56 prognosis-related candidate RBPs (P < 0.05). We 

then performed LASSO regression analysis to identify 

RBPs with the highest potential prognostic significance. 

Ultimately, 7 target RBPs were retained and used to 

construct a predictive model (Figure 3A, 3B). Among 

these 7 RBPs, NOL12, PABPC1L, RNASE2, 

RPL22L1, OASL, and YBX3 were risk genes; only 

RBM47 was not a risk gene. 

 

We then used expression levels of the 7 target RBPs and 

the regression coefficients determined above to 
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calculate a risk score for each patient. Risk scores were 

calculated using the following equation: Risk score = 

(0.2072 * NOL12) + (0.0103 * PABPC1L) + (0.0433 * 

RNASE2) + (0.0121 * RPL22L1) + (-0.0060 * RBM47) 

+ (0.0032 * OASL) + (0.0003 * YBX3). Data from 

KIRC patients in the TCGA dataset were dichotomized 

into high- and low-risk groups using the median risk 

score as a cutoff. As shown in Figure 3C, OS was lower 

in the high-risk group than in the low-risk group. 

Furthermore, the AUC of the ROC curve generated to 

evaluate the prognostic ability of the model was 0.74, 

suggesting that the seven-RBP model had moderate 

diagnostic performance (Figure 3D). Next, we ranked 

patients according to their risk scores (Figure 3E) and 

analyzed the survival status of each patient on a dot 

plot. The results revealed that survival rates and times 

were higher for patients in the low-risk group than for 

those in the high-risk group (Figure 3F). Expression 

levels of the seven target RBPs in the high- and low-risk 

groups are shown in Figure 3G. Expression of NOL12, 

PABPC1L, RNASE2, RPL22L1, OASL, and YBX3 

was significantly higher, while RBM47 expression was 

significantly lower, in the high-risk group than in the 

low-risk group. Tumor grade, AJCC stage, T stage,  

M stage, and survival status also differed significantly 

between the high- and low-risk groups (all P < 0.001). 

 

Independent prognostic analysis of the risk model 
 

To determine whether the risk score was an independent 

prognostic factor, we performed univariate and 

multivariate Cox regression analyses of TCGA data. 

The univariate analysis showed that age, grade, AJCC 

stage, and risk score were significantly correlated with 

OS in KIRC patients (Figure 3H). Furthermore, 

multivariate analysis indicated that age, grade, AJCC 

stage, and risk score were all independent prognostic 

factors for OS (Figure 3I). Collectively, these analyses 

demonstrated that the risk score based on seven RBPs 

might serve as an independent prognostic factor for 

KIRC patient survival. 

 

Correlations between the prognostic model and 

clinical parameters 
 

To further explore the prognostic value of the risk 

model, we analyzed relationships between the risk score 

and various clinical parameters (Figure 4). The results 

 

 
 

Figure 2. Protein-protein interaction (PPI) network construction and modules analysis. (A) PPI network of differentially expressed 

RBPs. (B) The top three significant modules from the PPI network. Red circles indicate upregulated RBPs and green circles indicate 
downregulated RBPs. (C) GO-BP enrichment analysis of the top three significant modules. 
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indicated that risk score was significantly associated 

with grade, AJCC stage, T stage, and M stage; the 

higher the risk score, the greater the probability of 

progression to advanced tumors. However, risk scores 

were not associated with age or gender. 

 

To explore the wider applicability of this risk model, all 

KIRC patients were classified into several stratified 

cohorts according to different clinicopathological 

parameters. Kaplan–Meier survival curves showed that 

patients in the high-risk group had significantly poorer 

OS than those in the low-risk group in all subgroups 

(Figure 5). 

 

Additionally, to better assess the functions of the seven 

RBPs included in the model in disease progression, we 

also analyzed correlations between the expression of 

each RBP and clinicopathological features (Table 2). 

The results indicated that, as NOL12, PABPC1L, 

RNASE2, RPL22L1, and OASL expression increased, 

tumor grade, AJCC stage, T stage, and M stage in KIRC 

patients increased. In addition, as YBX3 expression, 

 

 
 

Figure 3. Construction and validation of prognostic risk score for KIRC patients. (A, B) Selection process for target RBPs using LASSO 

Cox regression analysis. (C) Kaplan-Meier curve showing that OS is significantly shorter for patients in the high-risk group than those in the 
low-risk subgroup. (D) ROC curve analysis showing the veracity and reliability of the prognostic model. (E) Risk score distributions. (F) Scatter 
plot showing the distribution of survival status and survival time. (G) Grade, AJCC stage, T stage, M stage, and survival status differ 
significantly between the high- and low-risk groups. Univariate (H) and multivariate (I) Cox regression analysis of associations between clinical 
parameters (including risk score) and overall survival of KIPC patients. 
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Figure 4. Relationships between risk score and various clinical parameters. Risk scores in cohorts stratified by age (A), gender (B), 

grade (C), AJCC stage (D), T stage (E), and M stage (F). Risk score is significantly associated with grade, AJCC stage, T stage, and M stage, but 
not with age or gender. 

 

 
 

Figure 5. Survival differences between high- and low-risk KIRC patients stratified by clinical factors. Differences in overall 

survival in patients stratified by grade (A, B), AJCC stage (C, D), T stage (E, F), and M stage (G, H). Kaplan–Meier survival curves show that 
patients in the high-risk group have significantly poorer OS than those in the low-risk group in all subgroups. 
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Table 2. Correlation analysis between seven RBPs and clinical variables for KIRP. 

Variables 
Age (≤65, 

>65) t(p) 

Gender (Female, 

Male) t(p) 

Grade (1/2, 

3/4) t(p) 

AJCC Stage (I/II, 

III/IV) t(p) 

T Stage (1/2, 

3/4) t(p) 

M Stage (1/2, 

3/4) t(p) 

NOL12 -0.008 1.122 -2.468* -3.748*** -3.519*** -2.076* 

PABPC1L -0.845 1.336 -3.875*** -3.718*** -3.407*** -2.388* 

RNASE2 -0.627 -1.463 -4.234*** -3.677*** -3.441*** -2.407* 

RPL22L1 -0.380 -1.060 -4.676*** -4.929*** -4.034*** -3.701*** 

RBM47 -0.137 2.545* 3.009** 3.944*** 3.974*** 1.748 

OASL -1.967 -0.732 -5.065*** -5.583*** -4.437*** -4.451*** 

YBX3 -1.046 -2.548* -1.149 -4.628*** -4.323*** -2.362* 

t: t value from Student’s t test; p: p‐value from Student’s t test.  
* p< 0.05; ** p< 0.01; *** p< 0.001. 
 

which was higher in males than in females, increased, 

AJCC stage, T stage, and M stage in KIRC patients also 

increased. In contrast, as RBM47 expression, which was 

higher in females than in males, increased, tumor grade, 

AJCC stage, and T stage in KIRC patients decreased. 

Consistent with these findings, NOL12, PABPC1L, 

RNASE2, RPL22L1, OASL, and YBX3 contributed to 

tumor progression, while RBM47 exerted protective 

effects against disease progression. 

 

Building a predictive, risk score-based nomogram 

 

In order to develop a quantitative method for 

predicting prognosis in KIRC patients, we constructed 

a nomogram that integrated risk score and the 

independent predictors identified above (age, grade, 

and AJCC stage). Each variable was assigned a score; 

the scores of the four variables were then added, and a 

vertical line was drawn from the total score to the 

nomogram points scale to determine estimated 3-year 

and 5-year survival rates (Figure 6A). The C-index 

value of the prediction nomogram was 0.792 for the 

KIRC cohort, indicating that it had good 

discrimination capability. The calibration curves 

indicated that the nomogram predictions were very 

consistent with actual observations for 3- and 5-year 

OS in the TCGA-KIRC cohort, suggesting that  

the nomogram was reliable (Figure 6B, 6C). 

Additionally, DCA was used to evaluate the clinical 

efficiency of the predictive nomogram. The results 

showed that the nomogram could improve prognosis 

predictions for patients with a threshold probability of 

> 3% (Figure 6D). 

 

Gene set enrichment analysis (GSEA) 

 

GSEA was performed to further understand functional 

differences between the high- and low-risk groups 

identified by the prognostic model. High risk scores 

were significantly associated with homologous 

recombination (NES=1.878, P=0.000), ribosome 

(NES=1.763, P=0.000), primary immunodeficiency 

(NES=1.714, P=0.001), base excision repair 

(NES=1.669, P=0.004), and proteasome (NES=1.628, 

P=0.005) (Figure 7A). Meanwhile, low risk scores 

were closely associated with valine leucine and 

isoleucine degradation (NES=-3.3150, P=0.000), 

citrate cycle (NES=-3.262, P=0.000), propanoate 

metabolism (NES=-3.189, P=0.000), peroxisome 

(NES=-2.997, P=0.000), and butanoate metabolism 

(NES=-2.948, P=0.000) (Figure 7B). Interestingly, 

several metabolic processes were associated with the 

low-risk group; these pathways merit further 

investigation. 

 

The prognostic value of target RBPs 
 

To further explore the prognostic value of the target 

RBPs in KIRC, survival plots were used to evaluate 

relationships between RBPs and OS in the GEPIA 

database. Log-rank tests indicated that higher 

PABPC1L, RNASE2, RPL22L1, YBX3, and OSAL 

expression was associated with shorter OS. In this 

analysis, higher RBM47 expression was also 

associated with shorter OS. However, no significant 

differences in OS were observed between patients 

with high and low NOL12 expression (Figure 8A). 

Similar trends were also observed between RBPs and 

disease-free survival (DFS) in the GEPIA database. 

Log-rank tests suggested that higher RNASE2, 

RPL22L1, YBX3, and OSAL expression was 

associated with shorter DFS. Again, higher RBM47 

expression was also associated with shorter DFS. No 

significant differences in DFS were observed between 

patients with high and low NOL12 and PABPC1L 

expression (Figure 8B). 
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Validation of target RBP expression levels 

 

We used ‘DiffExp module’ from the TIMER database 

to examine the expression of the seven target RBPs in 

multiple tumors, including KIRC. Consistent with the 

above results, NOL12, PABPC1L, RNASE2, RPL22L1, 

and OSAL expression were significantly increased, 

while RBM47 expression was significantly decreased 

(Figure 9). YBX3 expression data was not available in 

the TIMER database, so it was excluded from this 

analysis. Interestingly, aberrant RBP expression was 

common in various malignancies and exhibited some 

degree of tissue specificity. For example, OASL was 

overexpressed in breast cancer and esophageal cancer, 

but reduced in colon cancer and lung cancer. 

 

The differentially expressed RBPs were further verified 

using the GSE36895 (Figure 10A) and GSE53757 

(Figure 10B) datasets, which generally yielded results 

consistent with our previous findings. However, 

PABPC1L levels did not differ between tumor  

and normal tissues in the GSE53757 dataset, perhaps 

due to differences in study populations and measure-

ment scales. 

 

Additionally, we further verified correlations between 

target RBPs and KIRC tumor grade and AJCC stage 

using the TISIDB online database. The results 

indicated that the seven target RBPs were not only 

closely associated with tumor grade, but also with 

AJCC stage (Figure 11). NOL12, PABPC1L, 

RNASE2, RPL22L1, OASL, and YBX3 expression 

were significantly positively correlated with  

tumor grade and AJCC stage, while RBM47 

expression was negatively correlated with tumor 

grade and AJCC stage. 

 

 
 

Figure 6. Clinical prognostic nomogram for predicting prognosis in TCGA KIRC cohorts. (A) The clinical nomogram developed to 

predict 3- and 5-year survival by incorporating four independent prognostic indicators, including risk score. Calibration curves showing 
nomogram predictions for 3-year (B) and 5-year (C) survival. (D) Decision curve analysis was used to estimate clinical usefulness and net 
benefit of the predictive nomogram. 
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DISCUSSION 
 

Despite recent progress in various treatment strategies, 

prognoses for many advanced stage KIRC patients 

remain dismal [17], and novel biomarkers are needed to 

improve early screening and to better monitor tumor 

progression. Many reports have confirmed that 

dysregulated RBP expression is closely related to 

development and progression of multiple tumor types 

[18, 19]. However, only a relatively small number of 

RBPs have been studied extensively enough to establish 

direct links to cancer development and progression [20]. 

 

In this study, we examined RBP expression profiles 

using data from the TCGA database and identified 

RBPs that were differentially expressed between KIRC 

and non-tumor tissues. We then systematically analyzed 

the potential biological functions of these RBPs and 

established PPIs. Using Lasso regression and Cox 

survival analyses, we constructed a risk model based on 

seven prognostic RBPs: NOL12, PABPC1L, RNASE2, 

RPL22L1, RBM47, OASL, and YBX3. Moreover, 

GSEA was used to further understand the functional 

differences associated with RBPs differentially 

expressed between high- and low-risk groups based on 

the prognostic model. Subsequently, we built a 

predictive nomogram to improve the accuracy of 3- and 

5-year OS predictions by incorporating the risk score 

and several clinical parameters. Together, our results 

demonstrated that the risk model accurately predicted 

prognoses of KIRC patients and might help improve 

diagnosis and clinical treatments. 

 

 
 

Figure 7. Gene set enrichment analysis between high- and low-risk groups based on the prognostic risk model. (A) High-risk 

group. (B) Low-risk group. 
 

 
 

Figure 8. Univariate survival analysis of the target RBPs using Kaplan-Meier curves. (A) Relationships between RBPs and OS.  

(B) Relationships between RBPs and DFS. 
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FGO and KEGG pathway analysis were performed to 

identify functional pathways in which RBPs were 

enriched. The most commonly enriched biological 

processes were RNA catabolic process, nuclear-

transcribed mRNA catabolic process, mRNA metabolic 

process, and RNA splicing, all of which are known to 

affect development and progression of various diseases 

[21–23]. In addition, cytosolic ribosomes and the 

mitochondrial matrix were the most common locations 

associated with functional enrichment. Ribosomes are 

responsible for protein synthesis, and different 

experimental models indicated ribosomal proteins may 

initiate cancer development by regulating mRNA 

translation and p53 activity [24]. Alterations in 

mitochondrial functions are also required to maintain 

tumor viability [25]. Regarding molecular functions, the 

differentially expressed RBPs were significantly 

enriched in catalytic activity acting on RNA, structural 

constituent of ribosome, nuclease activity, mRNA 

3'−UTR binding, translation regulator activity, and 

poly(U) RNA binding. In addition, KEGG pathway 

analysis indicated that these aberrantly expressed RBPs 

might affect the development and progression of KIRC 

by regulating ribosomes, the mRNA surveillance 

pathway, and RNA transport. These results suggest that 

RBPs can affect tumor cell survival and growth by 

regulating a variety of biological processes. 

 

Next, we identified a module that included 108 key 

RBPs by constructing a PPI network based on all of the 

differently expressed RBPs. Univariate Cox regression 

analysis indicated that 56 of the RBPs were 

significantly related to OS in KIRC patients. Finally, 

LASSO regression analysis was performed to identify 

the final seven target RBPs that were used to construct a 

prognostic risk model. Patients in the high-risk group 

had shorter OS than those in the low-risk group; this 

difference was also observed in other cohorts in which 

patients were stratified differently. Furthermore, as risk 

score increased, the probability of tumor progression to 

advanced stages also increased. These results suggested 

that our risk model served as an independent and 

accurate predictor of KIRC patient prognosis. A 

nomogram that incorporated the risk score and 

 

 
 

Figure 9. Verification of target RBP expression in KIRC and normal tissues using the TIMER database. (A) NOL12, (B) PABPC1L, 

(C) RNASE2, (D) RPL22L1, (E) OSAL, and (F) RBM47. 
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clinical features, specifically age, grade, and AJCC 

stage, was then built to estimate 3-year and 5-year 

survival rates of KIRC patients. C-index and calibration 

plots indicated that the nomogram was reliable had 

good discrimination capability. Moreover, GSEA 

revealed that high risk scores were associated with 

differences in homologous recombination and 

ribosome. Interestingly, patients in the low-risk  

group were significantly enriched in metabolism 

pathways, such as valine leucine and isoleucine 

degradation, propanoate metabolism, and butanoate 

metabolism. This indicates that low-risk patients might 

benefit more from metabolic therapy; future 

experiments and bioinformatics analyses should 

examine this possibility.  

Roles for most of the RBPs in our risk model have been 

reported previously in different tumors. NOL12 is a 

multifunctional RNA binding protein at the nexus of 

RNA and DNA metabolism, and NOL12 inhibition can 

contribute to stabilization and activation of p53 in an 

RPL11-dependent manner, thereby preventing the 

occurrence of cancer [26, 27]. Zhang et al. 

comprehensively analyzed RBP expression profiles and 

found that PABPC1L might promote colon cancer 

progression by regulating mRNA splicing [28]. Another 

study showed that PABPC1L depletion inhibited 

proliferation and migration by blocking the AKT 

pathway in human colorectal cancer cells [29]. 

RNASE2, a member of the mammalian ribonuclease 

gene family, might play an important role in immune 

 

 
 

Figure 10. Verification of target RBP expression in KIRC and normal tissues using the GEO database. (A) GSE36895,  

(B) GSE53757. 
 

 
 

Figure 11. Box diagrams of target RBPs across different grades and AJCC stages in the TISIDB online database. (A) Box diagram 

showing the expression level of target RBPs in different tumor grades. (B) Box diagram showing the expression level of target RBPs in 
different AJCC stages. 
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response modulation and TLR2 activation [30]. 

RNASE2 is overexpressed in some cancers, 

including acute lymphoblastic leukemia and colorectal 

cancer [31, 32]. RPL22L1 is critical in maintaining an 

aggressive phenotype in ovarian cancer and in 

triggering cell metastasis by inducing epithelial-to-

mesenchymal transition (EMT) [33]. Previous research 

indicated that OASL may be crucial for maintaining 

lung cancer cell susceptibility to Actinidia chinensis 

Planch root extract and might be associated with the 

development of drug resistance [34]. Previous evidence 

indicates that YBX3 upregulation promotes gastric 

cancer pathogenesis by increasing cell invasion and 

tumor chemoresistance [35]. As a tumor suppressor 

gene, RBM47 inhibits tumor cell growth through the 

inhibition of Nrf2 activity in lung adenocarcinoma, and 

RBM47 knockdown enhanced tumor formation and 

metastasis in a xenograft mouse model [36]. Consistent 

with our present findings, these results demonstrate that 

increased expression of these RBPs, except for RBM47, 

is significantly associated with poorer prognosis in 

KIRC patients. In addition, the seven target RBPs were 

validated using sequencing databases, including TIMER 

and GEPIA, and those results further confirmed our 

findings. 

 

The major innovation of our study centers on 

systematic analysis of a large patient cohort from the 

TCGA database, which allowed us to construct a strong 

prognostic model based on seven RBPs that might have 

significant value in clinical applications. To the best of 

our knowledge, the analysis of the correlation between 

KIRC and RBPs has not yet been investigated and the 

results from the present study may therefore be 

considered as relevant for prognosis in KIRC. 

Furthermore, our prognostic model also predicted 

survival accurately when patients were stratified into 

different cohorts based on other disease characteristics 

and might therefore help physicians make more precise 

individualized survival predictions. However, some 

limitations of our study should be noted when 

interpreting the results. First, some important clinical 

characteristics of KIRC patients, such as living 

environment, smoking history, and family history, were 

not available in the TCGA database; inclusion of these 

factors might increase the efficacy and reliability of the 

model. Second, the inherent limitations of a 

retrospective study design apply here, and prospective 

studies are needed to validate the results. Finally,  

the results of the bioinformatics analyses presented  

here should be verified with in vitro and in vivo 

experiments. 

 

In conclusion, we performed a comprehensive 

bioinformatics analysis to investigate the prognostic 

value of aberrantly expressed RBPs in KIRC patients 

based on data from TCGA. We built a prognosis risk 

model containing seven target RBPs that could 

independently and accurately predict the survival of 

KIRC patients. Expression of these RBPs may be 

closely correlated with clinicopathological charac-

teristics of KIRC. A prognostic nomogram that 

generates individualized survival predictions was also 

constructed by combining the prognosis model-based 

risk score and clinical parameters; this might be 

particularly helpful in guiding clinical decisions. This 

model might therefore help identify novel prognostic 

markers and potential therapeutic targets for KIRC 

patients. 

 

MATERIALS AND METHODS 
 

Data acquisition and identification of differentially 

expressed RBPs 

 

RNA sequencing transcriptome data for 539 KIRC 

samples and 72 normal samples with corresponding 

clinical information were downloaded from the TCGA 

(The Cancer Genome Atlas, https://cancergenome. 

nih.gov/) database. Patients with incomplete data or 

survival times of less than 30 days were excluded. The 

list of RNA binding proteins (RBPs) used in this study 

was retrieved from a recent study by Gerstberger et al. 

[9]. Differential expression analysis was performed  

on raw counts using the Limma package 

(http://www.bioconductor.org/packages/release/bioc/ht

ml/limma.html), and genes with an average count value 

greater than 0 were examined in subsequent analysis. 

We used the Limma package to identify RBPs that were 

differentially expressed between cancer samples and 

normal control samples. A false discovery rate (FDR)  

< 0.05 and |log2 fold change (FC)| > 1.0 were chosen as 

threshold values. Ethical approval and informed consent 

requirements were waived because the data were 

obtained from public databases. 
 

Functional enrichment of differentially expressed 

RBPs 
 

Gene ontology (GO) enrichment analysis was carried 

out to comprehensively explore the biological functions 

of the differentially expressed RBPs. GO terms were 

divided into three broad categories: biological process 

(BP), cellular component (CC), and molecular function 

(MF). Biological pathways associated with the 

differentially expressed RBPs were analyzed using the 

Kyoto Encyclopedia of Genes and Genomes database 

(KEGG). All enrichment analyses were conducted in R 

software (version 3.6.2) using the ‘ClusterProfiler,’ 

‘ggplot2,’and ‘GOplot’ functions to visualize the 

results. A P-value of less than 0.05 was considered 

significant. 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
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Protein–protein interaction (PPI) network and key 

modules analysis 
 

The STRING database (http://string-db.org) was used to 

analyze protein-protein interactions (PPI) among the 

differentially expressed RBPs. Analyzing functional 

interactions between proteins can provide new insights 

into their functions and contribute to the discovery of 

functional connections between proteins at the genome-

wide level. Data obtained from the STRING database 

were imported into Cytoscape (http://cytoscape.org/) 

software for network visualization. In addition, 

Molecular Complex Detection (MCODE), a plugin for 

Cytoscape, was used to screen significant functional 

modules of the PPI network using score and number of 

nodes > 2 as thresholds. 

 

Construction and evaluation of the prognostic model 

 

Univariate Cox analysis was performed to evaluate 

associations between expression levels of key RBPs and 

overall survival (OS) for the TCGA KIRC cohort using 

the R ‘survival’ package. RBPs with P-value less than 

0.05 in the univariate analysis were considered 

significantly correlated with OS. Hazard risk (HR) was 

calculated to identify risk-increasing genes (HR > 1) 

and protective genes (HR < 1). Least absolute shrinkage 

and selection operator (LASSO) analysis, a robust 

model-building method that prevents over-fitting, was 

used to further narrow the range of genes and obtain an 

optimal predictive model. Surviving target genes were 

used to construct the prognostic model. A risk score was 

calculated for each patient based on a linear 

combination of each target gene expression level 

weighted by the regression coefficient derived from 

LASSO analysis. 

 

All KIRC patients were dichotomized into high-risk and 

low-risk groups based on the median risk score. A 

survival curve was plotted to determine survival rate 

using the Kaplan-Meier method, and differences in OS 

between high- and low-risk groups were compared 

using the log-rank test. Generally, patients with higher 

risk scores were expected to have a shorter OS. 

Additionally, the receiver operating characteristic 

(ROC) curve and area under the ROC curve (AUC 

value) were calculated to evaluate the diagnostic 

performance of the prognostic model. Distributions of 

clinical variables between high- and low-risk groups 

were compared using a chi-squared test. 

 

Univariate Cox regression survival analysis was used to 

evaluate the prognostic value of risk score and various 

clinical parameters including age, gender, tumor grade, 

and AJCC stage. To further validate whether the risk 

score could serve as an independent prognostic factor 

for KIRC patients, multivariate Cox regression analysis 

was then performed. A Kruskal-Wallis test was applied 

to compare risk score values of different subgroups in 

order to better understand the prognostic value of the 

constructed model. We also analyzed correlations 

between expression levels of the individual RBPs in the 

model and the clinicopathological features to better 

assess the functions of the seven RBPs in disease 

progression. 

 

Development of a predictive nomogram 

 

Nomograms are important in the modern medical 

decision-making process because they can help predict 

the probability of a clinical event by integrating diverse 

prognostic and determinant variables [37]. Each 

independent prognostic factor identified above was 

therefore included in the predictive nomogram 

developed here. Concordance index (C-index) and 

calibration curves were then used to evaluate its 

discriminatory capacity and predictive accuracy, 

respectively. Decision curve analysis (DCA) was 

conducted to estimate the clinical usefulness and net 

benefit of the predictive nomogram. 

 

Gene set enrichment analysis (GSEA) 

 

To explore KEGG pathways associated with the 

prognostic model, Gene Set Enrichment Analysis 

(GSEA) was used to identify enriched terms in the high- 

and low-risk groups of the TCGA KIRC cohort. GSEA 

was performed on these pre-ranked genes using GSEA 

software (http://www.broadinstitute.org/gsea) using 

1,000 permutations and gene set sizes between 15 

and 500. A nominal P value < 0.05 and FDR value  

< 0.25 were considered statistically significant. 

 

Validation of target RBPs 
 

A good model would not only predict oncologic 

outcome for KIRC patients, but also improve diagnostic 

accuracy in differentiating benign from malignant 

masses. Differences in expression levels of the 

prognostic genes in the model between tumor and 

normal tissues were therefore further validated at the 

translational level using the Tumor Immune Estimation 

Resource (TIMER, https://cistrome.shinyapps.io/timer/) 

database. The identified differences in RBP expression 

were then verified in two independent cohorts 

(GSE36895 and GSE53757) downloaded from  

Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/). 

 

Overall survival analysis and disease-free survival 

analysis were performed to explore the potential 

prognostic value of each target RBP in our model using 

http://string-db.org/
http://cytoscape.org/
http://www.broadinstitute.org/gsea
https://cistrome.shinyapps.io/timer/
https://www.ncbi.nlm.nih.gov/geo/
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the Gene Expression Profiling Interactive Analysis 

(GEPIA, http://gepia.cancer-pku.cn/) online tool. In 

addition, the tumor-immune system interactions 

(TISIDB, http://cis.hku.hk/TISIDB/index.php) online 

database was used to verify correlations between target 

RBP expression and grade or AJCC stage. 
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