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INTRODUCTION 
 

Diabetic retinopathy (DR), one of the most prominent 

microvascular complications of diabetes mellitus 

(DM), is the leading cause of vision impairment and 

new-onset blindness in the working-age population 

and diabetes mellitus patients [1, 2]. The increase  

in the global prevalence of diabetic eye diseases, 

comprising DR and diabetic macular edema (DME),  

is intimately connected to the soaring prevalence  

of DM [3–5]. It was reported that across China,  
the prevalence of DR and sight-threatening DR  

were 27.9% and 12.6% in diabetic patients, 

respectively [6].  

For algorithm development, deep learning techniques 

have been used for automated detection of DR and 

DME, based on features in retinal fundus photographs 

and achieved robust performance [7–10]. Although 

image-based features of DR are well-known, knowledge 

about its protein phenotype are limited. It is accepted 

that angiogenesis and inflammation crosstalk are 

intrinsic components of DR [11, 12]. Increasing 

evidence shows that, in retinal cells and tissues, various 

cytokines, including vascular endothelial growth factor 

(VEGF), matrix metalloproteinases (MMPs), and tissue 

inhibitors of metalloproteases (TIMPs), play essential 

roles in the progress of DR via angiogenic, inflammatory 

and fibrotic reactions [13–17]. Thus, cytokines play 
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were validated using ELISA kits. Machine learning algorithms were developed to build a prediction model for 
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important roles in the pathophysiology of DR. However, 

the associations between plasma cytokines and non-

progressive DR (NPDR) are unclear.  

 

This is the first study to investigate the associations 

between plasma cytokines and non-progressive DR 

(NPDR) and to build a prediction model for NPDR. In 

this study, we hypothesized that the pathological 

processes leading to NPDR caused characteristic 

changes in the concentrations of plasma proteins. We 

then investigated the characteristic changes in plasma 

cytokines, generating a detectable disease-specific 

protein phenotype, and finally developed machine 

learning classifiers for NPDR at the protein level. 

 

RESULTS 
 

Study subjects 

 

For plasma protein profiling, 14 patients with NPDR and 

14 patients with T2DM were selected as the pilot cohort. 

The mean ages of patients with NPDR or T2DM were 

62.71 vs. 58.50 years, respectively, and the median 

durations of diabetes were 13.57 vs. 8.08 years, 

respectively. The proportion of hypertension was 

significantly higher in the NPDR group (78.6% vs. 

28.6%, p = 0.023). For validation, 115 patients with 

NPDR and 115 patients with T2DM were selected as the 

validation cohort. The mean ages of patients with NPDR 

or T2DM were 60.40 vs. 58.63 years, respectively, and 

the median durations of diabetes were 8.69 vs. 6.92 

years, respectively. In the same manner, the proportion 

of hypertension was significant higher in the NPDR 

group (60.9% vs. 47.0%, p = 0.047) (Table 1). 

 

Identification of predominant plasma cytokines in 

NPDR patients 

 

We profiled plasma cytokines by using the human glass-

based arrays and obtained semi-quantifiable results for 

60 plasma cytokines. Compared with T2DM patients, 

the relative changes of the 60 cytokines were shown in 

Figure 1A. There were 27 cytokines significantly 

different between the two groups, among which the fold 

change of 12 plasma cytokines were larger than four 

(Figure 1B). As shown in the volcano plot, the top 10 

increased cytokines were PDGF-BB, leptin, ANG-1, 

TIMP-1, RANTES, TIMP-2, ENA-78, angiostatin, 

CXCL16, and VEGFR2, and the top 10 decreased 

cytokines were IL-10, ANGPTL4, bFGF, VEGFR3, HB-

EGF, IL-12p40, IGF-1, IL-17, I-309, and LIF (Figure 

1C). Based on the top 10 increased cytokines, PCA was 

performed, showing a clear separation between the two 

groups (Supplementary Figure 1). These findings 

suggested that plasma cytokines may be helpful to 

distinguish NPDR from T2DM patients. 

Validation of the six increased plasma cytokines in a 

large-scale cohort 

 

We further measured the plasma concentration of 

PDGF-BB, TIMP-1, TIMP-2, ANG-1, CXCL16, and 

VEGFR2 by ELISA kits in a large cohort, which 

comprised 115 NPDR and 115 T2DM patients. The 

concentrations of ANG-1, PDGF-BB, TIMP-2, and 

VEGFR2 (351.85 ng/mL, 34.95 pg/mL, 114.60 ng/mL, 

and 14.06 ng/mL, respectively) were significantly 

higher in NPDR samples than those in T2DM patients 

(286.81 ng/mL, 28.07 pg/mL, 105.01 ng/mL, and 11.91 

ng/mL, respectively). However, there was no significant 

difference of CXCL16 and TIMP-1 (3,828.94 vs. 

3,849.86 pg/mL and 6.78 vs 6.68 ng/mL, respectively) 

(Figure 2).  

 

Correlation between cytokines and clinical 

characteristics 

 

Pearson’s correlation analysis was performed to 

investigate the potential relationships among cytokines 

and clinical characteristics. For NPDR, PDGF-BB was 

weakly correlated with diabetic duration (r = 0.34), and 

VEGFR2 was weakly correlated with total cholesterol (r 

= 0.33) and low-density lipoprotein (r = 0.30) 

(Supplementary Figure 2A). For T2DM patients, there 

was no obvious relationship between plasma cytokines 

and clinical characteristics (Supplementary Figure 2B).  

 

The proportion of hypertension was significant higher 

in the NPDR group in both the pilot and validation 

cohorts. To further eliminate the interference of 

hypertension on the six plasma cytokines, we focused 

on comparing concentrations of the six plasma 

cytokines in patients with or without hypertension. 

Supplementary Figure 3 shows that there was no 

significant difference of the mean levels of ANG-1, 

CXCL16, PDGF-BB, TIMP-1, TIMP-2, and VEGFR2 

in the NPDR and T2DM groups (322.83 vs. 315.24 

ng/mL, 3,796.44 vs. 3,889.65 pg/mL, 32.17 vs. 30.74 

pg/mL, 6.70 vs. 6.77 ng/mL, 107.13 vs 112.94 ng/mL, 

and 12.99 vs. 12.99 ng/mL, respectively). Thus, the 

higher concentration of these six cytokines in NPDR 

patients may have minimal association with hyper-

tension in this study.  

 

Feature selection for the machine learning algorithms 

 

We then used PCA to compute the relative contributions 

of each cytokine to the separation among NPDR and 

T2DM patients. The first and second principal 

components of the PCA plot (Dim1 and Dim2) 
accounted for 36.0%, and 17.1% of the variations, 

respectively, in the dataset. The projections of samples 

in PCA were distinguished  with  relatively small over-  
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Table 1. Clinical characteristics of the study population. 

Clinical characteristics 
Pilot cohort  Validation cohort 

DM (n=14) 

(Mean ± SD) 
DR (n=14) 

(Mean± SD) 
p 

 DM (n=115) 

(Mean ± SD) 
DR (n=115) 

(Mean ± SD) 
p 

Age (years) 58.50±8.31 62.71±7.63 0.174  58.63±14.24 60.40±12.04 0.316 

BMI (Kg/m2) 24.83±2.38 27.42±4.60 0.081  25.74±3.90 26.03±3.81 0.594 

Duration of diabetes (years)   8.08±8.73 13.57±10.24 0.153  6.92±8.53 8.69±8.19 0.116 

Fasting plasma glucose 

(mmol/L) 
  8.08±8.73 13.57±10.24 0.118 

 
8.92 ±3.24 8.82 ±4.03 0.847 

HbA1c (%)   9.36±2.28 9.59±1.55 0.766  9.85 ±2.13 9.31 ±2.14 0.060 

Fasting C peptide (mIU/L)   1.49±0.59 1.68±1.04 0.569  1.53 ±1.00 1.76 ±1.05 0.111 

2-h post prandial C-peptide 

(mIU/L) 
  5.19±3.86 3.90±2.21 0.320 

 
3.74 ± 2.70 3.96 ± 2.32 0.529 

Triglyceride (mmol/L)   2.05±1.54 1.93±1.27 0.836  1.80 ± 1.39 1.78 ±1.08 0.925 

Total cholesterol (mmol/L)   4.85±2.29 4.94±1.18 0.917  4.46 ± 1.29 4.45 ±1.08 0.947 

Low-density lipoprotein 

(mmol/L) 
  3.08±1.65 3.11±0.78 0.955 

 
2.85 ± 1.00 2.86 ± 0.85 0.949 

Gender, male (%) 8 (57.1%) 4 (28.6%) 0.252 
 

62 (53.9%) 44 (38.3%) 0.025 

Hypertension, number (%) 4 (28.6%) 11 (78.6%) 0.023  54 (47.0%) 70 (60.9%) 0.047 

*Diabetic nephropathy, 

number (%) 
2 (14.3%) 4 (28.6%) 0.645 

 
34 (31.8%) 46 (41.1%) 0.198 

Diabetic peripheral 

neuropathy, number (%) 
0 (0%) 0 (0%) 1 

 
2 (11.7%) 1 (0.9%) 1 

Diabetic foot, number (%) 0 (0%) 0 (0%) 1  0 (0%) 0 (0%) 1 

*, 11 missing data in validation cohort. 

 

lapping areas. CXCL16 and TIMP-1 contributed more 

to the second principal component than the first 

principal component, while ANG-1, PDGF-BB, TIMP-

2, and VEGFR2 contributed more to the first principal 

component (Supplementary Figure 4A). To be specific, 

the contribution order of cytokines to the first principal 

component were ANG-1 (25.9%), PDGF-BB (21.0%), 

TIMP-2 (20.2%), VEGFR2 (16.5%), TIMP-1 (9.9%), 

and CXCL16 (6.5%) (Supplementary Figure 4B).  

 

Random forest was performed to evaluate the 

importance level of each cytokine to the separation 

among NPDR and T2DM patients. The importance 

level of ANG-1 (22.8%), VEGFR2 (22.2%), and 

PDGF-BB (20.5%) were higher than TIMP-1 (13.7%), 

TIMP-2 (10.5%), and CXCL16 (10.3%) (Sup-

plementary Figure 4C). 

 

Lasso regression was also conducted for model 

selection. The coefficients of ANG-1, VEGFR2, and 

PDGF-BB in lasso regression were 0.014, 0.003 and 

0.001, while the coefficient of TIMP-1, TIMP-2, and 

CXCL16 were 0 (Supplementary Figure 4D).  

Finally, combined PCA, random forest, and lasso 

regression results for ANG-1, VEGFR2, and PDGF-BB 

were selected for a machine learning prediction model 

building. 

 

Development and validation of machine learning 

classifiers 

 

To select a high-performance classifier for prediction, 

we developed ANN, LR, SVM, XBG, and RF 

classifiers based on ANG-1, VEGFR2, and PDGF-BB. 

In 10-fold cross validation of the train set, the mean 

AUC of ANN, LR, SVM, XBG, and RF were 0.82, 

0.83, 0.82, 0.82, and 0.85, respectively (Figure 3). This 

finding revealed that all classifiers performed similarly 

and exhibited excellent performance in the training set.  

 

For validation, the test set was used to evaluate the 

performance of machine learning classifiers. Table 2 

and Supplementary Table 1 show the comparison 

results of machine learning algorithms in the test set. 

LR, ANN, and SVM exhibited moderate predictive 

performance, with accuracy ranging from 72% to 76%, 
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sensitivity ranging from 73.1% to 84.6%, specificity 

ranging from 65% to 70%, AUCs ranging from 0.72 to 

0.75, and f1 scores ranging from 0.75 to 0.80. XGB 

exhibited good predictive performance, with an AUC 

of 0.82 and an f1 score of 0.85.  RF classifier 

performed best in all the following indicators; the 

accuracy was 85%, the sensitivity was 92.3%, the 

specificity was 75%, the PPV was 82.8%, the NPV was 

88.2%, the AUC was 0.84, and the f1 score was 0.87, 

while LR performed worst. The McNamara’s test was 

conducted to statistically compare performance of RF 

(the best model) and LR (the worst model) and p value 

equal to 0.289. Combined these results, we can 

calculate that, RF was the best classifier, although there 

was no statistical difference compared with other 

models. 

 

 
 

Figure 1. Relative cytokine changes in the pilot cohort. A heat map of relative changes of all 60 plasma cytokines (A); a heat map of 27 

cytokines with a fold change larger than 4 or less than 0.25 (B); a volcano plot of the top 10 increasing and decreasing cytokines (C). 
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DISCUSSION 
 

Because of the main role that angiogenesis and 

inflammation have in the development and progression of 

NPDR, we hypothesized that angiogenesis- and inflam-

mation-related cytokines in the plasma might be different 

in NPDR patients, and could be novel predictive 

biomarkers. To the best of our knowledge, this is the first 

large-scale study to determine specific plasma cytokines 

for the diagnosis of NPDR when compared with those in 

T2DM patients. In the pilot cohort with a small number 

of samples, cytokines antibody arrays were performed to 

identify 60 plasma cytokines. The results showed that 27 

cytokines were increased in patients with NPDR, among 

which 12 cytokines were increased in the NPDR group 

(fold change > 4). In the larger-scale validation cohort, 

ELISA kits were used to validate six of the 12 plasma 

cytokines. Four out of six plasma cytokines, ANG-1, 

PDGF-BB, TIMP-2, and VEGFR2, were confirmed to be 

significantly higher in NPDR patients. These results 

suggested that plasma cytokines may be specifically 

involved in the development of NPDR. 

 

 
 

Figure 2. A comparison of plasma concentrations of PDGF-BB, TIMP-1, TIMP-2, ANG-1, CXCL16, and VEGFR2 in the validation 
cohort. ANG-1, PDGF-BB, TIMP-2, and VEGFR2 were significantly higher in non-proliferative diabetic retinopathy patients than in diabetes 

mellitus patients. However, there were no significant difference of CXCL16 and TIMP-1. 
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The main goal of this study was to identify potential 

plasma biomarkers of patients with NPDR. Feature 

selection indicated that NPDR was highly associated 

with ANG-1, PDGF-BB, and VEGFR2, so these three 

cytokines were finally included in the machine learning 

algorithms. LR, ANN, SVM, RF, and XGB classifier 

confirmed that these three cytokines were highly 

discriminatory for NPDR in the independent test set, 

with the sensitivity ranging from 73.1% to 92.3%, with 

the specificity ranging from 65.0% to 75%, and with the 

AUC ranging 0.72 to 0.84. Among the five machine 

learning algorithms, RF classifier, with a sensitivity of 

92.3% and the AUC of 0.84 in the test set, showed 

excellent discrimination of NPDR from T2DM patients. 

 

Angiogenesis- and inflammation-related cytokines play 

vital roles in injuries of human retinal endothelial cells 

in culture. ANG-1, a member of the angiopoietins 

family, is a growth factor that plays a key role in vessel 

homeostasis, angiogenesis, and vascular permeability 

via interacting with the Tie2 transmembrane receptor 

tyrosine kinase [18–20]. Damage of the blood retinal 

barrier, which is induced by diabetes, is inhibited by 

Ang-1 in a dose-dependent manner [21]. PDGF-BB has 

been reported to be involved in astrogliosis and the 

formation of proliferative membranes in retinopathy by 

activating PDGFRα and PDGFRβ [22]. The upregulated 

combination of VEGF-A and VEGFR2 is a response to 

the ischemia induced by retinal vascular damage, and 

stimulates extraretinal vascular outgrowth to the retinal 

surface without amelioration of ischemia in the retina 

[23–25]. TIMP-2 is an endogenous inhibitor of matrix 

metalloproteinase-2 and may act as a protector to reduce 

the loss of capillary cells resulting in the development 

of diabetic retinopathy [26, 27]. Although angiogenesis- 

and inflammation-related cytokines are involved in the 

development and progression of DR, their changes in 

DR are unclear. 

 

With the development of an algorithm, deep learning 

techniques have been used for automated detection of 

DR. Based on features in retinal fundus photographs, 

 

 
 

Figure 3. The average area under the curve of a 10-fold cross validation of ANN (A), LR (B), SVM (C), XBG (D), and RF (E) in the train set. 
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Table 2. Performance of the 5 machine learning classifiers on the test set. 

 Model Accuracy Sensitivity Specificity AUC F1 score 

Test set 

LR 72% 73.1% 70.0% 0.72 0.75 

ANN 72% 80.8% 70.0% 0.75 0.83 

SVM 76% 84.6% 65.0% 0.75 0.80 

XGB 83% 88.5% 75.0% 0.82 0.85 

RF 85% 92.3% 75.0% 0.84 0.87 

 

deep learning algorithms show discriminative abilities 

comparable with those of ophthalmologists [7, 8, 28–

31]. Image features of DR are well-known; however, 

knowledge about its plasma protein specific features are 

limited. In the present study, the RF classifier, which 

was based on the plasma concentrations of ANG-1, 

PDGF-BB, and VEGFR2, also showed good prediction 

abilities. Although the performance of the plasma 

protein-based RF classifier was not as good as that of 

the image-based deep learning classifier, our results 

indicated that plasma ANG-1, PDGF-BB, and VEGFR2 

may be protein specific features of NPDR, and the roles 

of these three plasma cytokines in the pathophysiology 

of NPDR, are worthy of further study. 

 

Two previous studies reported that serum levels of 

ANG-1 were significantly higher in the NPDR group, 

when compared to the T2DM group [32, 33]. Paine et 

al. also reported that the plasma levels of soluble 

VEGFR2 consistently increased with the severity of DR 

[34]. Consistent with these findings, in the present 

study, we showed that in NPDR, ANG-1, TIMP-2, 

VEGFR2, and PDGF-BB were significantly increased. 

The protective cytokines, ANG-1 and TIMP-2, were 

increased in the NPDR group. A possible explanation 

for this might be that the increases of ANG-1 and 

TIMP-2 may represent an adaptive compensatory 

mechanism to promote cellular repair, to suppress the 

development of retinal or choroidal neovascularization, 

and to strengthen the integrity of the vascular structure 

[35].  

 

The plasma cytokine changes in NPDR patients have 

been controversial, and the correlations between plasma 

cytokines and clinical features were also unclear. 

Pearson’s correlation indicated that for NPDR patients, 

PDGF-BB was weakly correlated with the duration of 

diabetes (r = 0.34), and VEGFR2 was weakly correlated 

with total cholesterol (r = 0.33) and low-density 

lipoprotein (r = 0.30). According to previous studies, 

diabetic duration, total cholesterol, and low-density 

lipoprotein were risk factors for diabetic retinopathy  
[6, 36, 37]. Whether PDGF-BB and VEGFR2 act 

independently or in concert with blood lipids during 

NPDR is still unclear, so further studies are needed. 

The strengths of this study were as follows. It was the 

first study to include a large number of patients with 

comparable baselines. It contained a pilot study for 

screening of possible cytokines associated with NPDR 

and a large-scale cohort for ELISA verification 

Machine learning algorithms based on these plasma 

cytokines exhibited good performance for dis-

tinguishing DR from T2DM patients. However, we 

acknowledge several limitations in our study. First, the 

examination for DR was based on two-field fundus 

photographs, which are theoretically less sensitive than 

seven-field retinal photographs. However, the presence 

of mild DR would be underestimated only if the retinal 

pathologies were present in the peripheral area of the 

retina. Second, patients with coronary heart disease 

(CHD) were excluded in this study. The diagnosis of 

CHD, however, was based on the history of disease 

provided by the patients. A significant percentage of 

diabetic patients with coronary heart disease usually 

have no symptoms, so it may be inevitable that a few 

CHD patients were included in this study. 

 

In summary, we report that plasma cytokines including 

ANG-1, PDGF-BB, TIMP-2, and VEGFR2 were 

increased, and that plasma cytokine patterns were 

comprehensive predicators of DR based on machine 

learning algorithms. Our results suggested that plasma 

cytokines could be strong risk markers of NPDR. 

 

MATERIALS AND METHODS 
 

Patients 

 

Inpatient patients with NPDR or Type 2 DM (T2DM) 

were enrolled in this study at the Center for Endocrine 

Metabolism and Immune Diseases of Beijing Luhe 

Hospital, Capital Medical University (Beijing, China) 

between November 2018 and September 2019. Two 

different groups were established: (1) an age- and body 

mass index (BMI)-matched pilot cohort containing 14 

NPDR patients and 14 T2DM patients to 

comprehensively screen changes of angiogenesis- and 

inflammation-related plasma cytokines by human glass-

based cytokine microarrays. (2) A validation cohort 

containing 115 NPDR patients and 115 T2DM patients 
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to further measure the concentrations of plasma 

angiopoietin 1 (ANG-1), CXC-chemokine ligand 16 

(CXCL16), platelet-derived growth factor-BB (PDGF-

BB), tissue inhibitors of metalloproteinase 1 (TIMP-1), 

tissue inhibitors of metalloproteinase 2 (TIMP-2), and 

vascular endothelial growth factor receptor 2 (VEGF 

R2) using ELISA kits.  

 

The 2010 diagnostic criteria of T2DM from the 

American Diabetes Association were used:  (1) 

glycosylated hemoglobin (HbA1c) ≥ 6.5%; (2) fasting 

plasma glucose ≥ 7.1 mmol/L; (3) 2 h of blood glucose 

during an oral glucose tolerance analysis ≥ 11.1 

mmol/L; and (4) in a typical hyperglycemic or 

hyperglycemia crisis patient, random blood glucose was 

≥ 11.1 mmol/L. Two-field retinal photographs were 

taken of each eye of all patients by a trained 

photographer, using a nonmydriatic fundus camera 

(Topcon, Tokyo, Japan). The diagnosis and grading of 

DR were conducted by two trained specialists following 

the Early Treatment of Diabetic Retinopathy Study 

Researched Group (ETDRS) [38] as follows: (1) no 

retinopathy; (2) mild NPDR; (3) moderate NPDR; (4) 

severe NPDR; and (5) proliferative retinopathy (PDR). 

Patients met the following inclusion criteria; (1) 

conformity to the above diabetes diagnostic criteria, (2) 

conformity to NPDR diagnostic criteria; and (3) > 18 

years of age. The exclusion criteria were: (1) Type 1 

DM or other type of DM; (2) any retinopathy other than 

NPDR; (3) acute complications of diabetes; and (4) a 

history of cardiovascular diseases and stroke. 

 

Clinical examination and data collection 

 

Blood biochemical parameters, including fasting glucose, 

HbA1c, 2 h postprandial C-peptide, triglycerides, total 

cholesterol, and low-density lipoprotein were collected 

at the time of the screening. All information from the 

patients, including height, weight, diabetic related 

complications, other histories of diseases, retinal 

examination, and optical coherence tomography, were 

recorded. Plasma samples were collected in 

ethylenediaminetetraacetic acid tubes and were 

immediately centrifuged at 1,400 × g for 10 min at 4° C, 

and then the supernatant was aliquoted and stored at -

80° C, avoiding freeze thaw cycles. All samples were 

collected with the signed informed consent from all 

patients, and all related procedures were performed with 

the approval of the internal review and ethics boards of 

the indicated hospitals. 

 

Cytokine antibody assay 

 
Plasma soluble cytokines were measured in duplicate 

using the Ray Biotech G-Series Human Angiogenesis 

Array 2 and 3 (Ray Biotech, Norcross, GA, USA) 

following the recommended protocols. Briefly, all 

samples were biotinylated. The antibodies were 

immobilized in specific spot locations on glass slides. 

The incubation of array membranes with biological 

samples resulted in the binding of cytokines to the 

corresponding antibodies. Signals were visualized using 

streptavidin-horseradish peroxidase conjugates and 

colorimetric assays. Final spot intensities were 

measured as the original intensities after subtracting the 

background. The two kits provided high sensitivity and 

specificity to simultaneously detect a total of 60 

cytokines from the plasma. As determined by 

densitometry, the inter-array coefficient of variation of 

spot signal intensities was less than 20%.  

 

Differential protein level analysis 

 

To identify proteins with significant concentrations in 

the plasma, the raw data were normalized and then the 

fold change of NPDR vs. T2DM for each cytokine was 

calculated using the “edgeR” package [39]. The fold 

change values of cytokines were used to indicate their 

relative concentration levels. Any fold change ≥ 2 or ≤ 

0.5 with FDR < 0.05 was considered as significant. 

Based on differential plasma protein, principle 

component analysis (PCA) was conducted to evaluate 

variation between two groups using the “ggbiplot” 

package. 

 

ELISA validation 

 

Plasma concentration of PDGF-BB, TIMP-1, TIMP-2, 

ANG-1, CXCL16, and VEGFR2 were determined in the 

validation cohort by an ELISA kit following the 

manufacturer’s instructions (Human ELISA kit, MLbio, 

Shanghai, China). The intra-assay coefficient of 

variation was 10%, and the inter-assay coefficient of 

variation was 12%. No significant cross-reactivity or 

interference was observed. 

 

Machine learning algorithms to distinguish NPDR 

from T2DM patients 

 

The whole data set was randomly divided into the 

training set (80%) and the test set (20%). To prevent 

overfitting, the training set was randomly split into 10 

equal-sized subgroups using the 10-folds cross 

validation method. In 10-folds cross validation, nine 

subgroups were retained as training data and the 

remaining one subgroup was used as the validation data 

for testing the model. The cross-validation process was 

then repeated 10 times, with each of the 10 subsamples 

used exactly once as the validation data. The 10 results 
from the folds then were averaged to produce a single 

estimation. Finally, the test set was used to evaluate the 

model (Supplementary Figure 5). Five machine learning 
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algorithms were trained: the artificial neural network 

(ANN), logistic regression (LR), random forest (RF), 

support vector machine (SVM), and xgradient-boosting 

(XGB). Parameters for each machine learning method 

were shown in Supplementary Table 2. The 

performance of each classifier was evaluated by its 

accuracy, sensitivity and specificity, positive predictive 

value (PPV), negative predictive value (NPV), f1 score, 

Matthews correlation coefficient (MCC), and area under 

the curve (AUC) of the receiver operating characteristic 

(ROC).  

 

Statistical analysis 

 

Differences in clinical characteristics and cytokines 

between groups were calculated using the Wilcoxon test 

for continuous variables and the chi-square test for 

categorical variables. Pearson’s correlation was 

performed to assess the relationship of the plasma 

cytokines and clinicopathological characteristics. 

Machine learning algorithms and diagnostic 

performance were evaluated using scikit-learn 

(V0.21.3) in Python V3.7.4. Other data analysis and 

visualization were performed by R software, version 

3.6.2 (The R Project for Statistical Computing, Vienna, 

Austria). A two-sided P-value < 0.05 was considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Principle component analysis for the pilot cohort. There was a clear separation between the two groups. 
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Supplementary Figure 2. Pearson’s correlation of plasma cytokines and clinical characteristics in non-proliferative diabetic retinopathy 
patients (A) and diabetes mellitus patients (B). 
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Supplementary Figure 3. Comparison of plasma concentrations of PDGF-BB, TIMP-1, TIMP-2, ANG-1, CXCL16, and VEGFR2 in 
patients with or without hypertension. There was no significant difference in the mean levels of ANG-1, CXCL16, PDGF-BB, TIMP-1, 

TIMP-2. and VEGFR2 in the diabetic retinopathy and diabetes mellitus groups. 
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Supplementary Figure 4. Feature selection for machine learning algorithms. Principle component analysis to compute the relative 
contribution of each cytokine to the separation among the non-proliferative diabetic retinopathy and diabetes mellitus patients. (A); The 
contribution of each cytokine to the first principal component (B); use of the random forest to evaluate the importance level of each cytokine 
to the separation among diabetic retinopathy and diabetes mellitus patients (C). use of the Lasso regression for feature selection (D). 
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Supplementary Figure 5. Flow chart of the 10-fold cross validation method. 
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Supplementary Tables 
 

Supplementary Table 1. Performance of the 5 machine learning classifiers on the test set. 

 Model PPV NPV MCC 
Model processing 

time (second) 

Test set 

LR 76.0% 66.7% 0.43 0.28 

ANN 77.8% 73.7% 0.43 1.80 

SVM 75.9% 76.5% 0.51 0.36 

XGB 82.1% 83.3% 0.64 0.99 

RF 82.8% 88.2% 0.69 0.96 

 

Supplementary Table 2. Parameters for each machine learning method in this study. 

Model Optimal parameters 

LR Penalty: ‘l2’, C: 0.1 

SVM C: 0.1, gamma: 0.01, kernel: ‘rbf’ 

RF n estimators: 80, max depth: 8, min samples split: 3, min samples leaf: 1 

XGB n estimators: 80, max depth:3, learning rate:0.1 

 


