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INTRODUCTION 
 

Osteosarcomas (OCs) is the most common primary 

bone tumor in adolescent and young adults and the 

incidence is higher at age 15 to 19 years old [1]. OSs 

has a high potential to metastasize to lungs. 

Neoadjuvant chemotherapy-Surgical resection-

Adjuvant chemotherapy (the so-called sandwich 

treatment mode) is the standard treatment for early 

and locally advanced OSs, which has significantly 

improved the prognosis of patients, with the 5-year 

survival has exceeded 60% [1, 2]. 

 

However, for advanced patients, the application of 

emerging therapies such as targeted therapy and 

immunotherapy (immune checkpoint inhibitors) is not 

optimistic, and the chemotherapeutic regimens included 

adriamycin, cisplatin, ifosfamide and high-dose 

methotrexate are still the main options [3, 4]. 

Unfortunately, about one-third of patients eventually 

www.aging-us.com AGING 2021, Vol. 13, No. 1 

Research Paper 

A three-gene signature based on tumour microenvironment predicts 
overall survival of osteosarcoma in adolescents and young adults 
 

Chunkai Wen1,2,*, Hongxue Wang1,*, Han Wang1,*, Hao Mo3, Wuning Zhong1, Jing Tang1,  
Yongkui Lu1, Wenxian Zhou1, Aihua Tan1, Yan Liu1, Weimin Xie1 
 
1Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical 
University, Nanning 530021, China 
2Graduate School of Guangxi Medical University, Nanning 530021, China 
3Department of Bone and Soft Tissue Tumor Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, 
Nanning 530021, China 
*Equal contribution 
 

Correspondence to: Aihua Tan, Yan Liu, Weimin Xie; email: tanaihua@gxmu.edu.cn, Liuyan@gxmu.edu.cn, 
xieweimin@gxmu.edu.cn  
Keywords: osteosarcoma, prognosis, risk model, tumour microenvironment, TARGET 
Received: June 9, 2020 Accepted: October 9, 2020  Published: December 03, 2020 
 

Copyright: © 2020 Wen et al.  This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Evidences shows that immune and stroma related genes in the tumour microenvironment (TME) play a key 
regulator in the prognosis of Osteosarcomas (OSs). The purpose of this study was to develop a TME-related 
risk model for assessing the prognosis of OSs. 82 OSs cases aged ≤25 years from TARGET were divided into two 
groups according to the immune/stromal scores that were analyzed by the Estimate algorithm. The 
differentially expressed genes (DEGs) between the two groups were analyzed and 122 DEGs were revealed. 
Finally, three genes (COCH, MYOM2 and PDE1B) with the minimum AIC value were derived from 122 DEGs by 
multivariate cox analysis. The three-gene risk model (3-GRM) could distinguish patients with high risk from the 
training (TARGET) and validation (GSE21257) cohort. Furthermore, a nomogram model included 3-GRM score 
and clinical features were developed, with the AUC values in predicting 1, 3 and 5-year survival were 0.971, 
0.853 and 0.818, respectively. In addition, in the high 3-GRM score group, the enrichment degrees of 
infiltrating immune cells were significantly lower and immune-related pathways were markedly suppressed. In 
summary, this model may be used as a marker to predict survival for OSs patients in adolescent and  
young adults. 
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failed due to drug resistance. In the past few decades, 

the 5-year survival of patients with metastasis at 

diagnosis or in relapse has not significantly improved, 

but still remains at only 20% [5, 6]. Therefore, it is 

remains a major goal for developing new therapy and 

valid signature to improve or predict the prognosis of 

OSs. Increasing evidence indicated that the biological 

behavior of tumor, such as invasion and metastasis, 

drug resistance and so on, depended not only on the 

inherent characteristics of tumor cells, but also on the 

composition and function of tumor microenvironment 

(TME) [7–9]. 

 

OSs has extremely significant heterogeneity, the 

landscape of driver mutations had proved few 

mutations recur with high frequency at the intra-tumor 

level of OSs, resulting in the loss of definite targets for 

therapy [10, 11]. On the other hand, and more 

importantly, TME was not only considered essential 

for the growth of osteosarcoma, but also regulated the 

proliferation, migration and metastasis of osteo-

sarcoma cells, as well as drug resistance, immuno-

suppression and immune escape [5, 12]. The TME of 

OSs is a complex environment composed of active 

cells (such as tumor cells, stromal cells and immune 

cells, fibroblasts, etc.), vasculature, extracellular 

matrix (ECM), and a variety of factors [5, 13, 14]. 

Among them, the tumor-infiltrating immune cells 

(TIICs) and stromal cells are closely related to OSs 

cells by regulating various signal pathways via release 

of cytokines and other soluble factors, conversely 

stimulating and facilitating tumor cell metabolism and 

proliferation in all the stages of carcinogenesis [15–

17]. Therefore, TME-related genomic analysis can 

help to find markers for assessing disease evolution 

and prognosis of OSs patients, and even for translation 

in both molecularly targeted therapy and personalized 

therapy [18, 19]. 

 

In the past decade, several methods have been invented 

to dissect the TME based on gene expression profiles. 

One of these, Estimate algorithm [20], designed by 

Yoshihara et al, was used to assess the score of 

immunity and stromal in the TME based on gene 

expression profiles, and it has been successfully applied 

to a variety of solid tumors, such as ovarian cancer [21], 

bladder cancer [22] and gastric cancer [23]. A similar 

approach, Cibersort [24], a new biological tool based on 

the deconvolution technique, can quantify the 

abundance of specific TIICs. Unfortunately, there are 

no definitive and clinically applicable prognostic 

markers for OSs. Thus, this study expects to  

establish a new predictive model based on TME-related 

genes and evaluate its effect in estimating the outcome 

of OSs, so as to provide a reference for further research 

in the future. 

RESULTS 
 

Correlation between immune/stromal score in TME 

and prognosis of OSs patients in adolescents and 

young adults 
 

In this study, 82 OSs patients (≤ 25 years of age) from 

TARGET were enrolled, those with complete gene 

expression data of samples and clinical information of 

follow-up. The detailed clinical characteristics of 

patients were summarized in Supplementary Table 1. 

The flowchart of the analysis procedure was shown in 

Figure 1. Based on the normalized matrix data, the 

TME score was graded using the Estimate algorithm, 

and the results showed that the immune scores and 

stromal scores of all patients were ranged from -

1508.04 to 2638.38 and from -695.66 to 1962.14, 

respectively. 

 

According to the median value of immune/stromal 

score, 82 OSs patients were divided into high and low 

score group. Kaplan-Meier (K-M) curves showed that 

the 5-year overall survival (OS) rates of patients with 

high and low immune scores were 82.6% and 48.7%, 

respectively (P=0.003) (Figure 2A). As well as, the 5-

year recurrence-free survival (RFS) rates were 65% and 

47.3%, respectively (P=0.006) (Figure 2C). 

Consistently, the 5-year OS rates of patients with high 

and low stromal scores were 65% and 47.3%, 

respectively, the P value approximately reached 

statistical difference (P=0.053) (Figure 2B), and the 5-

year RFS rates were 66% and 46.1%, respectively 

(P=0.012) (Figure 2D), indicating that the TME-related 

immune and stromal score in the TME were 

significantly correlated with the survival. 

 

Identification of differentially expressed genes 

(DEGs) 
 

The DEGs between the high and low immune/stromal 

scores groups were obtained based on gene expression 

profiles, and a fold-change > 1 or < -1 and adjusted 

P<0.05 were used as criterions for screening DEGs. 

Heatmaps showed the distinct gene expression profiles 

from the two groups in Figure 3A, 3B. In the high 

immune score group, 320 genes were down-regulated 

and 262 genes were up-regulated (Supplementary 

Tables 2A, 2B). Meanwhile, the high stromal score 

group had 252 genes down-regulated and 160 genes up-

regulated (Supplementary Tables 3A, 3B). Furthermore, 

Venn diagram was used to find the common-DEGs in 

the two groups (Figure 3C, 3D), showing that 31 genes 

were generally up-regulated and 12 genes were 

markedly down-regulated (Supplementary Table 4). The 

top 50 genes with the most significant difference 

between the high and low immune score groups, and the 
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high and low stromal score groups, respectively, and 

other differentially expressed genes crossing with Venn 

diagram were all included. Finally, a total of 122 genes, 

defined as the TME-related differentially expressed 

genes (tmDEGs), were included in the subsequent 

functional classification analysis. 

 

GO(Gene Ontology) Term analysis confirmed that the 

tmDEGs mostly involved in regulation of leukocyte 

activation, leukocyte cell-cell adhesion, positive 

regulation of cell activation in biological processes 

(BP), external side of plasma membrane, endocytic 

vesicel, secretory granule lumen in cellular components 

(CC), antigen binding, phosphatidylinositol phosphate 

binding, phosphatidylinositol binding in molecular 

functions (MF) (Figure 3E). KEGG enrichment analysis 

showed that tmDEGs mainly enriched in the osteoclast 

differentiation, B cell receptor signaling pathway cell 

receptor interaction, viral protein interaction with 

cytokine and cytokine receptor, cytokine-cytokine 

receptor interaction and JAK-STAT signaling pathway 

(Figure 3F). 

 

These results indicated that the immune score and 

stromal score could all better reflect the main immune 

landscapes of TME, showing the activation of immune 

cells and stromal cells, and the expression of various 

signal pathways in OSs tissues. 

 

Construction and evaluation of the risk score model  
 

The relationship between tmDEGs and prognosis  

of 82 OSs patients from TARGET as above was 

analyzed. The univariate cox regression analysis 

showed that 32 of 122 tmDEGs were significantly 

correlated with OS of patients (P<0.05) (Supplementary 

Table 5). Then Lasso regression analysis was performed 

on these 32 genes, and 13 genes were screened as 

candidate genes through relative regression coefficient 

(Figure 4A, 4B). 
 

 
 

Figure 1. The overall design of the present study. 
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And then the top 30 genes, identified from 122 tmDEGs 

by XGBoost machine learning according to the order of 

importance (Figure 4C), were crossed with these 13 

genes selected by Lasso regression analysis, and 9 

candidate genes were obtained. 

 

Finally, a multivariate cox analysis was performed, and 

three genes with the minimum Akaike's Information 

Criterion (AIC) value of 188.9 were identified to 

construct a risk model (Figure 4D), which was called 

three-gene risk model (3-GRM). The C index of model 

was 0.77 (Se=0.042, 95% CI, 0.688~0.852).  

 

According to the median value of 3-GRM score, 

patients were divided into high score group and low 

score group. The expression levels of these three genes 

were significantly correlated with survival of OSs 

patients from dataset TARGET, among which, Cochlin 

(COCH) and Myomesin2 (MYOM2), both over-

expressed in the high 3-GRM score group, were 

associated with poor prognosis. However, PD1EB was 

significantly down-regulated in high 3-GRM score 

group, was related to favorable prognosis (Figure 4E–

4G). Based on relative coefficients in multivariable cox 

regression analysis, the scoring formula of 3-GRM was 

as follows: risk score = [0.30×COCH expression level]+ 

[0.41×MYOM2 expression level]-[2.1×PDE1B 

expression level]. 

 

The K-M analysis showed that the OS of high 3-GRM 

score group was significantly lower than that of low 

score group (P<0.05) (Figure 5A), and the 5-year 

 

 
 

Figure 2. Relationship between the TME-related immune/stromal score and survival of OSs patients. (A) Immune score and 
overall survival rate. (B) Stromal score and overall survival rate. (C) Immune score and recurrence-free survival rate. (D) Stromal score and 
recurrence-free survival rate. 
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survival rates of the high and low score group were 

51.3% and 80.1%, respectively (P=0.000). The 

distribution of genes expression data in the subgroup of 

difference risk scores were shown in Figure 5B. The 

prediction ability of 3-GRM was evaluated by 

calculating the area under the ROC curve (AUC). The 

AUC values in predicting 1, 3 and 5-year of survival 

rate were 0.890, 0.822 and 0.773, respectively, 

indicating that 3-GRM had a good prediction effect 

(Figure 5C). 

 

 
 

Figure 3. The differences of genes expression and pathways enrichment based on immune scores and stromal scores. (A, B) 
Heatmap of significantly differentially expressed genes based on immune and stromal scores. (C, D) Venn diagram analysis of aberrantly 
expressed genes based on immune and stromal scores in osteosarcoma. (E) GO analyses of the tmDEGs in the categories of biological 
processes (BP), cellular components (CC), and molecular functions (MF). (F)  KEGG analysis of tmDEGs genes. tmDEGs, differentially expressed 
genes of the tumour microenvironment. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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High score of 3-GRM was an independent 

prognostic factor for OSs patients in adolescent and 

young adults 
 

Based on the clinical data and survival information of 

82 patients, univariate cox regression analysis showed 

that the high score of 3-GRM, metastasis at diagnosis 

and lung metastasis were the risk factors affecting 

prognosis, but age, gender, race, primary site, specific 

site of primary tumor, and surgical method were not 

related to outcome of patients (Figure 6A). As in the 

TARGET database (as above), 95% of patients (20/21) 

 

 
 

Figure 4. Feature selection of risk score model. (A) Selection of tuning parameters in the Lasso regression analysis based on 1,000 
cross-validations. (B) Lasso regression analysis coefficients. (C) The importance of XGBoost machine learning screening the top 30 genes. (D) 
Multivariate analysis of 3 genes (COCH, MYOM2, PDE1B) and establishment of the regression equation. (E–G) Kaplan-Meier curve analysis of 
the relationship between the expression levels of COCH, MYOM2 and PDE1B, respectively, and the prognosis of OSs patients. 
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with metastasis at diagnosis had lung metastasis, so these 

two factors were classified as having metastasis at 

diagnosis for further analysis. Multivariate cox regression 

analysis confirmed that high 3-GRM score and metastasis 

at diagnosis were independent risk factors of OSs patients 

(Figure 6B). K-M analysis showed that the 5-year 

survival rates of cases with metastases and without 

metastases at diagnosis were 31.3% and 77.4%, 

respectively (P<0.001, data not shown). 

 

Validate the new risk model (3-GRM) in GEO 

dataset 

 

To verify the robustness of 3-GRM, another 

independent dataset GSE21257 (n=53) (Table 1) from 

the GEO database was used. According to the risk 

scoring formula as above, the patients in GSE21257 

dataset were divided into two groups, with 28 cases in 

high 3-GRM score group and 25 cases in low 3-GRM 

score group. 

 

Consistent with previous results, this results also 

confirmed that patients with high 3-GRM score had 

significantly shorter OS than those with low scores 

(Figure 7A). The AUC values of the 3-GRM in 

predicting 1, 3 and 5-year of survival rate were 0.861, 

0.710 and 0.694, respectively (Figure 7B). The Figure 

7C shows the distribution of the 3-GRM scores and 

gene expression data in the validation cohorts. At the 

same time, univariate (Figure 6C) and multivariate 

 

 
 

Figure 5. Prognostic analysis of the 3-genes risk model (3-GRM) in TARGET. (A) Prognostic analysis between the high and low 3-
GRM score group. (B) Differences of COCH, MYOM2 and PDE1B expression levels between the high and low 3-GRM score group. (C) Time-
dependent ROC curve analysis of the 3-GRM. 
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(Figure 6D) cox analysis found that huvos grade 

(histological response grade after chemotherapy) [25], 

metastasis at diagnosis and the high 3-GRM score were 

also independent prognostic factors for OSs patients in 

the GSE21257 dataset, confirming that the 3-GRM was 

robust and effective. 

 

The relationship between 3-GRM score and TME 

score, and the difference of TIICs between the high 

and low 3-GRM score groups 
 

Based on TARGET database, the analysis results found 

that the 3-GRM score was both significantly correlated 

with the TME-related immunity score (R=0.398, 

P<0.01) and the stromal score (R=0.523, P<0.01) 

(Figure 8A, 8B), respectively, indicating that the higher 

the 3-GRM score, the lower the immune score and 

stromal score. 

 

Cibersort algorithm analysis revealed that the most 

common TIICs in the specimens of 82 OSs patients 

were macrophages M2(27.8±10.14)%, macrophages M0 

(27.63±11.35)% and CD4+ memory T cells 

(17.08±7.86)%, accounting for more than 70%. In 

addition, the proportion of macrophages M0 in the high 

3-GRM score group was significantly higher than that 

in the low score group (P<0.001), while the ratios of 

monocytes (P=0.05), macrophages M1 (P=0.04) and 

macrophages M2 (P=0.002) were significantly lower 

than those in the low score group (Figure 8C). 

 

Furthermore, 64 kinds of TME-related cells were 

evaluated by Xcell, and the results were consistent with 

that of Cibersort algorithm. Compared with the low 3-

GRM score group, the enrichment degree of TIICs 

(such as “aDC”, “cDC”, “iDC”, "macrophage M1 and 

M2", "endothelial cells"and "MSC") were significantly 

lower, while "muscle cells" and "skeletal muscle cells" 

were significantly enrichment in the high 3-GRM score 

group (all P<0.01) (Supplementary Figure 1). 

 

Comparison of immune-related signal pathways 

between the high and low score group  
 

A total of 1,811 immune-related genes were obtained 

from the website of IMMPORT (http://www. 

immport.org/) for differential analysis, with screening 

criteria were fold-changed >1 or <-1 and 

 

 
 

Figure 6. Analysis of prognostic factors of OSs patients. (A, B) Univariate and multivariate regression analysis of the relation between 
the 3-GRM and clinicopathological features in TARGET. (C, D) Univariate and multivariate regression analysis of the relation between the 3- 
GRM and clinicopathological features in GSE21257. 

http://www.immport.org/
http://www.immport.org/
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Table 1. Clinical baseline data and score grouping of 53 patients with OSs in GES21257 dataset. 

Clinical features Cases, n (%) High 3-GRM score group, n (%) Low 3-GRM score group, n (%) P* 

Patients(n) 53 28 25  

Median age(range) 17 (14-19) 16.5(14-19) 17(13-19) 0.71 

Gender     

Female 19 (35.8) 7 (25.0) 12 (48.0) 0.08 

Male 34 (64.2) 21 (75.0) 13 (52.0)  

Histological Subtype     

Osteoblastic 32 (60.4) 19 (67.9) 13 (52.0) 0.24 

Others 21 (39.6) 9 (32.1) 12 (48.0)  

Tumor location     

Lower limb 44 (83.0) 23 (82.1) 21 (87.5) 0.88 

upper limb 8 (15.1) 5 (17.9) 3 (12.5)  

Unknow 1(1.89) - -  

Huvos grade     

I-II 29 (54.7) 14 (58.3) 15 (65.2) 0.85 

III-IV 18 (34.0) 10 (41.7) 8 (34.8)  

Unknow 6(11.3) - -  

Metastases at diagnosis     

No 39 (73.6) 20 (71.4) 19 (76.0) 0.95 

Yes 14 (26.4) 8 (28.6) 6 (24.0) 
 

*Comparison of high 3-GRM score group and low 3-GRM score group. 
 

adjusted P<0.05. The results showed that there were 31 

DEGs between the two groups (Supplementary Table 6). 

Identified by GO terms, these DEGs were involved in 

external side of plasma membrane (CC), humoral immune 

response(BP), immune response-activating/regulating cell 

receptor signaling pathway(BP), regulation of lymphocyte 

activation (BP) and cytokine receptor activity(MF) (all 

adjusted P<0.01) (Figure 9A). 

 

The enrichment analysis of KEGG pathway explored 

that of immune-related signaling pathways were 

markedly down-regulated in the high 3-GRM score 

group, including cytokine−cytokine receptor interaction, 

viral protein interaction with cytokine and cytokine 

receptor, chemokine signaling pathway, Th1/Th2 and 

Th17 cell differentiation, and T cell receptor signaling 

pathway (all adjusted P<0.01) (Figure 9B).  

 

Establishment and evaluation of nomogram model 

for survival based on 3-GRM scoring and 

clinicopathological features 
 

As the result of multivariate cox regression analysis 

showing there were two prognostic indicators of OSs 

(Figure 6B), a nomogram model included 3-GRM score 

and clinicopathological features (such as metastasis status 

at diagnosis) were developed (Figure 10A), with the index 

C was 0.825. The calibration plot for the possibility of 1, 

3and 5-year survival showed good agreement between the 

prediction by risk score and actual observations 

(Supplementary Figure 2A–2C). The AUC values of 

nomogram model in predicting 1, 3 and 5-year survival 

reached to 0.971, 0.853 and 0.818, respectively. In 

addition, the nomogram model was also verified in 

GSE21257 dataset, with the AUC values in predicting 1, 3 

and 5-year survival were 0.781, 0.840 and 0.795, 

respectively. The predicted results of the calibration plot 

were also consistent with the actual observation 

(Supplementary Figure 3A, 3B).  

 

Recently, prognosis models had been established and 

used to predict the prognosis of OSs in several studies 

[26–29]. In our study, the AUC value was used for 

evaluating the prediction effect of varies models. As 

shown in Table 2, the calculate effects of nomogram 

model were always better than those of the 3-GRM and 

other models [26–29]. 

 

DISCUSSION 
 

OSs has a relatively high incidence in the second 

decade of life, especially at ages 15-19 years [1]. 
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Indeed, genetic investigations have demonstrated the 

paucity of mutations more specifically involving signal 

transduction pathways in adolescent and young adults 

sarcomas compared with adults. The result highlights a 

major difference between adolescent and young adults 

and adult. In other words, there may be different 

immune landscapes in adult osteosarcoma and 

childhood osteosarcoma [30]. In addition, The 

clinicopathologic features that may influence the 

prognosis of OSs patients include age, metastasis at 

diagnosis, lesion location, and degree of tumor necrosis 

(Huvos grade) after neoadjuvant chemotherapy, etc. [1, 

2]. However, age has not been taken into account in 

many prognostic model-related studies [26–29]. 

Therefore, patients under 25 years old were enrolled in 

this study, and it is hoped that the model could more 

accurately predict the prognosis of such population. 

 

The TME is an extremely complex system that has not 

been clearly elucidated [5, 31].  

Currently, exploratory researches involved in TME 

include the molecular events of regulation between OSs 

and non-tumor cells, the genomic drivers of disease 

progression, prediction model that best reflects the 

clinical outcome and its transformational applications 

[19, 32].  

 

Evidences shows that immune and stromal related genes 

in TME may play key regulatory roles in the prognosis 

of OSs. The interaction between Programmed Cell 

Death Protein 1 (PD-1) and its Ligand 1(PD-L1) is 

critical for tumor cells survival. PD-1 is expressed in T 

lymphocytes, while PD-L1 is overexpressed in tumor 

cells. PD-1 binding with PD-L1 can interfere with and 

inhibit the ability of T cells to kill cancer cells [33]. The 

pooled results of a meta-analysis showed that PD-L1 

overexpression could predict poor OS (HR 1.45, 95% 

CI: 1.11-1.90, P<0.01), metastasis-free survival 

(HR1.58, 95% CI: 1.14-2.19, P<0.01) and event-free 

survival (HR 2.82, 95% CI: 1.69-4.71, P<0.01) in OSs, 

 

 
 

Figure 7. Prognostic analysis of the 3-GRM in GSE21257. (A) Prognostic analysis between the high and low 3-GRM score group. (B) 
Differences of COCH, MYOM2 and PDE1B expression levels between the high and low 3-GRM score group. (C) Time-dependent ROC curve 
analysis of the 3-GRM. 
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and was also significantly correlated with a higher rate 

of tumor metastasis (OR 2.95, 95% CI: 1.32-6.60, P< 

0.01) [34]. CXCL12 (also known as stromal cell-

derived factor 1, SDF-1), one of the chemokine protein 

family, is the main regulator of cell trafficking, 

affecting both tumor cells and white blood cells [35]. 

Overexpression of CXCL12 was positively correlated 

with the number of tumor infiltrating lymphocytes and 

the better survival rate of OSs patients [36]. 

 

Among various methods, the TME-related gene 

expression profiling, based on immune score and 

stromal score obtained by Estimate algorithm, is a 

common and effective method to evaluate tumor 

 

 
 

Figure 8. Relationship between the 3-GRM score and the immune/stromal score, and the level of TIICs. (A) The 
relationship between the 3-GRM score and the immune score by Estimate. (B) The relationship between the 3-GRM score and the 
stromal score. (C) Comparison of the levels of TIICs between high 3-GRM score group and low 3-GRM score group by Cibersort. The 
horizontal axis represents the type of TIICs, and the vertical axis represents the relative percentage. NS, no significance; TIICs, tumour-
infiltrating immune cells. 
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microenvironment [20–23]. In this study, we analyzed 

the TME characteristics of OSs patients under 25 years 

old from TARGET dataset and its relationship with 

patient prognosis. According to the immune score and 

stromal score of TME, DEGs were obtained to construct 

a three-gene risk model (3-GRM). The results of 

validation were consistent in two independent 

databases, which confirmed that this 3-GRM was 

efficient and robust and the high score of 3-GRM was 

an independent prognostic factor for OSs patients. 

Further analysis found that the 3-GRM score was all 

strongly negatively correlated with the immune score 

and stromal score, respectively, indicating the model 

could effectively identify the TME status of OSs. 

Specifically, in this model, both COCH and MYOM2 

were overexpressed in the high 3-GRM score group and 

 

 
 

Figure 9. Analysis of the expression of immune-related differential genes, enrichment of immune-related pathways in high 
and low 3-GRD score group. (A) GO analyses of the immune-related differentially expressed genes in the categories of biological 
processes (BP), cellular components (CC), and molecular functions (MF). (B) KEGG analysis of the immune-related signaling pathways. GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.  

 

 
 

Figure 10. Nomogram model for predicting the outcome of OSs patients. (A) Nomogram model for predicting the probability of 1, 3, 
and 5-year overall survival (OS) for adolescent and young adults with osteosarcoma. 
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Table 2. Comparison of OSs-related prognostic models in TARGET database. 

OSs related prognostic 

model 
Constitution 1-year AUC value 3-year AUC value 5-year AUC value 

Nomogram model 
3-GRM + metastasis at 

diagnosis 
0.971 0.853 0.818 

3-GRM 3-gene signature 0.89 0.822 0.773 

Zhang,et al.(2020) [26] 3-gene signature 0.643 0.781 0.809 

Li,et al.(2020) [27] 4-gene signature 0.644 0.714 0.738 

Liu,et al.(2020) [28] 2-gene signature - 0.71 0.72 

Shi,et al.(2020) [29] 3-gene signature 0.914 0.849 0.822 

Note: AUC, area under the ROC curve; OSs, osteosarcomas; 3-GRM, three-gene risk model. 
 

led to poor prognosis. However, PD1EB was 

significantly down-regulated in the high-scoring group, 

and analysis showed (Figure 4E–4G) that its 

overexpression was beneficial to survival. As far as we 

know, the prognostic risk model based on these three 

genes has not reported before. 

 

COCH gene is highly expressed in the sensory organs 

(inner ear and eye), lymph nodes and spleen [37]. It 

plays an important role in maintaining the shape of cells 

[38]. And Cochlin, which encoded by COCH, and its 

domains are the main non-collagenous components of 

extracellular matrix (ECM) and have high affinity for 

multi-type collagens [38, 39]. A study shown that 

COCH was a transition zone-specific genes and was 

also stroma-specific of the prostate, and involved in the 

occurrence of prostatic hyperplasia and prostate cancer 

[40]. Up-expression of COCH was directly related to 

the stage progression of clear cell renal cell carcinoma 

(ccRCC) [41]. Interestingly, research indicated that in 

the circulation, the LCCL domains, one N-terminal 

factor C homology of COCH, could signal the innate 

immune cells and amplify the cytokine response in the 

form of glycosylated polypeptides through unknown 

pathways [42]. Similar, Cochlin, secreted from 

follicular dendritic cells in the spleen, was crucial for 

systemic immune response against bacterial infection by 

induces secretion of cytokines (IL-1βand IL-6) and 

enhances the recruitment of immune cells (neutrophils 

and macrophages) [37, 43, 44]. 

 

MYOM2 (myomesin 2) is a type of muscle fiber related 

protein and is an essential component of cytoskeleton 

[45, 46]. It is also the main component of the M-bands, 

which are located in the center of the sarcomere and are 

essential for the stability of sarcomere contraction [45, 

47]. Study had revealed that in relapsed/refractory 

diffuse large B-cell lymphoma patients, late oncogenic 

events was composed of clonally represented recurrent 

mutations/gene alterations including MYOM2 [48]. One 

report showed that MYOM2 was the only significantly 

up-regulated gene in localized invasive periodontitis, 

suggesting that it was associated with inflammation 

[49]. Tumor necrosis factor (TNF) blockers have a high 

efficacy in treating Ankylosing Spondylitis (AS), a 

study reported that IgG Galactosylation status combined 

with MYOM2 rs2294066 polymorphism (T allele in 

rs2294066 leads to MYOM2 overexpression) could 

precisely predicts anti-TNF response of AS, indicating 

that MYOM2 might associated with the pharmacology 

of TNF blockers [50]. In addition, the results of 

genomic screening represented MYOM2 mutations was 

probably causative for arthrogryposis [51]. 

 

PDE1B (Phosphodiesterase 1B) gene is located on 

chromosomes 12q13 and is a member of the cyclic 

nucleotide phosphodiesterase (PDE) family [52]. 

Interestingly, studies show that PDE1B may play a 

regulatory role in differentiation of multiple immune 

cell types via degrading intracellular levels of cAMP 

and cGMP [53, 54]. Exploration shown that granulocyte 

macrophage colony stimulating factor (GM-CSF) could 

shift the differentiation from a macrophage to a 

dendritic cell phenotype and also up-regulated 

PDE1B.Yet, in the presence of GM-CSF, IL-4 treatment 

suppressed the up-regulation of PDE1B2 (one of 

PDE1B variants with unique N-terminal sequences) 

[55]. Further research found that inhibiting PDE1B2 up-

regulation did not prevent HL-60 cells differentiation, 

but could change some aspects of macrophage like 

phenotype, such as increased cell proliferation, 

phagocytosis and leukocyte adhesion molecule CD11b 

expression, accompanied by a lower basal levels of 

cAMP in cells [56]. Moreover, PDE1B2 might involve 

in the occurrence and prognosis of breast cancer [57, 

58]. 

 

Regrettably, the mechanism by which these three genes 

affect the prognosis of patients with OSs is still unclear, 

and it is worth exploring in the future. We speculate that 

COCH overexpression may induce the secretion of 

multiple cytokines and enhance the recruitment of 
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immune cells, leading to the imbalance of the local 

inflammatory environment of TME and mediating the 

immune escape of tumor cells [59–61]. Similarly, 

MYOM2 overexpression may also mediate the 

malignant phenotype of tumor cells by affecting the 

inflammatory response of TME [49–51]. However, 

under the mediation of cytokines such as GM-CSF, the 

up-regulation of PD1EB may promote the 

differentiation of macrophages into M1 subtype 

macrophages, thereby enhancing the anti-tumor immune 

response and helping to improve the prognosis of 

patients [53–56, 62, 63]. 

 

Moreover, we also discussed the properties of 

microenvironmental cell levels and immune-related 

signal pathways between the high 3-GRM group and the 

low 3-GRM group. In general, the degree of enrichment 

of immune infiltrating cells in the high score group was 

significantly reduced, and immune regulation-related 

signal pathways such as cytokine interaction signaling 

pathways and T cell receptor signaling pathways were 

significantly down-regulated, indicating that there were 

general immunosuppression in the TME, which might 

affect the prognosis of patients. Several important 

studies identified that there was a complex associations 

between TIICs and cancer survival. On the one hand, 

the characteristics of TIICs, including the density, 

composition and activation of immune cells, were 

closely related to the response of immunotherapy and 

chemotherapy [64, 65]. The presence of either a pre-

existing or induced immune response might indicate a 

more favourable prognosis [66]. On the other hand, OSs 

cells could regulate the recruitment and differentiation 

of immune infiltrating cells (TIICs) to establish a local 

immune tolerance environment that was conducive to 

tumor growth, drug resistance and metastasis. OSs cells 

also could control the T-lymphocyte responses via the 

PD-1/PDL-1 system to affect the balance between M1 

and M2 macrophage subtypes, then leading to immune 

tolerance [58, 59]. A study used whole genome, T cell 

receptor sequencing and other methods to analyze the 

immune status of OSs, and confirmed that there were 

likely multiple immune-suppressive features in OSs, 

which might lead to poor response to immune 

checkpoint inhibitors and neoadjuvant chemotherapy 

[67]. 

 

In order to further comprehensively explore the impact 

of potential factors, such as 3-GRM score, 

clinicopathological characteristics, huvos grade, etc., on 

the prognosis of patients, this study established a 

nomogram model, which composed of 3-GRM scores 

and with metastasis at diagnosis. The verification 

analysis in two independent datasets identified that the 

nomogram model had higher prediction efficiency than 

3-GRM and other models [26–29]. This nomogram 

model was consistent with the multivariate analysis 

results of several large-scale clinical studies that the 

most adverse factors for prognosis were pulmonary 

metastases at diagnosis [68]. 

 

However, our research also has certain limitations. First 

of all, due to the limited number of cases and clinical 

data available in the data set, this study cannot analyze 

the correlation between the 3-GRM and clinical staging, 

tumor location, histological grade and other factors. 

Secondly, the role and mechanism of the three 

prognostic genes in OSs need to be further explored. 

Third, the 3-GRM needs to be further validated in 

multi-center clinical trials and prospective studies. 

 

In summary, this study aimed at the microenvironment 

of OSs and obtained a risk model (3-GRM) consisting 

of three immune/stroma-related genes through strict 

classification and screening criteria. The verification 

results proved that the model had high sensitivity and 

specificity, and good robustness. In addition, combining 

the 3-GRM score with the patient's clinical 

characteristics might further improve the prediction 

efficiency. Therefore, this 3-GRM could be used as a 

marker to predict the outcome for OSs patients in 

adolescent and young adults. 

 

MATERIALS AND METHODS 
 

Data preparation 
 

The gene expression profiles and clinical data of 

TARGET osteosarcoma patients were downloaded from 

the UCSC Xena website (http://xena.ucsc.edu/). Of 

those, a total of 82 patients under 25 years old and 

survive for more than 1 month were enrolled. The 

GSE21257 database was served as a validation, 

including 53 OSs patients and their clinical information 

(age, gender, histological subtype and huvos grade, 

tumor location, metastasis at diagnosis, and survival). 

All samples were obtained from primary lesion, and 

gene expression profiling were detected by microarray. 

The expression matrix data for the validation set 

GSE21257 was downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/), R package 

“limma” was used for quality control and normalization 

[69]. Gene expression value with multiple probes for 

genes was calculated as the average of the probes.  

 

Identification of DEGs related to the immune and 

stromal score of the TME 

 

The immune and stromal scores were calculated based on 

mRNA expression profile by “estimate” package 

(http://r-forge.rproject.org) [20]. According to the median 

of scores, 82 OSs patients from TARGET dataset were 

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
http://r-forge.rproject.org/
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divided into two groups: high and low immune/stromal 

score group. The differential expression genes of the 

TME (tmDEGs) between these two groups were 

identified with “limma” in R package (version 3.6.1; 

https://www.rproject.org/) [69]. The filtering criteria 

were the fold-change> 1 or <-1 and adjusted P<0.05.  

 

Enrichment analysis of DEGs 
 

The potential functional enrichment of tmDEGs and 

immune-related differential genes were analyzed by the 

“clusterprofile” in R [70]. Functional enrichment 

included gene ontology (GO) categories in biological 

processes (BP), molecular functions (MF), cellular 

components (CC) and Kyoto Encyclopedia of Gene and 

Genome enriched by (KEGG) Pathway. The threshold 

of false detection rate (FDR) < 0.05 was considered 

significant. 

 

Construction of risk model of Oss 

 

The genes related to survival of OSs patients were 

screened by univariate cox and lasso regression, and 

Xgboost was used to further narrow the screening range, 

then multivariate cox regression analysis was used to 

determine the genes used to establish the prognosis 

model. The Lasso regression was analyzed using 

"glmnet" R software package. XGBoost machine 

learning [71], used Anaconda software, and its script was 

from MichaelMW (github.com/MichaelMW/bnfo. 

course). The formula of risk scoring was as follows: risk 

score= [0.30×COCH expression level]+[0.41×MYOM2 

expression level]-[2.1×PDE1B expression level]. In this 

paper, the evaluation of the 3-GRM involved ROC curve. 

“Survival ROC” R software package was used to 

visualize the specificity and sensitivity of the 3-GRM. 

 

Enrichment analysis of cells related to TME 

 

We used two bioinformatics methods to analyze cells in 

TME, in which, Cibersort (https://cibersortx. 

stanford.edu) calculated the proportion of 22 kinds of 

TIICs in microenvironment based on deconvolution 

(Figure 9A) [24]; XCELL (https://xcell.ucsf.edu/)  

calculated the independent enrichment scores of 64 kinds 

of immune and stromal cells based on gene 

enrichment(Figure 9B) [72]. We further applied the 

Wilcox test to compare the differences of cells 

characteristics between high score and low score groups. 

 

Construction and validation of the nomogram model  

 

Using "RMS" in R to draw the nomograms of 1, 3, 5-

year OS of OSs patients [73]. 3-GRM score and 

metastasis at diagnosis, which were two independent 

prognostic factors identified by multivariate cox 

regression analysis, were incorporated into the 

nomogram model. “Bootstrap” obtained 1, 3, 5-year 

calibration plots through re-sampling 1000 times, and 

the calibration curve was visualized to evaluate the 

consistency between actual and predicted survival rates.  

 

Statistical methods 
 

All analyses were performed using R software (version 

3.5.2). Survival analyses used the Kaplan-Meier (K-M) 

method and tested the relationship between them using 

a log-rank test. The spearman rank correlation analyzes 

the correlation between the two variables. The Venn 

diagram was drawn using the "VennDiagram" package, 

and the violin curve was drawn using the "violot" 

package. Immune-related genes were recruited at 

IMMPORT (http://www.immport.org/) [74]. According 

to the lowest AIC value, cox multiple factors 

determined the genes included in the model [75]. 

Analysis of variance was used to test the relationship 

between 3-GRM score and clinical characteristics, and 

Wilcox test was used to analyze the characteristics of 

cells in microenvironment in different risk groups. All 

statistical tests are two-sided tests, P value <0.05 is 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Comparison of the level of TIICs between low risk group and high risk group by XCell. The horizontal 
axis represents the type of microenvironment cells, and the vertical axis represents the relative enrichment score. Blue and red represent low 
and high risk score, respectively. The Wilcoxon rank-sum test assessed data. *P<0.05, **P<0.01, ***P<0.001. NS, no significance; TIICs, 
tumour-infiltrating immune cells. 

 

 
 

Supplementary Figure 2. Calibration plot of the nomogram model for predicting the probability of OS at 1, 3, and 5 years.  
(A) 1-year calibration curve. (B) 3-year calibration curve. (C) 5-year calibration curve. 
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Supplementary Figure 3. (A) 1, 3 and 5-year ROC curve for survival prediction of osteosarcoma patients by nomogram model in GSE21257. 
(B) 1, 3 and 5-year calibration plot for survival prediction of osteosarcoma patients by nomogram model in GSE21257. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3. 

 

Supplementary Table 1. Clinical baseline data of TARGET 82 cases of adolescent osteosarcoma. 

 
level Total 

patient(n) - 82 

Survival time (months) - 49.88 (±35.01) 

age (years) - 14.50 (±3.92) 

Survival status (n[%]) Alive 56 (68.3) 

 Dead 26 (31.7) 

Gender(n[%]) Male 45 (54.9) 

 Female 37 (45.1) 

Race(n[%]) While 48 (58.5) 

 Asian 7 (8.5) 

 Black or African American 7 (8.5) 

 Unknown 20 (24.4) 

Disease at diagnosis (n[%]) Non-metastatic 61 (74.4) 

 Metastatic 21 (25.6) 

Metastasis at lung (n[%]) Yes 27 (32.9) 

 Unknown 55 (67.1) 

Primary tumor site(n[%]) Leg/Foot 74 (90.2) 

 Arm/hand 6 (7.3) 

 Pelvis 2 (2.4) 

Specific tumor site(n[%]) Femur 44 (53.7) 

 Tibia /Fibula 28 (34.1) 

 Humerus 6 (7.3) 

 Pelvis 4 (4.9) 

Specific tumor side(n[%]) Left 10 (12.2) 

 Right 10 (12.2) 

 Unknown 62 (75.6) 

Specific tumor region(n[%]) Distal 26 (31.7) 

 Proximal 22 (26.8) 

 Unknown 34 (41.5) 

Definitive Surgery(n[%]) Limb sparing 38 (46.3) 

 Amputation 4 (4.9) 

 Unknown 40 (48.8) 

Primary site progression(n[%]) No 19 (23.2) 

 Yes 15 (18.3) 

 Unknown 48 (58.5) 
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Supplementary Table 2A. 262 differential genes up-regulated in the high immune score group. 

 

Supplementary Table 2B. 320 differential genes down-regulated in the high immune score group. 

 

Supplementary Table 3A. 160 differential genes up-regulated in the high stromal score group. 

 

Supplementary Table 3B. 251 differential genes down-regulated in the high stromal score group. 

 

Supplementary Table 4. The intersection of differential genes between high and low score groups. 

Gene Regulation 

CCL14 up 

CCR2 up 

FCGR1A up 

FCGR1B up 

FCGR1C up 

FCGR2B up 

GAPT up 

GIMAP5 up 

IGHG2 up 

IGHM up 

IGHV1-24 up 

IGKV3-11 up 

IL10 up 

IL2RA up 

LILRA1 up 

LILRA2 up 

LLNLR-470E3.1 up 

MS4A14 up 

P2RY10 up 

PLD4 up 

RP11-24F11.2 up 

RP11-455F5.5 up 

RP11-494O16.3 up 

RP11-733O18.1 up 

RP11-84C10.2 up 

TLR7 up 

TLR8 up 

TNFSF8 up 
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TRBV29-1 up 

TRBV7-3 up 

VENTX up 

AC003988.1 down 

AC013470.6 down 

COCH down 

EMILIN3 down 

FAM60BP down 

GS1-309P15.4 down 

HAUS6P1 down 

HK2P1 down 

MAP3K15 down 

RP1-290I10.2 down 

RP11-283C24.1 down 

RPRML down 
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Supplementary Table 5. Screening of genes affecting prognosis of osteosarcoma patients by univariate Cox 
regression analysis. 

Id HR HR.95 L HR.95 H P value 

ARHGAP9 0.51087512 0.279370094 0.934220925 0.029190049 

ARL11 0.2925651 0.106229156 0.805751841 0.017415939 

CARD11 0.366473556 0.135386517 0.991995883 0.048179537 

CCL2 0.554934323 0.361183981 0.852618385 0.007196217 

COCH 1.444447813 1.154257554 1.807594396 0.001310445 

COLEC10 2.165998823 1.213980939 3.864600135 0.008886882 

DENND1C 0.40798314 0.170180199 0.978082315 0.044469242 

FCGR2B 0.330313897 0.122811646 0.888411433 0.028209966 

GPR65 0.367016467 0.149575271 0.9005572 0.028620701 

HSPD1P5 5.996700537 1.928439911 18.64741397 0.00197144 

HTR2B 0.173056522 0.037741629 0.793515297 0.023968604 

IGHG2 0.695364235 0.487357095 0.992150157 0.045132177 

IL2RA 0.247279044 0.077194996 0.792109969 0.018656486 

ITGAM 0.472112561 0.266834219 0.835313669 0.009935059 

KBTBD11-OT1 3.569424862 1.869198572 6.816179958 0.000115665 

LAG3 0.438454408 0.197341701 0.974159375 0.042945491 

LILRB2 0.516296389 0.28565598 0.933157295 0.028593342 

LILRB4 0.560448573 0.358927426 0.875114524 0.010874652 

LRRC25 0.629703223 0.399797335 0.991817892 0.045998229 

MIR4666A 2.388143135 1.302508685 4.378648448 0.004886248 

MS4A4A 0.609618914 0.409457223 0.907628928 0.014799605 

MYOM2 1.673891374 1.229811511 2.278326645 0.001056289 

NCF1B 0.256873893 0.086789752 0.760276362 0.014088033 

NCF4 0.630684051 0.422394571 0.941684386 0.024212517 

PCED1B 0.373265768 0.164832238 0.845267499 0.01812482 

PDE1B 0.128492357 0.028553448 0.578223886 0.007499985 

PIK3R5 0.345663883 0.141728729 0.843043756 0.019527423 

RASGRP4 0.262925485 0.098455778 0.702140718 0.007685921 

SNX20 0.267559459 0.087584958 0.817355696 0.020671466 

TNFSF8 0.256172732 0.088599698 0.740685017 0.011933582 

TRBV7-3 0.061055107 0.004092557 0.910855004 0.042593103 

VSIG4 0.663373939 0.489320843 0.899338314 0.008210926 

 

  



 

www.aging-us.com 645 AGING 

Supplementary Table 6. Immune-related differential genes in high and low risk group. 

Gene Low risk High risk Log FC P Value FDR 

C3 2.101113494 0.993065337 -1.081193548 3.42E-06 0.000164068 

CCL23 0.163230344 0.078820756 -1.050261781 0.007313622 0.035887774 

CD3D 1.257976912 0.581421327 -1.113449547 3.45E-05 0.000757924 

CD3E 1.234124531 0.559110455 -1.142282751 2.65E-06 0.000162902 

CNTFR 0.763638404 1.740009475 1.188133599 0.008324904 0.039384637 

COLEC10 0.116194113 0.342232389 1.558439322 3.88E-05 0.000805077 

CSPG5 0.331461945 0.664455344 1.003329 5.66E-06 0.000232374 

CX3CR1 1.310084234 0.647589283 -1.016508559 0.000112751 0.001950043 

CXCR3 0.864951829 0.425292057 -1.024165878 1.88E-05 0.000505711 

CXCR6 0.42387118 0.211257015 -1.004626627 0.000203797 0.003205921 

FCGR2B 0.925072469 0.353461012 -1.388015301 6.26E-09 4.34E-06 

IGHM 1.600302821 0.779517085 -1.03769238 0.004409497 0.027274265 

IL2RA 0.770377786 0.294716765 -1.386236974 3.42E-06 0.000164068 

PAK6 0.013952663 0.047304117 1.761425248 0.005420618 0.02981382 

PRLHR 0.015912746 0.035923823 1.174758031 0.009123249 0.041138437 

PROK2 0.357443064 0.932191954 1.382913603 0.001419738 0.011887491 

PTHLH 0.467021326 0.15219946 -1.617525187 0.000558506 0.006400523 

RETN 0.403612052 0.074929169 -2.429369894 0.000337595 0.004686353 

RNASE2 1.131581553 0.441860267 -1.356678453 3.89E-05 0.000805077 

TLR7 1.040862022 0.519912736 -1.001437434 2.79E-06 0.000162902 

TRAV1-2 0.179271881 0.061862702 -1.535007475 0.000217345 0.003229565 

TRAV14DV4 0.209995614 0.055742782 -1.913502272 0.000922779 0.008931487 

TRBC2 1.572979597 0.750764535 -1.067067551 7.74E-05 0.001432748 

TRBV12-4 0.278282339 0.138663227 -1.00496411 0.005634189 0.030482407 

TRBV20-1 0.625931807 0.136296403 -2.199257999 1.42E-05 0.00039359 

TRBV28 0.980494657 0.45568394 -1.105476244 0.000227234 0.003329603 

TRBV29-1 0.230535009 0.09849979 -1.226793302 0.005011945 0.029217714 

TRBV4-2 0.288890712 0.060070621 -2.265792342 0.000564217 0.006400523 

TRBV6-5 0.302632378 0.119943755 -1.335208298 0.007216178 0.035887774 

TRBV7-3 0.259605434 0.063285289 -2.0363785 8.82E-06 0.00026592 

TRDC 1.285825752 0.538065431 -1.256841623 0.000919254 0.008931487 

 

 

 


