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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the most 

common cancers and the fourth leading cause of 

cancer deaths in men and women globally, with an 

estimated 841,000 new cases reported in 2018 [1]. 

Complete surgical resection remains the standard 

therapeutic regimen for the early stage of HCC 

patients, while poor prognosis due to late diagnosis 

still places a huge burden on individuals and 

countries. The TNM system and liver functions are 

commonly used in predicting the survival of HCC 

patients and determining therapeutic regimens [2]. 

However, HCC within the same TNM stage  

might also have a different prognosis because of  

the inherent clinicopathological and molecular 

diversities of the disease [3, 4]. Therefore, there is an 

urgent need to explore a novel approach to guide 
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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is closely associated with the immune microenvironment. To 
identify the effective population before administering treatment, the establishment of prognostic immune 
biomarkers is crucial for early HCC diagnosis and treatment. 
Results: A total of 335 IRGs identified from 788 overlapping IRGs were associated with the survival of HCC. A 
prognostic immunoscore model was identified. The Kaplan-Meier survival curves and time-dependent ROC 
analysis revealed a powerful prognostic performance of immunoscore signature via multi validation. Besides, 
the immunoscore signature exhibited a better predictive power compared to other prognostic signatures. Gene 
set enrichment analysis showed multiple signaling differences between the high and low immunoscore group. 
Furthermore, immunoscore was significantly associated with multiple immune cells and immune infiltration in 
the tumor microenvironment. 
Conclusions: We identified the immunoscore as a robust marker for predicting HCC patient survival. 
Methods: Three sets of immune-related genes (IRGs) were integrated to identify the overlapping IRGs. 
Weighted gene co-expression network analysis was performed to obtain the survival-related IRGs. Further, the 
prognostic immunoscore model was constructed via LASSO-penalized Cox regression analysis. Then the 
prognostic performance of immunoscore was evaluated. In addition, ESTIMATE and CIBERSORT algorithms 
were applied to explore the relationship between immunoscore and tumor immune microenvironment. 
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clinical treatment and improve the prognosis of HCC 

patients. 

 

Mounting evidence indicates that immunotherapy 

including the blockade of immune checkpoints has 

emerged as a potential alternative therapy for HCC [5, 

6, 7]. Owing to the overexpression of inhibitory 

ligands, most tumors evade the immune system by 

damping the T cell attack [8]. Importantly, the HCC 

tumor microenvironment is complex and 

immunogenic, it expresses tumor antigens, and 

coordinate numerous hepatic antigens presenting cells 

and thus promotes the evasion of tumor cells from an 

effective immune response [9]. With the emergence of 

immune checkpoint therapy including programmed 

cell death protein (PD-1), and programmed death-

ligand 1 (PD-L1), the treatment of advanced HCC 

patients using a strong response is possible. However, 

only a minority of HCC patients experience prolonged 

survival time, with the majority of patients having 

limited or no response to the therapy particularly 

during HCC progression. A multi-immune-relevant 

gene signature that could help clinicians to predict the 

prognosis of HCC patients and characterize their 

tumor microenvironment would be highly valuable. 

 

In this study, overlapping immune-related genes 

(IRGs) from three independent datasets were analyzed 

and subjected to weighted gene co-expression network 

analysis (WGCNA) to identify survival-related IRGs. 

An immunoscore model was constructed using 

LASSO-penalty regression analysis to predict the 

survival of patients in three large cohorts. 

Comprehensive bioinformatics analyses were 

conducted to explore the underlying mechanisms of 

the biomarker using ESTIMATE and CIBERSORT 

algorithms. 

 

RESULTS 
 

Identification of survival-related IRGs 

 

The flowchart of the procedures in this study is shown 

in Figure 1. A total of 788 HCC patients from three 

independent cohorts were enrolled in our study. After 

matching the IRGs from the ImmPort database, three 

sets of data were integrated and 766 overlapping IRGs 

were identified for further analysis (Figure 2A, 

Supplementary Table 1). 

 

To construct co-expressed networks and identify co-

expression modules, the gene expression profiles of 

overlapping IRGs were analyzed by WGCNA.  

Based on a scale-free R
2
 (R

2
 = 0.95) calculated in 

WGCNA, the soft-thresholding power was determined, 

and six modules were identified by the soft-

thresholding power and the average linkage 

hierarchical clustering (Figure 2B, 2C). For each 

module, the gene co-expression networks were 

summarized in the eigengene. We analyzed the 

correlations of each eigengene with clinical traits, 

including sex, age, survival times, and status. As 

presented in Figure 2D, the green and grey modules 

were negatively correlated with the survival time 

 

 
 

Figure 1. Flowchart describing the process used to identify and validate the immunoscore of hepatocellular carcinoma. 
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and status of HCC patients (P < 0.01), whereas the 

brown module showed the positive correlation with 

survival status (P = 0.001). The green module 

contained 68 IRGs while the grey module contained 

267 IRGs. Data for the two modules were selected for 

further analysis. 

 

Construction of prognostic model based on survival-

related IRGs 

 

To construct a prognostic model, Lasso penalized cox 

regression analysis was performed with 335 survival-

related IRGs and 13 IRGs were finally identified in the 

model, consisting of SPP1, STC2, HSPA8, IL15RA, 

BLNK, TRAF3, NOD2, GRB2, ACTG1, HDAC1, 

S100A9, PSMD1, and EPO (Figure 3A, 3B). Then the 

immunoscore was calculated for each patient with the 

corresponding coefficients (Table 1). The optimal cut-

off value was determined by the median value of -0.07 

(Figure 4A–4C). Subsequently, the included 342 

TCGA-LIHC patients were stratified into two groups 

based on the optimal cut-off value. The high 

immunoscore group showed a poor OS compared to the 

low immunoscore group using the Kaplan-Meier curve 

analysis (P < 0.0001) (Figure 4D). The C-index of  

the immunoscore was 0.741 (95% CI 0.692 - 0.789) 

(Figure 5A). Time-dependent ROC curves showed that 

the area under the curve of ROC (AUC) for the 1-, 3-, 

and 5- year OS predictions of the immunoscore  

were 0.80, 0.77, and 0.78, respectively (Figure 5B). 

 

 
 

Figure 2. Identification of survival-related IRGs by using WGCNA. (A) Venn diagram was used to visualize overlapping IRGs among 
TCGA dataset, GEO dataset, and ICGC dataset; (B) The scale-free fit index for soft-thresholding powers. The soft-thresholding power in the 
WGCNA was determined based on a scale-free R2 (R2 = 0.95). The left panel presents the relationship between the soft-threshold and scale-
free R2. The right panel presents the relationship between the soft-threshold and mean connectivity. (C) A dendrogram of the differentially 
expressed genes clustered based on different metrics. Each branch in the figure represents one gene, and every color below represents one 
co-expression module. (D) A heatmap showing the correlation between the eigengene and clinical traits. The correlation coefficient in each 
cell represented the correlation between gene module and the clinical traits, which decreased in size from red to blue. 
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External validation of the prognostic performance in 

the GSE14520 and ICGC datasets. 

 

To validate the classification performance of the 

immunoscore signature with different data platforms, 

the GSE14520 dataset and ICGC dataset were used as 

external datasets. Similarly, each patient obtained 

exclusive immunoscore and was grouped into two 

groups based on the optimal cutoff value. The Kaplan-

Meier survival curves also showed significant favorable 

OS in the groups with lower immunoscore score (P < 

0.01) (Figure 4E, 4F). Moreover, the C-index of the 

immunoscore in the GSE14520 dataset was 0.596 (95% 

CI 0.660 - 0.531), while that in the ICGC dataset was 

0.697 (95% CI 0.609 - 0.786) (Figure 5C, 5E). The 

AUCs of the immunoscore model for OS prediction in 

the GSE14520 cohort was 0.60 at 1 year, 0.61 at 3 

years, and 0.60 at 5 years (Figure 5D). In addition, only 

2 patients with OS over 5 years in the ICGC  

dataset were reported, which is not enough for effective 

ROC analysis. Hence, the AUC for the 5-year OS 

prediction was unsatisfactory. However, the AUCs for 

1- and 3-year OS in the ICGC dataset showed a great 

diagnostic ability of the immunoscore (Figure 5F). 

Notably, the immunoscore had better predictive power 

and accuracy compared to other potential prognostic 

markers based on time-ROC analysis (Supplementary 

Figure 1A–1C).  

 

Correlation with clinicopathological characteristics 

and prognostic factor 

 

Among the 221 patients enrolled in the TCGA-LIHC 

cohort with complete clinical information, vascular 

invasion was found to be significantly correlated with 

immunoscore (Table 2). Besides, the univariable and 

multivariable Cox regression analyses indicated that the 

immunoscore and AJCC stage were both independent 

prognostic factors for OS (Table 3).  

 

Identification of DEGs between high and low 

immunoscore group 

 

DEGs analysis between the high and low immunoscore 

groups in the TCGA-LIHC cohort was performed. A 

total of 47 upregulated and 225 downregulated genes 

were identified (Supplementary Table 2). Volcano plot 

and heatmap were generated to show the distribution of 

the DEGs (Figure 6A, 6B). Besides, GO enrichment 

analysis was performed using the online DAVID tool 

(Supplementary Table 3). KEGG pathway analysis 

showed that the DEGs were mainly enriched in drug 

metabolism, retinol metabolism, complement and 

coagulation cascades and PPAR signaling pathway 

(Figure 6C). Concerning biological processes, the DEGs 

were significantly enriched in oxidation reduction, 

organic acid catabolic process, carboxylic acid catabolic 

process, and steroid metabolic process (Figure 6D). 

Enrichment analysis of cellular compartment and 

molecular functions and the corresponding distributions 

are shown in Figure 6E, 6F.  

 

GSEA analysis  
 

Gene set enrichment analysis between the high 

immunoscore and low immunoscore groups was 

conducted, which showed that 24 significant KEGG 

pathways were involved, including insulin signaling 

pathway, peroxisome pathway, adipocytokine signaling 

pathway, and complement and coagulation cascades 

pathway, which were identified as immune-related 

pathways (Figure 7A–7D). GO terms including 

biological processes, cellular compartment, and 

molecular functions are listed in Supplementary Table 4. 

 

 
 

Figure 3. Construction of immunoscore model. LASSO deviance profiles (A) and LASSO coefficient profiles (B). 
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Table 1. The IRGs in the immunoscore model associated with OS in the TCGA dataset. 

Symbol 
Univariate Cox regression analysis 

LASSO coefficient 
HR 95%CI P-value 

SPP1 1.139 1.080-1.201 1.49e-06 0.0252 

STC2 1.382 1.206-1.585 3.29e-06 0.0964 

HSPA8 1.569 1.233-1.996 0.000249 0.0763 

IL15RA 1.546 1.257-1.903 3.78e-05 0.0673 

BLNK 0.711 0.575-0.879 0.001629 -0.0102 

TRAF3 1.664 1.222-2.267 0.001237 0.1197 

NOD2 1.469 1.141-1.890 0.002833 0.0486 

GRB2 2.150 1.437-3.216 0.000195 0.0485 

ACTG1 1.525 1.249-1.863 3.54e-05 0.0262 

HDAC1 1.933 1.435-2.603 1.43e-05 0.1284 

S100A9 1.288 1.172-1.417 1.76e-07 0.0587 

PSMD1 2.886 1.815-4.588 7.42e-06 0.2254 

EPO 1.285 1.162-1.420 9.35e-07 0.0855 

Abbreviations: IRGs, immune-related genes; OS, overall survival; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, 
confidence interval; LASSO, the Least Absolute Shrinkage and Selection Operator. 
 

Immune infiltration score between the high and low 

immunoscore group 

 

The violin plot shows the relationship between 

immunoscore with the immune and stromal score. The 

immune score showed a significant difference between 

the high and low immunoscore groups despite different 

results in the different cohorts in terms of stromal score 

(Figure 8A–8C). Regarding the various immune cells, T 

cells CD4 memory resting, and B cells naive were 

 

 
 

Figure 4. Evaluation and validation of the prognostic performance of immunoscore in three independent cohorts. (A–C) 
Distribution between the immunoscore and survival data in TCGA dataset (A), GSE14520 dataset (B), and ICGC dataset (C), respectively; (D–F) 
Kaplan-Meier survival curves of the immunoscore in TCGA, GSE14520, and ICGC datasets. 
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significantly aggregated in the low immunoscore group 

(Figure 8D–8F). 

 

DISCUSSION 
 

HCC is an aggressive cancer with a high fatality rate 

and remains a significant global health problem. 

Although it has long been acknowledged that the 

immune system regulates tumor initiation and 

development as well as the targeted therapy strategies, 

no effective molecular targeted therapy has shown any 

major impact in routine clinical practice [10–12]. 

Therefore, due to the limitations associated with 

immunotherapy, it is necessary to identify effective 

patients and predict their clinical outcomes. Analysis of 

immune genes in each patient and prognostic status 

might solve the current stalemate. In this study, we 

aimed to establish a valuable prognostic model using 

immune-related genes, to determine the prognosis of 

HCC patients. 

 

Only a few prognostic gene signatures have been 

translated into real clinical practice due to  

various defects in signature construction. First, the 

batch effect from a different experimental process 

rooted in gene expression data always causes 

nonhomogeneity, which significantly reduces the 

broad applicability from one specific cohort to 

another. Second, the robustness and effectiveness of 

the model are dependent on a large cohort with low 

variance and independent samples. Besides, the 

applicability of the calculation method adopted  

in the model construction and the accurate choice of 

the statistical method also determine its usability in 

different populations. Finally, most of the  

signatures are made up of a few specific genes but 

ignore the highly heterogeneous genes in HCC, which 

severely reduces their stability and might cause 

overfitting. 

 

In this study, we constructed a prognostic model 

based on IRGs, to reflect the immune status and tumor 

prognosis in HCC patients. To construct this model, 

we first screened 765 overlapping IRGs in three 

independent large cohort. The overlapping IRGs could 

comprehensively reflect the immune status of HCC. 

Besides, multiple algorithms were used for model 

selection, and the prediction value of the model was 

multi confirmed, which proved the accuracy and 

dependability of the prognostic model. The expression 

levels of overlapping IRGs were fitting and grouped 

into six modules through WCGNA analysis. 

Ultimately, 13 out of the 335 survival-related IRGs 

were extracted to construct the prognostic 

immunoscore model using LASSO regression 

analysis. Therefore, the HCC patients were grouped 

into high- or low-risk groups based on the optimal 

cutoff of the immunoscore. Using the ROC curve and 

 

 
 

Figure 5. Evaluation and validation of the prediction value of immunoscore in three independent cohorts. (A, C, E) Calibration 
plot of the immunoscore for predicting the probability of survival at 1-, 3-, and 5-years in TCGA, GSE14520, and ICGC datasets, respectively; 
(B, D, F) Time-dependent ROC curve of immunoscore for 1-, 3-, and 5-year overall survival predictions in TCGA, GSE14520, and ICGC datasets, 
respectively.  
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Table 2. Correlation of clinicopathologic characteristics and the immunoscore in TCGA LIHC cohorts. 

Characteristics 

TCGA-LIHC 

Low immunoscore  

N = 124 

High immunoscore  

N = 97 
P 

Follow-up time (mouths) 35.4 ± 25.5 24.7 ± 20.2 0.001 

Immunoscore -0.39 + 0.24 0.31 + 0.34 0.000 

Age (years)   0.089 

< 60  68 (54.8%) 42 (43.3%)  

≥ 60  56 (45.2%) 55 (56.7%)  

Sex   0.488 

Female  38 (30.6%) 34 (35.1%)  

Male  86 (69.4%) 63 (64.9%)  

BMI (kg/m2)   0.689 

< 25 66 (53.2%) 49 (50.5%)  

≥ 25 58 (46.8%) 48 (49.5%)  

G stage    0.123 

G1 + G2 73 (58.9%) 47 (48.5%)  

G3 + G4 51 (41.1%) 50 (51.5%)  

Residual tumor   0.873 

R0 117 (94.4%) 92 (94.8%)  

Non-R0 7 (5.6%) 5 (5.2%)  

AJCC stage   0.167 

I + II 106 (85.5%) 76 (78.4%)  

III + IV 18 (14.5%) 21 (21.6%)  

Vascular invasion    0.002 

No 92 (74.2%) 53 (54.6%)  

Yes 32 (25.8%) 44 (45.4%)  

AFP (ng/ml)   0.385 

< 300 97(78.2%) 71 (73.2%)  

≥ 300 27 (21.8%) 26 (26.8%)  

Total bilirubin (mg/dl) 0.81 ± 0.50 0.94 ± 1.03 0.239 

Abbreviations: TCGA LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; BMI, body mass index; AJCC, The 
American Joint Committee on Cancer. 
 

Kaplan-Meier survival curves analyses, the reliability 

and efficiency of the immunoscore related to survival 

prediction was evaluated in the TCGA-LIHC cohort and 

validated using the ICGC and GSE14520 datasets. 

Univariate and multivariate COX analyses further 

verified the significant correlation between immuno-

score and survival. Furthermore, the CIBERSORT 

algorithms were used to calculate the immune cell 

subtype and assess the immune infiltration scores of 

each sample in the two groups. The results showed that 

the two immunoscore groups expressed differential 

immune cell subtypes and survival. 

 

To assess the prediction capability of the model, the 

immunoscore signature was compared with other 

prognostic signatures [13, 14]. The immunoscore 

achieved the highest AUC in 1 year-, 3 year-, and 5 

year-ROC analysis, indicating its high prognostic 
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Table 3. Univariate and multivariate Cox regression analysis of TCGA-LIHC patients. 

Characteristics 
Univariate Cox Multivariate Cox 

HR (95%CI) P HR (95%CI) P 

Immunoscore 7.372 (3.995 – 13.605) <0.001 5.917 (3.034 – 11.539) < 0.001 

Age (years)     

< 60  1  1  

≥ 60  1.392 (0.819 - 2.367) 0.222 1.057 (0.589 – 1.899) 0.852 

Sex     

Female  1  1  

Male  0.648 (0.380 - 1.105) 0.111 0.911 (0.508 - 1.634) 0.755 

BMI (kg/m2)     

< 25 1  - - 

≥ 25 1.318 (0.779 – 2.229) 0.303 - - 

G stage      

G1 + G2 1  1  

G3 + G4 1.578 (0.931 - 2.676) 0.090 1.204 (0.680 - 2.133) 0.524 

Residual tumor     

R0 1  - - 

Non - R0 1.023 (0.247 - 4.237) 0.975 - - 

AJCC stage     

I + II 1  1  

III + IV 2.664 (1.529 – 4.642) 0.001 2.229 (1.242 – 3.999) 0.007 

Vascular invasion      

No 1  1  

Yes 2.035 (1.182 – 3.505) 0.010 1.433(0.822 - 2.499) 0.205 

AFP (ng/ml)     

< 300 1  - - 

≥ 300 1.392 (0.819 - 2.367) 0.222 - - 

Abbreviations: TCGA LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; HR, hazard ratio; CI, confidence 
interval; BMI, body mass index; AJCC, The American Joint Committee on Cancer. 
 

prediction capability. Previous potential gene 

signatures used differentially expressed genes 

between HCC and normal tissue to construct a model. 

A remarkable diagnosis performance was shown, 

however, these might fail in prognostic performance 

which ignored that the liver is an organ with 

predominant innate immunity [15]. It has been 

recognized that tumor occurrence and progression 

should be attributed to the internal genetic 

background of cancer cells and the interaction of the 

tumor with various systems within the body, 

specifically the immune system [16, 17]. Immune-

related cells and factors regulate the process of 

hepatocarcinogenesis, proliferation, metastasis, and 

significantly influence the tumor [18]. Moreover, 

considering that cancer and immunity are closely 

associated, the prognostic signature that is expected to 

aid in clinical treatment should take into account the 

tumor immune microenvironment. Therefore, the 

correlation between the IRGs and immune cell 

infiltration reflected on the status of the tumor 

microenvironment. The results showed that high 

immunoscore was significantly correlated with the 

infiltration levels of B cells, CD4+ T cells, dendritic 

cells, macrophages, and neutrophils (P < 0.05). 

Previous studies have proven the prognostic function 
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in terms of these immune cells [19–21]. Recently, an 

extensive immunogenomic study using data compiled 

by TCGA was performed and included more than 

10,000 tumors comprising 33 diverse cancer types 

[22]. The study identified and characterized six  

stable and reproducible immune subtypes spanning 

multiple tumor types by integrating major immuno-

genomics methods, and also provided a wealth of 

immune information in different cancer types and the 

prognostic value. This large-scale study laid a solid 

foundation for an in-depth understanding of the 

relationship between tumor and immunity in future 

studies. Based on the results of this research, we 

further studied the relationship between  

liver cancer and immune genes using WGCNA and 

LASSO analysis and proved that the immunoscore 

model based on IRGs has a stable and effective 

prognostic performance. This may provide significant 

 

 
 

Figure 6. Identification of DEGs between the low and high immunoscore group and functional analysis. (A) Volcano plot of DEGs 
in TCGA-LIHC dataset; (B) Heatmap of top 50 regulated DEGs in TCGA-LIHC dataset; (C) KEGG pathway analysis of the DEGs; (D) Biological 
process of the DEGs; (E) Cell component of the DEGs; (F) Molecular function of the DEGs. 
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help for future personalized precision treatment for 

HCC patients. 

 

Additionally, previous studies report that the multi-IRGs 

in the immunoscore model are linked to tumor prognosis. 

As a secreted calcium-binding phosphorylation protein, 

the expression levels of SPP1 have been strongly 

associated with the expression of the monocyte/ 

macrophage markers CD11b (ITGAM) and CD68, which 

are significantly associated with lower overall survival. 

STC2 is a heparin-binding, secreted homodimeric 

glycoprotein, which is upregulated in T cells developing 

a Th2 response [23, 24]. It also negatively correlates with 

immune-related metagenes [25]. HSPA8 is a member of 

the HSP70 family which also acts as a direct down- 

regulator of the inflammatory response mediated by  

DCs and other innate immune system cells [26, 27]. 

IL15RA is an important component of interleukin-15

 

 
 

Figure 7. Gene Set Enrichment Analysis (GSEA) analysis between the low and high immunoscore groups. (A) Adipocytokine 
signaling pathway; (B) Complement and coagulation cascades; (C) Insulin signaling pathway; (D) Peroxisome. 
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(IL15) pro-inflammatory signaling and also interacts 

with the signals through SYK in neutrophils, and B 

cell linker protein (BLNK) is also involved with the 

SYK tyrosine kinase [28–31]. TRAF3 acts as a 

checkpoint of B cell receptor signaling to control 

antibody class switch recombination and anergy [32]. 

Overexpression of Gab2 regulates T-cell receptor 

(TCR) signaling in Jurkat cells and mediates a 

feedback inhibitory PI3K signal during TCR 

activation [33, 34]. High expression of ACTG1 is 

significantly correlated with advanced tumor stages 

and poor prognosis in patients with HCC [35]. S100a9 

is an intratumoral immunosuppressive cell marker, 

which maintains tumor progression in the TME 

including the regulation of antitumor immune cells 

[36, 37]. The multi-IRGs prognostic signature 

identified in this study indicated high predictive value 

and accuracy based on various analyses. 

 

Limitations 

 

There are inevitably several limitations in this study. 

First, the gene mapping style released in public 

available datasets was diverse to avoid the 

comprehensive inclusion of overlapping IRGs, however 

this might cause potential error or bias. Secondly, 

limited clinical information provided by the public 

database might limit the prognostic capabilities  

of our model. Preoperative treatment including 

sorafenib, transarterial chemoembolization, and 

radiofrequency ablation also contribute to the prognosis 

of HCC patients, but this data is missing. Thirdly, the 

three cohorts used to establish immune-based risk 

models were from countries including Europe, America, 

and Asia (Japan). Therefore, these findings do not apply 

to patients from other countries. Finally, more 

experimental evidence for immunogenomic analysis is 

essential to verify the roles of immune genes, 

checkpoint genes, and enriched pathways involved in 

the immune microenvironment. 
 

CONCLUSIONS 
 

In conclusion, we identified a multi-IRGs signature with 

a strong predictive performance. Differences in the OS 

of high and low immunoscore groups are implicated in 

immune infiltration, tumor immune microenvironments, 

and interaction of multiple signaling pathways. The 

recommended IRGs models provide critical information 

for advancing the personalized management of HCC 

patients. 

 

MATERIALS AND METHODS 
 

Study population 
 

In this study, three publicly available datasets, including 

The Cancer Genome Atlas Liver Hepatocellular 
 

 
 

Figure 8. The relationship among immune score, stromal score and immunoscore. (A) TCGA dataset; (B) GSE14520 dataset; (C) 
ICGC dataset. The difference of tumor-infiltrating immune cells among two immunoscore groups. (D) TCGA datasets; (E) GSE14520 datasets; 
(F) ICGC datasets. 
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Carcinoma dataset (TCGA-LIHC) from the Genomic 

Data Commons (GDC) portal (https://portal.gdc. 

cancer.gov), GSE14520 dataset (based on the GPL3921 

platform) from Gene Expression Omnibus (GEO) 

website (https://www. ncbi.nlm.nih.gov/geo), and the 

International Cancer Genome Consortium (ICGC) dataset 

(https://dcc.icgc.org), were downloaded and analyzed. A 

total of 371 HCC cases and 50 normal cases were 

included in TCGA-LIHC dataset, while 342 HCC 

patients with follow-up times of more than 30 days were 

included in WGCNA analysis and construction of the 

gene prognostic models. Besides, 216 and 231 HCC 

cases from the GSE14520 dataset and ICGC dataset, 

respectively, were used for external validation of the 

model. The 221 TCGA-LIHC patients with their 

complete clinical information and mRNA expression data 

were included for univariable and multivariable Cox 

regression analysis.  

 

RNA-seq and microarray data preprocessing 

 

The gene expression profiling data downloaded from the 

TCGA database were subjected to normalization with the 

“Deseq2” package in R [38]. Next, gene annotation was 

performed using the Ensemble database and log2 

transformation was subsequently applied. As for the 

GSE14520 dataset, multiple probes mapped to a single 

gene (i.e., unique Entrez gene ID) were determined based 

on their mean expression values. Probe annotations based 

on the GPL3921 platform were downloaded from the 

GEO database. Background correction, quantile 

normalization of the microarray data followed by log2 

transformation for further analysis were conducted. For 

the ICGC dataset, normalized read count values obtained 

from the gene expression file were used. Gene expression 

analysis was performed using Entrez Gene IDs in the 

three cohorts. 

 

Immune-related gene extraction 
 

A total of 1,811 IRGs were retrieved from 17 categories 

after excluding the duplicates from the Immunology 

Database and Analysis Portal (ImmPort) website 

(https://www.immport.org) [39]. Regarding the 1,811 

IRGs, 765 of them were overlapped in the TCGA-

LIHC, ICGC, and GSE14520 datasets. Consequently, 

the overlapping IRGs were used for further analysis. 

 

Weighted gene co-expression network analysis 
 

Weighted gene co-expression network analysis for the 

overlapping IRGs was performed on HCC tissues using 

the “WGCNA” package in R [40, 41]. From a 

methodological point of view, WGCNA is divided into 

two categories, cluster analysis of expression level and 

phenotypic correlation. WGCNA primarily includes four 

steps among them: correlation coefficient calculation 

between genes, determination of gene modules, co-

expression network, and a correlation between modules 

and clinical traits. In brief, the normalized and log2 

transformed gene expression data of 342 HCC cases were 

used to calculate Pearson’s Correlation Matrices. 

Subsequently, the soft-thresholding power β was set to 8 

using the integrated function (pickSoftThreshold) in the 

“WGCNA” package where the co-expression similarity 

was raised to achieve scale-free topology. Based on the 

standard of a mixed dynamic cut tree, the minimum 

number of genes for each gene module was set to 30, and 

the IRGs were grouped into 6 modules showing similar 

expression patterns. A clustering dendrogram was used to 

display the results of a dynamic tree cut and merging. 

Eventually, the association between different module 

genes and the clinical traits was assessed by Pearson’s 

correlation. 

 

Immunoscore model construction 

 

The Least Absolute Shrinkage and Selection Operator 

(LASSO) regression analysis was performed to identify 

the optimal weighting coefficient of the prognostic IRGs 

using the “glmnet” package in R [42]. LASSO is 

considered appropriate for high-dimensional data using 

penalization and regularization methods for statistical 

modeling and inhibition of overfitting [43]. Lasso 

regression performs L1 regularization, which adds a 

penalty equal to the absolute value of the magnitude of 

coefficients. This type of regularization can result in 

sparse models with few coefficients. Some coefficients 

can be zero and are eliminate from the model. Larger 

penalties result in coefficient values closer to zero, which 

are the ideal for producing simpler models. LASSO 

minimizes the residual sum of squares subject to the sum 

of the absolute value of the coefficients being less than a 

constant. The optimal value for penalization coefficient 

lambda where the partial likelihood deviance is the 

smallest was determined by running cross-validation 

likelihood 1,000 times. The λ value was finalized using 

the lambda.min, which is the value of lambda giving 

minimum mean cross-validated error. Thus, the 

immunoscore of each sample was calculated using the 

following formula: immunoscore = Σexpgenei* βi.  

 

Where expgenei is the expression level of genei, and βi 

is the coefficient of genei obtained from the LASSO 

Cox regression analysis in the TCGA dataset. The gene 

expression value from different datasets should be 

normalized to fit a relatively uniform scale. Therefore, 

we transformed the normalized datasets into Z-score to 

conform to the standard normal distribution using the 

“scale” package in R. This transformation obtained a 

uniform underlying distribution (mean = 0, standard 

deviation = 1) of each gene set across various platforms. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://www.immport.org/
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The immunoscore was calculated by integrating all Z-

score transformed normalized gene expression values 

with the same formula in the three datasets for further 

analysis.  

 

Validation of the immunoscore model 

 

The TCGA-LIHC cohort was used as the training set to 

evaluate the immunoscore model and contained 342 

patients with complete RNA-seq data and survival 

information. The GSE14520 and ICGC datasets were 

used to validate the prognostic performance of the 

immunoscore in HCC patients. The HCC patients were 

assigned to a high or low immunoscore group based on 

the cut-off value in the training set. We selected the 

median value as the cut-off value and also applied the 

same value in GEO and ICGC datasets to validate the 

robustness of the model. The Kaplan-Meier survival 

curve and the C-index were used to compare the 

predicted and observed overall survival (OS). 

Univariate and multivariate Cox regression analyses 

were performed to explore the independent risk factors 

among immunoscore and other clinical parameters in 

TCGA-LIHC dataset. Time-dependent receiver operator 

characteristic (ROC) curve analysis was applied to 

verify the accuracy and predictive ability of the 

immunoscore in HCC using the R packages “timeROC” 

[44]. To evaluate the clinical utility, the immunoscore 

was also compared with other effective prognostic 

signatures of HCC [13, 14].  

 

Comparison of enriched oncogenic pathways 
 

After validating the prognostic value of the immunoscore, 

analysis of differentially expressed genes (DEGs) was 

performed between the high and low immunoscore groups 

using the “Limma” package in R [45]. The thresholds in 

the absolute value of the log2 fold change (logFC) > 1 and 

adjusted P-value < 0.05 were adopted. A volcano plot was 

used to visualize the distribution of the DEGs. To detect 

potential biological functions and involved signaling 

pathways of immune-related DEGs, functional 

enrichment analyses including Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses were performed using DAVID and 

visualized with the “clusterProfiler” package [46]. GO 

terms were identified with a strict cutoff of adjusted P-

value < 0.01 and false discovery rate (FDR) < 0.05. 

Besides, Gene Set Enrichment Analysis (GSEA) with an 

adjusted P-value < 0.05 was performed. 

 

Differences in tumor-infiltrating immune cells 

between groups  
 

To estimate the population-specific immune infiltration, 

the CIBERSORT program was used to obtain the 

normalized enrichment scores of each immune category 

using the R package “cibersort” [47]. The enrichment 

score represented the degree of absolute enrichment in a 

gene set in each sample within a given dataset. 

Normalized enrichment scores were calculated for each 

immune category with the deconvolution approach 

application. We included a total of 27 immune cells that 

are involved in innate immunity among them, CD56dim 

NK cells, CD56bright NK cells, natural killer (NK) cells, 

plasmacytoid dendritic cells (DCs), activated DCs, 

immature DCs, neutrophils, monocytes, eosinophils, mast 

cells, and macrophages. And in adaptive immunity 

including, activated B cells, immature B cells, effector 

memory CD4+ T-, central memory CD4+ T, central 

memory CD8+ T, activated CD4+ T, effector memory 

CD8+ T-, activated CD8+ T-, NK T-, T follicular helper, 

Tγδ, Th1, Th2, Th17, and Treg. A two-sided Wilcoxon 

test was used to compare the differences in immune cell 

subtypes in the high and low immunoscore groups. 

 

Infiltrating stromal and immune cells form a major 

fraction of normal cells in tumor tissue. It perturbs the 

tumor signal in molecular studies, and promotes cancer 

biology [48]. The ESTIMATE algorithm, which is 

described as an estimation of stromal and immune cells 

in malignant tumors using expression data was used to 

obtain the immune score and stromal score of each 

sample using the R package “estimate”. 

 

Statistical analysis 
 

All statistical analyses were performed using R software 

(Version 3.6.0; R Foundation for Statistical Computing, 

Vienna, Austria). Description and comparison of the 

clinical characteristics of the HCC patients from 

different immunoscore groups were analyzed using the 

chi-square test or Fisher's exact test. The two groups of 

boxplots were analyzed using Wilcoxon-test. Kaplan–

Meier survival curves were built using log-rank tests to 

compare the OS between the two groups. ROC analysis 

was performed to evaluate the sensitivity and specificity 

of the survival predicting model based on the 

immunoscore. All statistical tests were two-sided, P-

value < 0.05 was considered statistically significant. 

 

Availability of data and materials 
 

The data included in this study originate from the public 

free-charged database including The Gene Expression 

Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and The 

Cancer Genome Atlas (https://portal.gdc.cancer.gov/). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The AUC of the immunoscore for 1-, 3-, and 5-year overall survival predictions compared with other 
studies. (A) One year AUC; (B) Three year AUC; (C) Five year AUC. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. There were 766 overlapping IRGs identified from three independent cohorts. 

 

Supplementary Table 2. A total of 272 DEGs identified between the high and low immunoscore group with adjPvalue 
< 0.05. 

 

Supplementary Table 3. KEGG and GO enrichment analysis of DEGs between the high and low immunoscore group in 
342 TCGA-LIHC samples.  

 

Supplementary Table 4. Gene set enrichment analyses between the high and low immunoscore group in 342 TCGA-
LIHC samples. 

 


