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INTRODUCTION 
 

The goal of this article is to describe how a minimal 

biophysical model of amyloidosis can guide diagnosis 

and treatment of relevant diseases. Towards that end we 

first go over the literature support for the model. We 

then describe current experimental methods to make the 

necessary measurements. Finally, we discuss the way 

application of this model could change our 

understanding of the etiology and treatment of TTR 

amyloidosis specifically. Earlier reviews [1–5] provide 

extensive coverage of the fundamental information 

available from laboratory and clinical work on 

amyloidosis. Therefore, brief summaries of relevant 

information on the TTR protein properties and TTR 

amyloid diseases are given here with only limited 

further references. 

Transthyretin (TTR) protein amyloid 

 

Human transthyretin (TTR, Uniprot # P02766) is a 

tetrameric, beta-sheet-rich, blood protein important in 

the transport of thyroxine and retinol. Blood-borne TTR 

is produced and secreted from the liver predominantly, 

although the choroid plexus of the brain does express 

high amounts [6]. In plasma, the TTR tetramer is in 

dynamic equilibrium with a monomeric form (Figure 1) 

with the degree of dissociation dependent on individual 

genetics and exogenous factors like binding of small 

hormones. TTR is less stable in monomeric form. TTR 

monomers may misfold and be incorporated into 

supramolecular arrangements of beta-sheets known as 

cross-beta structures [7–10]. These cross-β assemblies 

are stabilized by an extensive network of hydrogen 

bonds that cause them to form insoluble amyloids and 

www.aging-us.com  AGING 2020, Vol. 12, No. 22 

Theory Article 

Proposing a minimal set of metrics and methods to predict 
probabilities of amyloidosis disease and onset age in individuals 
 

Richard S. Criddle1, Hsien-Jung L. Lin1, Isabella James1, Ji Sun Park1, Lee D. Hansen1,  
John C. Price1 
 
1Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 USA 
 

Correspondence to: Lee D. Hansen, John C. Price; email: ldhansen@chem.byu.edu, jcprice@chem.byu.edu  
Keywords: amyloidosis, protein folding, transthyretin, proteostasis 
Received: August 17, 2020 Accepted: October 22, 2020  Published: November 18, 2020 
 

Copyright: © 2020 Criddle et al.  This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 

ABSTRACT 
 

Many amyloid-driven pathologies have both genetic and stochastic components where assessing risk of disease 
development requires a multifactorial assessment where many of the variables are poorly understood. Risk of 
transthyretin-mediated amyloidosis is enhanced by age and mutation of the transthyretin (TTR) gene, but 
amyloidosis is not directly initiated by mutated TTR proteins. Nearly all of the 150+ known mutations increase 
dissociation of the homotetrameric protein structure and increase the probability of an individual developing a 
TTR amyloid disease late in life. TTR amyloidosis is caused by dissociated monomers that are destabilized and 
refold into an amyloidogenic form. Therefore, monomer concentration, monomer proteolysis rate, and 
structural stability are key variables that may determine the rate of development of amyloidosis. Here we 
develop a unifying biophysical model that quantifies the relationships among these variables in plasma and 
suggest the probability of an individual developing a TTR amyloid disease can be estimated. This may allow 
quantification of risk for amyloidosis and provide the information necessary for development of methods for 
early diagnosis and prevention. Given the similar observation of genetic and sporadic amyloidoses for other 
diseases, this model and the measurements to assess risk may be applicable to more proteins than just TTR. 

mailto:ldhansen@chem.byu.edu
mailto:jcprice@chem.byu.edu
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 22357 AGING 

resist proteolysis. Initially, misfolding is a spontaneous 

process [11, 12]. Once present, TTR oligomers may act 

in prion-like fashion [13, 14] to catalyze further 

misfolding of TTR into cross-β assemblies that 

accumulate into the fibrils and larger TTR amyloids as 

observed with multiple other amyloidoses [7, 15].  

 

Biological factors promoting amyloidosis 
 

Three general factors have been linked with certainty to 

the development of TTR amyloidosis: age, gender, and 

stability of the TTR tetramer. Development of TTR 

amyloidosis increases with age, occurs more frequently 

and earlier in men than women, and is enhanced by 

mutations that decrease structural stability of TTR 

tetramers [1–5]. It is unknown how these factors impact 

the half-life in plasma. The removal pathways have  

not been fully characterized, but in rats occurs 

predominantly in the liver [16]. TTR can be removed 

from plasma by proteolysis of dissociated monomers, 

and and by aggregation into fibrils, β–amyloids, and 

amyloid deposits in tissues. The rates and mechanisms 

for removal of fibrils and amyloid deposits are poorly 

understood, if indeed such pathways are significant. The 

relative amounts of TTR removed via these pathways 

depend on the relative rates of two processes, proteolysis 

and amyloid formation. Both are preceded by tetramer 

dissociation to monomers (Figure 1). If proteolysis is 

rapid enough to maintain TTR monomer concentration 

sufficiently low, transformations leading to amyloid 

deposits are not significant. With rapid protease activity, 

TTR monomer concentration in plasma is determined by 

tetramer stability. But when protease activity decreases 

 

 
 

Figure 1. Minimal kinetic mechanism for TTR 
homeostasis. TTR unfolded* is a transient intermediate that 
may not accumulate to a measurable degree. It is assumed that 
degradation of fibrils and aggregate is negligible compared to 
degradation of monomer (kDeg2<<<kDeg1). 

relative to synthesis, monomer accumulates and can 

aggregate. Aggregation has an nth order dependence on 

monomer concentration and even a small increase of 

monomer concentration greatly increases the probability 

of oligomer formation [14]. 

 

Amyloid accumulation can be slowed by small molecules 

which bind and stabilize the tetramer (tafamidis, 

diflunisal, and AG10), and limit monomer formation  

[17, 18] and thus slow but do not cure the disease. 

Another treatment approach arises from the observation 

that the TTR plasma concentration in an individual is 

maintained at a near constant value both before and after 

an amyloidosis develops [19, 20]. The rate of removal 

due to protein degradation generally decreases with age 

[21–23]. It is expected that if proteolysis slows to where 

it cannot keep up with the rate of formation of 

monomers, TTR is removed by formation of fibrils and 

β-amyloid deposits. We therefore hypothesize that the 

age-related imbalance in proteolysis initiates TTR 

amyloid diseases. Identifying the proteolysis pathways 

would provide the next step toward developing a 

preventive cure for TTR amyloidosis. 

 

Individual differences in development of amyloidosis 

 

Differences in lifestyle factors like diet, internal 

physiology, and mutant variants contribute to individual 

differences in the timeline of amyloidosis development. 

All three factors quantitatively affect the dissociation of 

the tetramer into monomer [9, 24] and because removal 

presumably proceeds via monomer, the relative rates of 

proteolysis and aggregation differ among individuals. 

Any TTR mutation, physiological condition, or 

exogenous factor that stabilizes the TTR tetramer also 

decreases monomer concentration. This favors a smaller 

ratio of aggregation rate to proteolysis rate, which delays 

or prevents amyloidosis. Based on clinical reports we 

expect physiological differences such as differences in 

plasma proteins and small binding molecules affect 

tetramer stability and thus development of amyloidosis 

[1, 3, 25–29]. These physiological differences may 

explain differences in the age of onset in men and 

women, but the in vivo studies required to quantitate 

these effects have not yet been done. Exogenous factors 

related to life-style and diet which modify metabolites 

and hormone signaling may also be important 

modulators of amyloidosis, but the significance of these 

factors is also unknown.  

 

Mutations in the gene coding for TTR were 

evolutionarily selected to enhance its role as a transporter 

of thyroxine and retinol, but play an important role in 

amyloidosis. Since TTR mutations affecting amyloidosis 

become evident after the age of reproduction, no 

selective Darwinian pressure hindered acceptance and 
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propagation of mutations that affect amyloidosis as long 

as the mutations had no substantial effect on transport 

functions. As a consequence, the TTR gene exhibits a 

large number (150 and counting) of antagonistic variants 

and a few protagonistic variants such as T119M, V30M, 

and L55P. [30, 31]. The most common variant is 

designated as ‘wildtype’.  

 

The many mutations of TTR proteins appear to have 

minor effect on the ability of the monomers to be 

incorporated into β-fibrils and amyloids [9, 14]. All 

form remarkably similar wrapped, lamellar cross β-

sheet structures [14, 31]. Even though mutant changes 

in single amino acids at the various locations on the 

TTR protein do not appreciably interfere with formation 

of β-sheet aggregates, these same changes do cause 

different tissue tropisms and corresponding differences 

in phenotypic expressions of the disease according to 

genotype [32]. For example, the amyloids formed from 

wildtype TTR show a predominantly cardiac tissue 

tropism where the β-amyloids accumulate in heart 

muscle. But, the symptoms often differ among 

individuals having the same TTR mutation and may 

range from carpal tunnel syndrome to neuropathy, 

spinal stenosis, gastrointestinal problems, Hashimoto’s 

disease, etc. and various combinations of these. 

 

Some of the diversity in symptoms may arise because 

mutant subjects are frequently heterozygous with 

wildtype and mutant TTR co-expressed in equal 

amounts. Tetramer formation from mutants produces 

mixed hetero/homo-tetramers (i.e. wt4; wt3mt1; wt2mt2; 

wt1mt3; mt4). When the tetramers dissociate and 

monomers aggregate into fibrils, both wildtype and 

mutant subunits can be incorporated into the β-sheet 

structured oligomers. The fibrils thus contain mutant-

specific variations in the protein structures at their 

surfaces that may create reactive surfaces which bind to 

cellular membranes with complementary binding 

groups. Mutant-specific differences in oligomer/fibril 

binding to cellular membranes could explain differing 

phenotypic patterns of TTR amyloidosis. 

 

An integrated model for transthyretin (TTR) 

amyloidosis. 
 

Studies of dissociation of tetrameric TTR have 

implicated both kinetics and thermodynamics in the 

amyloidogenic behavior of TTR. Two observations in 

the literature suggest that focusing on kinetics may be 

important: 1) the concentration of monomer in 

equilibrium with the tetramer is orders of magnitude 

lower than the concentration of tetramer [9, 26, 33–35], 

and 2) the exchange rate of monomers between wild-
type tetramers is much faster at 4° C than at 25° C and 

even slower at 37° C [36]. Taken together, these two 

observations indicate the tetramer undergoes a fast 

dissociation followed by a temperature-dependent 

conformational change of the monomer. As a 

consequence of the conformation change in the 

monomer, at 4° C the association is much slower than 

the dissociation reaction and allows promiscuous mixing 

of monomers. This model accounts for both the slow 

exchange rate and inverted temperature dependence. 

 

Figure 1 graphically summarizes the relation of 

amyloidosis to TTR concentrations, stabilities of TTR 

tetramers ((TTR)4), and fates of monomers (TTR). This 

graphic makes it clear that quantifying the relative rates 

for monomer transformations is key to understanding 

development or lack of development of amyloidosis. The 

first step in removal of TTR is dissociation of the tetramer 

to monomer. Monomers that are not removed by 

proteolysis irreversibly aggregate into fibrils and  

β-amyloid deposits. The path from monomer to  

β-amyloid deposits occurs extracellularly and may include 

misfolded monomers, protofilaments, filaments, and 

fibrils, but it is generally agreed that monomers are folded 

into β-structures before, or upon their incorporation into, 

fibrils and maintain this structure in the fibrils and further 

into the construction of amyloids [37]. 

 

Formalizing a minimal kinetics mechanism (Figure 1) 

allows us to build a quantifiable model. Assuming the rate 

of dissociation and association between monomer and 

tetramer is fast relative to the rates of proteolysis and 

aggregation, the rates of formation and removal of TTR 

from plasma are described by the following equations. 

 

4

4 synthesis

Amino acids (TTR)

d[(TTR) ]/dt k



 
    (1) 

 

Deg1

TTR amino acids

d[TTR]/dt k [TTR]



 
   (2) 

 

aggregate

TTR growth of TTR aggregates

d[TTR]/dt k [TTR]



 
  (3) 

 

Assuming the rate of production of TTR tetramer 

(equation 1) is constant, proteostasis is maintained by 

balancing the rates of removal (equations 2 and 3) with 

the rate of production, and therefore the sum of the rates 

of reactions 2 and 3 must equal 4*ksynthesis (equation 4). 

 

Deg1 aggregate synthesisk [TTR] k [TTR] 4(k )    (4) 

 

Solving for the concentration of monomer, [TTR] gives 

 

synthesis Deg1 aggregate[TTR] 4(k )/(k k )    (5) 
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Equation 5 suggests the concentration of TTR monomer 

depends on the relative values of the rate constants for the 

production and removal processes. The removal rate 

constants change with conditions that affect the rates of 

removal of the monomer. In the absence of aggregate 

formation, equation 5 predicts that the plasma monomer 

concentration is a constant that depends solely on the 

stability of the tetramer. Also, the ratio of ksynth to kDeg1 

may differ between individuals, so the concentration of 

monomer may differ as well. Therefore, an individual’s 

TTR amyloidosis risk could be assessed by measuring the 

individual’s serum TTR concentration and the stability of 

their TTR tetramer with respect to the monomer. The 

greater the concentration of tetramer and the lower the 

stability, the greater the chance that amyloid deposits will 

cause disease earlier in life. The ratio of a quantitative 

measure of tetramer stability to TTR serum concentration 

over time in a single individual (longitudinal) or across 

populations (cross-sectionally) at specific ages is thus 

predicted to be a useful index of the likelihood of an 

individual developing a TTR amyloid disease later in life. 

Individuals with the most destabilizing mutations or 

cellular conditions in which amyloidosis is initiated at 

earlier ages would need to be compared as a unique 

population cross section or longitudinally. 

 

These relative stabilities in combination with the 

frequently observed fact that unfolding of protein 

tertiary and secondary structures are endothermic  

[38–40] allows us to construct a Gibbs energy diagram 

for amyloidosis (Figure 2). 

 
mis

4(TTR) 4TTR 4TTR     (6) 

 

Here TTRmis is the misfolded monomer, either unfolded 

or a β-pleated sheet structure. Figure 2 shows that any 

change that decreases the Gibbs energy of the tetramer 

increases the activation energy for dissociation and 

decreases the concentration of monomer whether the 

monomer concentration is determined by thermodynamics  

 

 
 

Figure 2. Gibbs energy diagram for dissociation/association 
reactions of TTR. 

or by kinetics. Drugs that bind to and stabilize the 

tetramer therefore decrease the monomer concentration. 

The figure also illustrates that misfolded monomers in 
vivo are tagged and hydrolyzed or aggregated because 

refolding and reentering the tetramer structure has a 

very low probability, i.e. amyloids are very stable 

relative to the unfolded intermediate. The likelihood of 

developing an amyloid disease is thus predictable from 

the Gibbs energy for dissociation of the tetramer and the 

serum concentration of an individual. Relative Gibbs 

energies of mutant variants and the effects of drug 

binding can be measured in near in vivo conditions as 

shown below. 

 

Review of methods for determining TTR tetramer 

concentration and stability in serum samples from 

individuals 
 

Measuring an individual’s TTR concentration and 

stability within the context of their blood serum is 

important clinically because it accounts for individual 

variations in environmental variables like hormone 

concentration or TTR binding partners. Any variable 

which may change TTR conformational distributions 

and stabilities would change the predicted risk of 

amyloidosis. 

 

Although multiple methods exist to measure 

concentration and stability, we discuss methods which 

seem to us most relevant and easiest to employ. Current 

mass spectrometry based methods represent a viable 

approach for monitoring both concentration and 

structural stability within the complex mixture of the 

blood. These methods are simple to multiplex and 

currently employed for a wide variety of clinical 

diagnostics [41–43]. 

 

Concentration measurements 

 

Multiple high quality reviews have been published on 

the topic of mass spectrometry for measuring protein 

concentration [44–47]. An optimized clinical assay for 

TTR might include a panel of internal standards 

composed of synthetic isotopically labeled peptides 

versions of natural TTR peptides (Figure 3A).  

This type of test could allow for simultaneous 

measurement of TTR concentration and test for known 

pathogenic mutations. Panels of internal standards for 

concentration measurement are commonly used for 

small molecules like drugs of abuse as well as protein 

specific measurements [48] and optimized assays are 

highly specific, require very little sample, and can be 

run on thousands of samples around the clock. Little or 

no change beyond selection of the peptides to be 

measured are required to monitor TTR versus any 

other protein. 
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Stability measurements 
 

Protein structural stability has historically been assessed 

as the resistance to denaturation [49, 50]. As shown in 

Figure 3 the monomer sequence Figure 3A folds into 

both beta sheet and alpha helical secondary structures 

Figure 3B. The relative resistance to denaturation can be 

estimated based on non-covalent bonding within the 

secondary structure, and would be different in an alpha 

helix versus a beta sheet. If a reporter is located in a beta 

sheet rich region versus the alpha helical region, different 

stabilities would be expected based on the location of the 

reporter and the folding state (unfolded, monomeric, 

tetrameric, or amyloid) of the protein. For example, 

residues 95 to 101 are within the alpha helix and thought 

to be distant from any protein-protein interfaces in the 

tetramer (Figure 3C based on reference [33]). Based on 

the structure in Figure 3, the alpha helical section of  

the protein may have a similar structural stability 

regardless of protein oligomeric structure (tetramer 

versus monomer). The edges of the beta sheets on the 

other hand gain new binding interactions in the tetramer 

and would be significantly modified relative to the 

monomer. In amyloid, there is an overall loss of alpha 

helical structure and increase in the beta sheet for each 

monomer [5]. Thus, measuring the fold stabilities along 

the entire sequence of the protein could be valuable  

for differentiating between monomer, tetramer, and 

fibril/amyloid forms of TTR. Further, measuring the TTR 

structural stability in the context of blood serum (in situ) 

 

 
 

Figure 3. (A) Canonical WT TTR sequence, peptides frequently observed in mass spectrometry experiments are shown in blue. Highlighted 
residues have published chemical modifications that could serve as fold-stability markers (B) The TTR monomer folds into two discrete beta 
sheets and a small alpha helix (PDB structure 1BZE) (C) The consensus model of the tetramer has four monomers (each in a different color) 
interacting along the edges of the beta sheets which would stabilize the protein structure in these regions (Model incorporates PDB 1BZE  
and 1BZ8). 
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is important as ligands within the blood serum bind and 

stabilize the tetramer beta sandwich which could be read 

out as a shift in the structural stability of these sections 

of the protein. 

 

Several mass spectrometric techniques have been 

published recently which allow in situ measurements 

of structural stability along the entire sequence of the 

protein [43, 51–53]. These methods can be generalized 

to chemical versus temperature denaturation of the 

protein (Figure 4). Both methods can measure 

sequence specific stabilities across TTR within a 

complex mixture of proteins like blood serum. Both 

methods also measure individual unfolding curves 

within complex mixtures by treating small aliquots to 

gradually increasing denaturation conditions. Each 

method has individual advantages and disadvantages. 

Thermal is fast, requires minimal sample handling, and 

uses the entire protein sequence as a reporter. 

However, the thermal mechanism functions through a 

precipitation step that is not fully characterized and 

may change with unknown variables. The chemical 

method uses covalent modification of specific amino 

acids to report unfolding. This is an advantage in that 

all the protein stays in solution and both labeled and 

unlabeled forms of the peptide can be measured and 

signal compared for substrate and product. The 

disadvantage of the chemical method is that the 

distribution of modifiable amino acids is nonuniform 

across any protein. For example, methionine labeling 

has been used to monitor chemical denaturation and 

has the sensitivity to identify stability changes due to 

drug binding [54] or secondary structure differences 

[55]. Unfortunately, only a single methionine is found 

in the N-terminal portion of the TTR protein (Figure 

3A). Fortunately, a variety of different labeling 

methods exist in the literature that may be appropriate 

for monitoring protein structure [56]. 

Most of the published studies using mass spectrometry 

unfolding assays have used yeast or cell culture. To test 

whether these mass spectrometry methods might be 

appropriate for blood serum we performed preliminary 

tests. We found the thermal denaturation technique was 

not effective for blood serum. We tested temperatures up 

to 100° C, but there was no evidence of precipitation. 

This may be due to the extreme thermal stability of 

Albumin [57], stabilizing the rest of the proteins in the 

serum. In comparison, proteins from tissue homogenate 

precipitated efficiently beginning at 40C, and 

precipitation increased as predicted up to 70C, at which 

point 90% of the protein had precipitated from solution, 

as reported in the literature [52]. To test the chemical 

denaturation method, we used guanidine denaturation 

and histidine modification by iodine to assay blood 

serum. We observed differential behavior for several 

peptides and measured significant differences in the 

denaturation midpoint of two different sections of TTR 

(Figure 5). Although both of these sequences (A: 42-53, 

B:101-123) are expected to contain beta strands, the 

peptide A has a lower overall stability (denatures at 

lower concentrations) in these conditions than peptide B.  

 

After optimization of modification chemistry for 

residues in sections of interest, this type of method has 

the potential to provide the stability measurements 

needed to assess risk of amyloidosis. This will require 

significant effort to validate in a cross-sectional study, 

and we expect that longitudinal measurements could be 

most fruitful if made throughout a subject’s lifetime. 

 

DISCUSSION 
 

There are more than 30 characterized amyloidosis 

diseases involving a variety of proteins. While these 

diseases differ markedly in their physiological effects, 

there are common features in their development. Multiple 

 

 
 

Figure 4. Two methods to measure protein structure stability via mass spectrometry. In (A) concentration of the remaining 
soluble protein is measured, while in (B) the relative amount of modification for amino acid side chains is the reporter. 
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mutations within the various precursor proteins promote 

amyloidosis (eg. TTR>150 known mutants, gelsolin>4, 

lysozyme>10, and fibrinogen>18) [58–61]. Most 

amyloidogenic mutations change a single amino acid, yet 

these simple changes give rise to multiple phenotypic 

disease symptoms that differ between different mutations 

of the same protein and among individuals with the same 

mutation. The individual nature of the mutations in each 

of these diseases presumably plays a direct role in 

determining differences in the oligomeric β-sheet 

structures of precursor protein and impacts the 

phenotypic expression of the diseases [62]. All these 

diseases have individual variability in age of onset, 

indicating that the mutation is not the triggering factor for 

initiation of amyloidosis. The nature of factors initiating 

onset of amyloidosis is not currently known for any of 

these diseases, However, the common features suggests 

that a model developed for TTR amyloidosis may be 

applied in analysis of the other heritable amyloidosis 

diseases. 

 

The proposed model emphasizes that the relation 

between monomer concentration and proteolysis is 

important to understanding development of amyloidosis. 

Spontaneous unfolding of monomer is likely variant 

dependent or can be triggered by a change in the 

molecular environment [49]. The misfolding of monomer 

into β-sheet and aggregation varies among individuals 

based on genetics and lifestyle decisions which modify 

 

 
 

Figure 5. TTR structure causes modified susceptibility to 
denaturation for different parts of the sequence. Individual 
measurements (triangles) were fit across the denaturant 
concentrations to calculate the midpoint (vertical line) and 
confidence interval of the midpoint (shaded area) for two 
representative peptides (Panel A: amino acids 43-55, Panel B: 
amino acids 101-123). 

the concentration of endogenous small molecules which 

stabilize the TTR tetramer. Therefore, our metrics of 

relative TTR tetramer stability in the presence and 

absence of putative stabilizers should be measured in 
vivo or at conditions as close to in vivo as possible. 

 

Proteolysis is generally rapid enough to maintain the 

monomer at concentrations that minimize aggregation. 

However, the age dependence for amyloidosis risk 

could be connected to decreases in protease or 

chaperone activities that occur at older ages [21–23, 

38]. Decreases in protease activity (kDeg1, Figure 6) and 

chaperone activity (kfolding and kdisaggradation) would 

increase monomer concentration and increase the 

unfolding rate causing a greater fraction of monomer to 

aggregate. This could explain why amyloidosis 

typically occurs later in life. The rate of proteolysis of 

TTR has a linear dependence on the monomer 

concentration, but initiation of TTR aggregation has a 

higher order dependence on monomer concentration, 

and growth of TTR aggregates likely causes amyloid 

deposit growth rates to increase exponentially once 

deposition begins. An exponential increase in rates of 

oligomer formation to maintain proteostasis in the face 

of the increase in monomer concentration would explain 

the rapid progression of disease once symptoms are 

apparent. 

 

Accumulation of abnormal proteins is a common feature 

of senescent tissues [63, 64]. This suggests that the 

decoupling of the synthesis, folding and proteolytic 

activities is general and related to the protein quality 

control in cells [21–23]. But, decreased proteolysis and 

increased misfolding may also be caused by 

modifications that make the altered proteins less 

susceptible to proteolysis, e.g. amino acid side-chain 

modifications, chemical crosslinking and/or aggregation, 

 

 
 

Figure 6. Age dependent changes leading to amyloidosis 
disease. 
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may result in the altered proteins being poor substrates 

for the proteases. In cases where specific proteins are 

chemically tagged for proteolytic turnover to maintain 

homeostasis, a decreased rate of the tagging reactions 

could also cause a decreased turnover rate of specific 

proteins and an increase in monomer concentration. 

 

Support for the contribution of cellular quality control 

as the initiating variable comes from twin studies. 

Twins with the same mutation may express symptoms 

of amyloidosis at different ages [28]. Relative rates of 

protein turnover vary among individuals, depending on 

gender, diet, genetic background, etc. According to the 

model, individuals who maintain adequately high rates 

of proteolysis of TTR do not get amyloidosis, but an 

“adequate” proteolysis rate is a function of the stability 

of the tetramers of various mutants and individual 

physiology. An age-related decrease in proteolysis rates 

of individuals with TTR destabilizing mutations 

increases monomer to the threshold concentration for 

aggregate formation. This threshold is reached earlier 

and deposition of amyloids is maintained at higher rates 

with variants having less stable TTR tetramers in their 

individual plasma background. This could explain the 

findings that calorie restriction (which reduces global 

protein synthesis [65–68]) protects against amyloid 

deposition [69–71]. Reducing synthesis to match the 

diminished proteostasis capacity could result in many of 

the same benefits as therapeutically increasing 

proteolysis and chaperone activity. 

 

In current practice, TTR amyloidosis has been divided 

into two amyloid diseases referred to as wild type and 

familial. Wild type is described as an “age-related, non-

hereditary systemic amyloidosis” that is induced by 

unknown factors to form amyloid deposits by wild type 

TTR proteins. The familial disease is described as a 

separate disease that occurs as a consequence of 

mutations of wild type TTR protein. We disagree with 

this separation because the wild type and familial 

diseases share a common mechanism even though 

manifestations of the disease may differ. The wild type 

TTR gene underwent Darwinian selection for 

transporting thyroxine and retinol when reproductive 

age and life expectancy were much shorter than today 

and amyloidosis had negligible effect. Any mutations in 

the TTR gene that did not have a significant adverse 

effect on transport functions were accepted and 

propagated resulting in 150+ recognized mutant forms 

of TTR that generally differ from wild type by a single 

amino acid. These mutant proteins may enhance, 

decrease, or have no effect on TTR tetramer stability 

compared with wild type. All forms of TTR, including 

wild type, can cause amyloidosis and the propensity for 

amyloidosis in people with wild type TTR is just as 

heritable as it is for those with a mutant form. Thus, 

there is no reason to consider wild type TTR 

amyloidosis and familial TTR amyloidosis as separate 

diseases. Separate clinical trials of effectiveness of 

treatments for wild type TTR and familial TTR 

amyloidosis are unnecessary and counterproductive. 

However, our model does not address why various 

mutants often cause predominantly cardiac, or 

neurological, or other diseases and trials comparing 

treatments for differing diseases should be done. 

Individuals with the same mutant form of TTR 

commonly exhibit different disease phenotypes because 

of differences in tissue tropisms. Grouping TTR diseases 

by tropisms running drug trials with (a) predominantly 

cardio, (b) peripheral neuro, or (c) a combination of both 

reduces effort and increases efficiency. Our model and 

experimental methods reported here offer a solution to 

this conundrum by rapidly quantitatively examining 

properties of TTR variants in near in vivo conditions to 

evaluate drug responses in individuals. The same general 

model and methods may also apply to other late-in-life 

expressed amyloid diseases. Thus, we propose individual 

testing for predicting response to treatment instead of 

clinical trials. 

 

Current treatments for amyloidosis based on altering 

structural stability will not lead to a cure. A cure 

requires identifying and correcting the factor(s) that are 

responsible for the changes in relative rates of monomer 

removal and amyloid deposition. Our model does not 

identify these factors but suggests metrics that that 

future research can use to interrogate the age-related 

changes in protease activity, chaperones, post 

translational N-glycation, cellular energetics, oxidative 

reactions, and glycosylation.  

 

For example, glycosylation has been implicated in TTR 

amyloidosis [24, 72–74]. Glycosylation is a viable 

candidate to consider for an initiating event in TTR 

amyloidosis because (a) it is commonly involved as a 

post translational signal in biochemical pathways to 

activate or moderate metabolic pathways [75], (b) 

glycosylation activity in human plasma is heavily 

influenced by gender [73], (c) there is a general decrease 

in glycosylation activity with age [76]. TTR is generally 

synthesized and secreted from the liver without added 

sugars, though it has a consensus sequon for 

glycosylation at Asn 98. Crystallographic data suggest 

that the glycosylation site in the folded TTR tetramer 

may not be accessible to glycosylating enzymes and/or 

their substrates. However, some variant TTR tetramers 

(e.g., L12P, and to a lesser extent V30M) have altered 

folded structures that expose Asn 98 and do get 

glycosylated [75]. Dissociation of tetramer to monomer 

(or partially unfolded, or unfolded monomer) also causes 

structural changes that can make the sequon accessible 

for glycosylation. If glycosylation is a factor in tagging 
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TTR monomers for rapid proteolytic degradation, 

decreased glycosylation activity could result in a 

sufficient buildup of monomer to cause development  

of amyloidosis. The current data are insufficient to 

propose decreased rates of glycosylation or other 

posttranslational modification as the causative factor in 

triggering amyloid formation, but this scenario does 

emphasize that many additional plausible examples of 

types of reactions must be considered in seeking the 

causative factor initiating TTR amyloidosis. We hope 

that this model and the proposed quantitative metrics to 

identify amyloidosis early, will enable investigation of 

modified metabolic activities like glycosylation, as well 

as a method to quantify treatment efficacy which will 

enable development of a real cure for these diseases. 

 

Summary 
 

1. This biophysical model and proposed measurement 

methods can be used directly with current human 

subjects or with banked blood samples. We propose 

that it will be of great benefit in current clinical 

trials to understand treatment efficacy. 

 

2. The rate of synthesis of TTR is constant. For 

proteostasis, the rate of removal of TTR must equal 

the rate of synthesis. TTR in plasma is largely in the 

tetrameric form, (TTR)4, but dissociates to give 

very low, but significant concentrations of dimers 

and monomers. 

 

3. Removal of TTR from plasma proceeds via 

monomers.  

 

4. Monomers undergo two processes that remove 

them from solution, proteolysis or aggregation. The 

combined rates of these two pathways equals the 

total rate of monomer removal, which is also equal 

to the rate of production of monomer via 

dissociation of tetramer. Depending on the relative 

rates, either of the two reaction pathways could 

account for anywhere from 100% to 0% of the rate 

of monomer removal. 

 

5. The critical monomer concentration for aggregation 

is unknown, however the cause of aggregation 

develops slowly over time. Once amyloidosis 

begins, the rate of development of amyloidosis is 

determined by the rate of monomer incorporation 

into various aggregates that lead to fibrils and 

amyloids.  

 

6. Destabilizing tetramer by pleiotropic mutations 

leads to greater dissociation of monomer and a 

higher, variant-dependent concentration of TTR 

monomer in plasma. Mutations are not required for 

TTR amyloidosis formation; point mutations only 

modify the equilibrium concentrations in Figure 6. 

Amyloidosis caused by wild-type TTR follows the 

same mechanism as amyloidosis caused by variants 

of TTR and thus should be considered as variants of 

the same disease for purposes of clinical studies. 

 

7. Amyloidosis begins when the rate of TTR 

proteolysis decreases relative to the rate of amyloid 

formation and monomer concentration increases 

sufficiently to allow significant oligomerization into 

fibrils and amyloids. The cause of a decrease in the 

rate of proteolysis of TTR remains to be identified.  

 

When the tetramer is stabilized by drugs or stabilizing 

mutations, the concentration of tetramer will increase in 

plasma to a steady-state level determined by the rate of 

proteolysis. 

 

MATERIALS AND METHODS 
 

Chemical denaturation 

 

Blood serum from a healthy human control was diluted 

with PBS to 10 mg/ml and divided into 9 fractions 

containing 0.02 milliliters. We added 0.027 milliliter 

guanidine of different stock solutions to each fraction to 

bring final guanidine concentration to 0, 0.4, 0.9, 1.3, 

1.7, 2.2, 2.6, 3.0, 3.5M and partially unfold the proteins 

in the individual fractions as shown in Figure 4. This 

mixture was allowed to incubate at 37° C for 30 minutes 

at which point iodine/KI solution (0.3 molar) was added 

to achieve final concentration of 2.9 nmole in 0.05 

milliliter. The iodine-labeling reaction proceeded for 10 

minutes until 100mM imidazole was added to quench 

the reaction. At this point high concentration guanidine 

(6M) was added to fully denature all protein. Tris(2-

carboxyethyl)phosphine (TCEP, final conc 10mM) was 

added to reduce disulfide linkages and chloroacetamide 

(40mM final concentration) was added to cap the 

reduced cysteines. The mixture was placed on top of a 

30kD spin concentrator (VWR) and washed 2 times 

with ammonium bicarbonate (25 mM, ph=8.5). Trypsin 

(mass spectrometry grade) was added to the mixture on 

top of the filter and allowed to digest the protein 

overnight at 37° C. After digestion, peptides were spun 

through the filter and concentrated under vacuum for 

analysis by mass spectrometry. 

 

Thermal denaturation 
 

Blood serum was diluted with PBS to 2 mg/ml and 30uL 

volume was added to 10 PCR tubes. A PCR thermocycler 

(Biorad T100) was used to create an equally spaced 

gradient of temperature with 10 steps from 37 to 63 or 37 

to 100 Celsius. Samples were incubated at these 
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temperatures for 3 minutes to partially unfold the proteins 

in the individual fractions, then cool down to 4° C for 

3min to quench the reaction as shown in Figure 4. The 

samples were then removed from the thermocycler and 

spin at 14000xG at 4° C for 20mins to precipitate the 

aggregated protein. The soluble fraction was collected for 

protein digestion. At this point high concentration 

guanidine (6M) was added to fully denature protein. 

Tris(2-carboxyethyl)phosphine (TCEP, final conc 

10mM) was added to reduce disulfide linkages and 

chloroacetamide (40mM final concentration) was added 

to cap the reduced cysteines. The mixture was placed on 

top of a 30kD spin concentrator (VWR) and washed 2 

times with ammonium bicarbonate (25 mM, ph=8.5). 

Trypsin (mass spectrometry grade) was added to the 

mixture on top of the filter and allowed to digest the 

protein overnight at 37° C. After digestion peptides were 

spun through the filter and concentrated under vacuum 

for analysis by mass spectrometry. 
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