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INTRODUCTION 
 

Retinal ischemia-reperfusion (I/R) emerges in many 

ocular diseases and is a leading cause of neuronal death 

and dysfunction, resulting in irreversible visual 

impairment or blindness [1, 2]. Growing reports 

demonstrated that retinal ischemia is a primary 

contributor to the pathogenesis of multiple diseases, 

such as retinal vascular occlusions, diabetic retinopathy, 

central retinal vein occlusion, as well as age-associated 

macular degeneration [3]. However, an effective 

treatment for retinal ischemia is currently unknown,  

which leads to an urgent need to investigate the 

mechanisms and develop therapeutic strategies for 

retinal ischemia.   

 

During ischemia, the deficiency of oxygen and other 

essential nutritional compounds generates reactive 

oxygen species due to subsequent restoration of 

oxygen supply, eventually leading to an inflammatory 

response and neurodegeneration [4, 5]. To study 
ischemia injury, retinal I/R animal models, including 

in vivo and ex vivo, have been established and widely 

employed to study the effect of I/R on neuronal 
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ABSTRACT 
 

Retinal ischemia emerges in many ocular diseases and is a leading cause of neuronal death and dysfunction, 
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between BDNF-expressing 293T cells and recipient cells. The study investigated whether exosomes derived 
from BDNF-expressing 293T cells (293T-Exo) can be internalized by ischemic retinal cells and exert 
neuroprotective roles. The results demonstrated that 293T-Exo significantly attenuated the loss of cell 
proliferation and cell death in R28 cells in response to oxygen-glucose deprivation treatment. Mechanistic 
studies revealed that the endocytosis of 293T-Exo by R28 cells displayed dose- and temperature-dependent 
patterns and may be mediated by the caveolar endocytic pathway via the integrin receptor. In the retinal 
ischemia rat model, the administration of 293T-Exo into the vitreous humor of ischemic eyes reduced apoptosis 
in the retina. Furthermore, 293T-Exo was mainly taken up by retinal neurons and retinal ganglion cells. 
Together, the results demonstrated that 293T-Exo has a neuroprotective effect in retinal ischemia and has 
therapeutic potential for retinal disorders. 
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impairment in the retina [6]. In these animal models, 

intraocular pressure is dramatically raised above the 

systolic pressure for a specified time, followed by 

reperfusion treatment. Thus, several manifestations of 

I/R injury have been uncovered in such models, for 

example, the loss of retinal ganglion cells (RGCs), 

increased apoptosis in the inner retina, and decreased 

b waves [7].  

 

Exosomes, 30-150 nm in diameter, are bi-lipid 

membrane extracellular vesicles (EVs) [8]. Due to 

their endocytic origin, EVs are categorized as 

exosomes, which contrasts with microvesicles that are 

produced from apoptotic bodies originated from 

fragments of dying cells or budding of the plasma 

membrane [9]. Exosomes are synthesized and released 

by various cell types and transport active biological 

molecules to regulate the physiological activities of 

recipient cells [10]. Thus, exosomes play an essential 

role in intercellular communication [11]. Over the 

past few decades, a growing number of studies 

suggest that the therapeutic effect of exosomes can 

facilitate repair and regeneration in multiple tissues, 

such as the heart [12], liver [13], and brain [14]. For 

retinal ischemia, bone marrow mesenchymal stem 

cells (MSCs)-derived exosomes can successfully 

transfer functional microRNAs into inner retinal 

layers and exert neuroprotective and axogenic roles in 

RGCs [15]. In addition, intravitreal administration of 

exosomes originated from human MSCs are well-

tolerated and play a protective effect on retinal 

ischemia in a mouse model [16]. Together, exosome-

mediated approaches are promising therapeutic 

strategies for retinal ischemia.  

 

As the critical mediator in intercellular communication, 

the interaction between exosomes and recipients’ cells 

is involved in a series of complicated processes [17]. In 

general, there are three main mechanisms involved in 

the exosome uptake, including 1) fusion with the 

recipient cells to transfer functional molecules, 2) 

binding to the surface receptor to initiate signaling 

cascades, and 3) internalization through phagocytosis, 

endocytosis, and macro-pinocytosis [18–20]. Also, 

several reports suggest that exosome-uptake proteins on 

the surface of exosomes and recipient cells also play an 

essential role in intercellular communication. For 

example, integrins are required for the exosome uptake 

in dendritic cells [19]. Clathrin and caveolin-associated 

pathways are two essential ways related to the 

endocytosis of exosomes [21]. So far, very few studies 

focus on the mechanism regarding how retinal cells 

uptake exosomes derived exogenous cells. Therefore, 

understanding the mechanism of exosome uptake would 

promote the development of more efficient delivery 

systems for disease treatment.  

Brain-derived neurotrophic factor (BDNF), a member 

of the nerve growth factor gene family, is an essential 

multi-functional factor in various neuronal processes, 

including learning and memory, dendritic and synaptic 

plasticity, and axonal growth [22]. Beyond that, BDNF 

also has a broad effect on neuroprotection and 

regeneration in several neurodegenerative disorders, 

such as Alzheimer's, Parkinson's, and Huntington’s 

disease [23, 24]. In addition, BDNF-transfected iris 

pigment epithelial (IPE) cells show a neuroprotective 

role against N-methyl-d-aspartate (NMDA)–associated 

neuroretinal cell death and phototoxic damage [25]. As 

previously reported [26], we constructed a eukaryotic 

BDNF-expressing plasmid from the human retina, and 

then subsequently used it to transfect human 293T cells. 

Our observations revealed that 293T cells transfected 

with the BDNF gene could steadily express BDNF 

mRNA and secrete the protein. Also, after coculturing 

with ARPE-19 cells, a human retinal epithelial cell line, 

increased level of BDNF is associated with higher 

viability and lower apoptosis in ARPE-19 cells, 

suggesting the potential neuroprotective role of BDNF 

in the retina. 

 

Beyond that, several questions also emerged in this 

previous study: for example, what is the detailed 

mechanism underlying the role of BDNF-expressing 

cells and recipient cells and the role of BDNF in other 

retinal diseases? Given this, we hypothesized that 

exosomes might be an essential molecule-shuttle 

between BDNF-expressing 293T cells and recipient 

cells. We aimed to determine whether exosomes derived 

from BDNF-expressing 293T cells can be internalized 

by retinal cells and exert neuroprotective roles 

following ischemic injury and identify the related 

mechanism.  

 

RESULTS  
 

Characterization of 293T-Exo derived from BDNF-

expressing 293T cells 

 

We previously created human retina-derived BDNF 

plasmid construct in 293T cells. Next, we cocultured 

BDNF-expressing 293T cells with ARPE-19 in a 

Transwell chamber for 96 hours, and found that BDNF-

engineered 293T cells exerted anti-apoptotic roles [26]. 

Given that, we assumed the potential role of exosomes 

in the interaction between BDNF-expressing 293T cells 

and recipient cells. Thus, we first isolated 293T-Exo 

from BDNF-expressing 293T cells. By NTA and TEM 

assays, the results showed that a majority of 293T-Exo 

(98.6%) were 144.2 nm in diameter and displayed a 

classic round-shape morphology (Figure 1A, 1B). In 

addition, the exosome surface markers CD9, CD63, 

CD81, and HSP70α were positively expressed in 293T-
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Exo, but not in 293T-Exo-conditioned medium (Figure 

1C). These results together demonstrated that we 

successfully isolated exosomes from BDNF-expressing 

293T cells. 

 

BDNF expression increased in 293T-Exo and 293T-

Exo-treated R28 cells  

 

Consistent with our previous results [26], mRNA and 

protein expressions of BDNF were increased in BDNF-

expressing 293T cells compared with control untreated 

293T cells (Figure 2A, 2B). Also, 293T-Exo expressed 

a higher level of BDNF than exosomes derived from 

control 293T cells (Figure 2A, 2B). After treating with 

293T-Exo-conditioned medium or 293T-Exo, both 

mRNA and protein levels of BDNF were increased in 

R28 cells (Figure 2C, 2D), suggesting BDNF can be 

transferred from BDNF-expressing 293T cells to 

recipient R28 cells.  

 

293T-Exo were endocytosed by R28 cells  

 

As shown in Figure 3A, green fluorescence-labeled 

293T-Exo was internalized by R28 cells. The 

overlapping of green color 293T-Exo with the red 

cytoskeleton demonstrated that 293T-Exo was uptaken 

in the cytoplasm. To determine the factors impacting 

the efficacy of endocytosis, we used different volumes 

of 293T-Exo (1-64 μl) to treat R28 cells, and the results 

suggested that the endocytosis reached a saturable status 

when the volume of 293T-Exo was 16 μl (Figure 3B). 

Also, we observed that higher temperatures (37° C) 

exerted a positive role in endocytosis, whereas low 

temperatures (4° C) inhibited the internalization of 

293T-Exo (Figure 3C). Collectively, these results 

suggested that the endocytosis of 293T-Exo by R28 

cells exhibited dose- and temperature-dependent 

patterns.  

 

Integrin and caveolin-1 participated in the 

endocytosis of 293T-Exo 

 

To determine more details of the endocytic process of 

293T-Exo, we first used the specific ligands to test 

several critical endocytic receptors on the R28 plasma 

membrane, such as integrin and heparin sulfate 

proteoglycans (HSPGs) [27]. After pretreating R28 cells 

with RGD peptide, a specific ligand for integrin, we 

found that the endocytosis was significantly inhibited 

while no impact was observed on endocytosis when

 

 
 

Figure 1. Characterization of 293T-Exo derived from BDNF-expressing 293T cells. (A) Diameter distribution of 293T-Exo determined 
by nanoparticle tracking analysis (NTA). (B) Representative image of 293T-Exo photographed by transmission electron microscopy (TEM). 
Scale bard = 100 nm. (C) Protein expressions of exosome surface markers, CD9, CD63, CD81, and HSP70α in 293T-Exo and 293T-Exo-
conditioned medium (293T-CM), as measured using western blots.  
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Figure 2. BDNF expression increased in 293T-Exo and 293T-Exo-treated R28 cells. mRNA (A) and protein (B) expressions of BDNF in 

control 293T cells, BDNF-expressing 293T cells, exosomes derived from control 293T cells, and BDNF-expressing 293T cells. mRNA (C) and 
protein (D) expressions in control R28 cells (R28), R28 cells treated with 293T-Exo-conditioned medium (R28+ CM), and R28 cells cocultured 
with 293T-Exo. Data are presented as mean ± SD. *P < 0.05, **P < 0.01. 

 

 
 

Figure 3. Endocytosis of 293T-Exo by R28 cells. (A) 293T-Exo uptake by R28 cells, as determined by the fluorescence assay. The nuclei 

were stained with DAPI (blue), the cytoskeleton was stained with tubulin (red), and 293T-Exo was stained with fluorescent-tag (green). Scale 
bar = 20 μm. (B) Efficacy of endocytosis of 293T-Exo by R28 cells displayed a dose-dependent pattern and saturable (more than 16 μl of 293T-
Exo). (C) Efficacy of endocytosis of 293T-Exo by R28 cells displayed a temperature-dependent pattern. Data are presented as mean ± SD.  
**P < 0.01, ***P < 0.001.  
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R28 cells were pretreated with heparin, a ligand for 

HSPGs (Figure 4A). In addition, a dose-dependent 

pattern was found in the effect of RGD on endocytosis 

of 293T-Exo, but not in heparin (Figure 4B, 4C). 

Clathrin and caveolin are two main pathways of 

endocytosis [28], therefore, we labeled those two 

markers with red fluorescence and found that green-

293T-Exo colocalized with caveolin-1, but not clathrin 

(Figure 5). Furthermore, we applied MBCD to block the 

caveolin-1-associated endocytic process [29]. The 

results revealed that the endocytosis of 293T-Exo could 

be inhibited by MBCD in a dose-dependent pattern 

(Figure 6A, 6B). Taken together, these results 

demonstrated the involvement of integrin and caveolin-

1 pathways in the endocytosis of 293T-Exo.  

 

293T-Exo reduced R28 cell death in response to 

oxygen-glucose deprivation (OGD) in vitro 

 

The OGD is widely applied to mimic ischemic conditions 

in vitro, promoting cell death [30]. To determine the role 

of 293T-Exo in OGD-treated R28 cells, we applied the 

EdU assay to measure the proliferation of R28 cells in the 

presence of OGD treatment. By flow cytometry analysis, 

we observed that both 293T-Exo and 293T-Exo-

conditioned medium significantly increased the 

proliferative ability of R28 cells, compared with those 

treated with conditioned medium without 293T-Exo 

(Figure 7A). Meanwhile, the LDH assay showed that the 

reduction of cell death of OGD-treated R28 cells was 

accompanied by increasing doses of 293T-Exo (Figure 

7B). These results together suggest a protective role of 

293T-Exo for R28 cells in response to OGD. 

 

Anti-apoptotic role of 293T-Exo in vivo 

 

To determine whether 293T-Exo plays a protective role 

in retinal ischemia injury, we established a retinal 

ischemia rat model, and 293T-Exo was administered 

into the vitreous humor of ischemic eyes. Using the 

TUNEL assay, we observed that ischemia injury 

resulted in increased apoptosis in RGC, inner nuclear 

layers, and outer nuclear layers on the retinal tissue 

slides while the effect of ischemia injury was 

significantly attenuated by the administration of 293T-

Exo (Figure 8A–8E).  

 

 
 

Figure 4. Integrins participated in the endocytosis of 293T-Exo by R28 cells. (A) Endocytosis was inhibited by pretreatment of RGD, 
but not by heparin. The nuclei were stained with DAPI (blue), the cytoskeleton was stained with tubulin (red), and 293T-Exo was stained with 
fluorescent-tag (green). Scale bar = 20 μm. (B) Efficacy of endocytosis of 293T-Exo by R28 cells was reversed due to increasing doses of RGD. 
(C) Efficacy of endocytosis of 293T-Exo by R28 cells was not affected by different doses of heparin. Data are presented as mean ± SD. 
*P < 0.05. 
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Figure 5. Caveolin-1 was involved in the endocytosis of 293T-Exo by R28 cells. The colocation of 293T-Exo with caveolin-1, but not 
clathrin, was observed using the fluorescence assay. The nuclei were stained with DAPI (blue), 293T-Exo was stained with fluorescent-tag 
(green), and the caveolin-1 or clathrin was stained with corresponding antibodies (red), respectively. Scale bar = 20 μm. 

 

 
 

Figure 6. Caveolin-1-mediated endocytosis of 293T-Exo was inhibited by MBCD. (A) Pretreatment of MBCD in R28 cells inhibited 

the endocytosis of 293T-Exo, as determined by the fluorescence assay. The nuclei were stained with DAPI (blue), the cytoskeleton was 
stained with tubulin (red), and 293T-Exo was stained with fluorescent-tag (green). Scale bar = 20 μm. (B) Efficacy of endocytosis of 293T-Exo 
by R28 cells was reversed due to increasing doses of MBCD. Data are presented as mean ± SD. *P < 0.05, **P < 0.01. 

 

 
 

Figure 7. 293T-Exo inhibited OGD-induced cell death of R28 cells. (A) The percentage of EdU-positive in normoxic- or OGD-R28 cells 

with treatment of 293T-Exo, 293T-Exo-conditioned medium (293T-CM), and conditioned medium without 293T-Exo (CM-293T-Exo), as 
measured by flow cytometry. (B) Cell death rate was reduced by increasing concentration of 293T-Exo, as measured by the LDH assay. Data 
are presented as mean ± SD. *P < 0.05. 



www.aging-us.com 7 AGING 

293T-Exo was endocytosed by the retinal neurons 

and RGCs 

 

To determine the specific cell types that uptake 293T-

Exo, the axonal or dendritic projections of retinal 

neurons were stained with red Beta III tubulin and the 

nuclei of RGCs were stained with magenta BRN3A. As 

shown in Figure 9, more colocalization of 293T-Exo 

with retinal neurons of RGCs was observed in retinal 

tissue slides in response to ischemia injury. These 

findings suggest that retinal neurons and RGCs are two 

main cell types that endocytose 293T-Exo.  

DISCUSSION  
 

It has been reported that ischemic injury activates 

several key protective pathways, including the 

neurotrophic family [31]. As an essential member of 

this family, BDNF exerts a significant neuroprotective 

role and facilitates neural repair and regeneration [32, 

33]. Elevated expression of BDNF can protect retinal 

function and suppress apoptosis of retinal pigment 

epithelial cells and photoreceptors [34]. Given such an 

important role of BDNF, we previously created a 

human retina-derived BDNF-expressing construct in 

 

 
 

Figure 8. 293T-Exo inhibited OGD-induced apoptosis in the retinae in vivo. (A) 293T-Exo inhibited OGD-induced apoptosis in the 

retinae, as measured by the TUNEL fluorescence assay. The nuclei were stained with DAPI (blue), the TUNEL-positive cells were stained with 
TUNEL dye (red), and 293T-Exo was stained with fluorescent-tag (green). Scale bar = 25 μm. (B–D) Number of TUNEL-positive cells in different 
structural layers in the retinae in response to treatment of PBS, PBS+ Ischemia, 293T-Exo, and 293T-Exo+ Ischemia, respectively. (E) Total 
number of TUNEL-positive cells in the retinae in response to treatment of PBS, PBS+ Ischemia, 293T-Exo, and 293T-Exo+ Ischemia. RGC: 
retinal ganglion cell; IPL: inner plexiform layer; INL: inner nuclear layers; ONL: outer nuclear layers. Data are presented as mean ± SD. 
*P < 0.05. 

 

 
 

Figure 9. Endocytosis of 293T-Exo by retinal neurons and RGCs. Ischemia injury promoted endocytosis of 293T-Exo by retinal neurons 

and RGCs. The nuclei were stained with DAPI (blue), 293T-Exo was stained with fluorescent-tag (green), retinal neurons were stained with 
Beta III tubulin (red), and the nuclei of RGCs were stained with BRN3A (magenta). Scale bar = 25 μm. 
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293T cells from human retina and then investigated the 

effect of BDNF-expressing 293T cells in ARPE-19 

cells, a retinal pigment epithelial cell line [26]. After 

coculturing BDNF- expressing 293T cells with ARPE-

19 cells in a Transwell chamber, we found that ARPE-

19 cells are more viable and display lower apoptotic 

levels. Given this, in the present study, we aimed to 

further investigate the mechanism underlying the 

neuroprotective role of BDNF-expressing 293T cells, 

specifically, to understand how BDNF-expressing 293T 

cells affect the recipient ARPE-19 cells.  

 

Given the experimental design previously described 

[26], BDNF-expressing 293T cells cocultured with 

ARPE-19 cells in a Transwell chamber without direct 

contact, suggesting there may be a potential mediator in 

this interaction. In the past decade, exosomes have been 

demonstrated to be an essential mediator in intercellular 

communication and play an essential role in regulating 

physiological processes in recipient cells [10, 11]. Thus, 

we hypothesized that exosomes might be involved in 

the communication between BDNF-expressing 293T 

and ARPE-19 cells. To address this question, we 

successfully isolated exosomes from BDNF-expressing 

293T cells and found that the expression of BDNF was 

significantly increased in 293T-Exo. Furthermore, these 

observations revealed that 293T-Exo may be 

internalized by R28 cells and result in an increased level 

of BDNF in R28 cells.  

 

To further explore the detailed mechanism of this 

endocytic process, we performed experiments to 

demonstrate that the endocytosis of 293T-Exo by R28 

cells displayed dose- and temperature-dependent 

patterns, indicating that the endocytosis may be 

mediated by endocytic receptors. To date, several 

distinct endocytic mechanisms have been reported to 

participate in the endocytosis of exosomes [18–20], of 

which, clathrin- and caveolare-mediated pathways have 

been demonstrated to be involved in the endocytosis of 

exosomes [27, 35]. For example, PC12 cell-derived 

exosomes carrying microRNA-21 are endocytosed by 

bone MSCs through a clathrin-mediated pathway [36]. 

Also, lipid raft-associated protein caveolin-1 can 

negatively regulate the internalization of exosomes 

derived from glioblastoma cells [28]. In the present 

study, colocalization of 293T-Exo with caveolin-1, but 

not clathrin, was found in R28 cells. Furthermore, our 

results showed that the RGD peptide, a  

specific ligand for integrin, significantly inhibited 

endocytosis. In contrast, heparin, a ligand for HSPGs, 

did not affect the endocytic process, suggesting that the 

endocytosis of 293T-Exo may be mediated by  
the caveolar endocytic pathway via a cell surface 

integrin receptor, a heterodimeric transmembrane 

receptor [37]. 

Next, regarding the function of 293T-Exo in R28 cells, 

we designed both in vitro and in vivo experiments to 

investigate the effect of 293T-Exo in retinal ischemia. 

Our results, in vitro, revealed that 293T-Exo inhibited 

cell death of R28 cells in response to OGD treatment. 

Consistently, 293T-Exo displayed a remarkable 

neuroprotective role in a retinal ischemia rat model 

through decreasing apoptosis in the retina. Furthermore, 

we also demonstrated that 293T-Exo was primarily 

internalized by retinal neurons and RGCs. Retinal 

ischemic injury is characterized by increased cell death, 

apoptosis, as well as neuroinflammatory responses, 

ultimately leading to RGC loss, blood-retinal barrier 

permeability, and blindness [38]. A growing number of 

studies report that the exosomes derived from MSCs 

can attenuate ischemia-induced injury in the retina. For 

example, exosomes derived bone MSCs can transfer 

functional microRNAs, rather than protein, into inner 

retinal layers and exert a significant therapeutic role in 

RGCs [15]. In addition, exosomes derived hypoxic 

human MSCs inhibit oxygen-induced retinopathy-

induced retinal thinning and preserve retinal vascular 

flow, ameliorating the severity of retinal ischemia in a 

murine model [16]. As such, these findings together 

provide a new understanding of the mechanism 

underlying the effect of exosomes in ischemic retina. 

 

Exosome-mediated therapies provide a cell-free 

alternative, relative to MSCs-based approaches. It has 

several notable advantages, such as easy operation (i.e., 

isolation, purification, storage, and delivery) and low 

risk (exosomes do not carry complications induced by 

transferring live cells into the vitreous). Meanwhile, 

there are still several challenges for exosome-based 

therapies. First, the safety and effectiveness of the dose 

of exosomes for each patient should be further 

investigated. Second, the timeframe of exosome-based 

therapies is essential for the clinical application. Third, 

the accuracy of delivering exosomes to the target tissue 

is a critical determinant for therapeutic purposes. 

Therefore, further studies should focus on addressing 

the above questions. Furthermore, it should be 

mentioned that we applied R28 retinal precursor cells, a 

transformed cell line [39], in vitro, which may not fully 

represent the function and structure of intact native 

retinal cells. Thus, it would be better to use native cells 

or tissues instead of transformed cells.  

 

In conclusion, the results suggest that 293T-Exo is 

endocytosed by retinal cells through the caveolar endocytic 

pathway via the integrin receptor. In addition, 293T-Exo 

exerts a neuroprotective role in the ischemic retina, both in 

vitro and in vivo. The findings from the present study 
demonstrates a significant therapeutic potential of 

exosomes and provides an understanding of how to 

develop exosome-based therapies for retinal ischemia. 
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MATERIALS AND METHODS 
 

Cell culture  

 

As described in our previous study [26], human 293T 

cells were donated from the Functional Genomic 

Research Lab (Tsinghua University, China) and cultured 

in Dulbecco's Modified Eagle's Medium (DMEM; Cat#: 

A4192101; Thermo Fisher Scientific) supplemented with 

10% heat-inactivated fetal bovine serum (FBS; Cat#: 

A3840001; Thermo Fisher Scientific) and 1% penicillin-

streptomycin (Cat#: 15140122; Thermo Fisher Scientific) 

in a humidified incubator at 5% CO2 and 37° C. Retinal 

cell line R28 (Cat#: EUR201; Kerafast) was cultured in 

DMEM supplemented with 10% fetal bovine serum 

(Cat#: A3160402; Thermo Fisher Scientific) and 100 

µg/mL streptomycin (Cat#: 15140122; Thermo Fisher 

Scientific). The R28 cells were dissociated and used at a 

density of 1×106 cells/mL for all subsequent experiments.  

 

Isolation exosomes derived from BDNF-expressing 

293T cells 

 

Construction of BDNF-expressing 293T cells was 

performed as previously described [26]. The protocol 

for isolation of 293T cell-derived exosomes (293T-

Exo) was conducted as previously described [40–42]. 

Briefly, 293T cells were incubated in the FBS-free 

culture medium in 225-cm2 flasks for 48 hours, and 

then the supernatants were collected. Cells, shedding 

vesicles, and cell fragments were removed from the 

supernatant through a series of centrifugation (300g*5 

min, 3000 g*30 min, and 10,000 g*60 min). Total 

Exosome Isolation Reagent (Cat#: 4478359; Thermo 

Fisher Scientific) was used to isolate exosomes from 

cell culture medium according to the manufacturer's 

instruction. Afterward, exosomes were harvested from 

the pellets and resuspended in PBS. Then, 0.22-μm 

pore size polyvinylidene difluoride (PVDF) membrane 

filters (Cat#: GVWP04700; MilliporeSigma) were 

used to filter any remaining cells or debris. The 

concentration of exosome was quantified through the 

BCA Protein Quantification Assay (Cat#: ab 102536; 

Abcam) [43].  

 

Transmission electron microscopy (TEM) and 

nanoparticle-tracking analysis (NTA) 

 

The 293T-Exo sample preparation, TEM, and NTA 

were performed as previously described [42]. 

Morphology of 293T-Exo was determined through 

TEM assay with the transmission electron microscope 

(JEM-1010; JEOL Ltd.). The 293T-Exo size 

distribution was assessed using the NanoSight NS500 

instrument and NTA (software version 2.3; Build 0033; 

Malvern Panlytical).  

Real-time PCR  

 

Total RNA was isolated from cells or exosomes using 

the Trizol Reagent kit (Cat#: 12183555; Thermo Fisher 

Scientific) according to the manufacturer's instruction. 

Reverse transcription was performed using the High-

Capacity cDNA Reverse Transcription Kit (Cat#: 

4368814; Thermo Fisher Scientific). The mRNA 

expressions were measured using the Fast SYBR™ 

Green Master Mix (Cat#: 4385612; Thermo Fisher 

Scientific) and the 7500 Fast Real-Time PCR System 

(Applied Biosystems). Real-time PCR data were 

analyzed using 2-∆∆Ct method [44], and β-Actin was 

used as a reference control. 

 

Western blots  

 

The 293T-Exo (4 μg/ml), cells (1 × 106), or retinal 

tissues were lysed using T-PER™ Tissue Protein 

Extraction Reagent (Cat#: 78510; Thermo Fisher 

Scientific). Lysates were centrifuged and protein 

concentration was determined using the BCA Protein 

Quantification Assay (Cat#: ab 102536; Abcam).  Ten 

μg protein was diluted with sodium dodecyl sulfate 

(SDS) sample buffer and loaded onto gels (4%–20%). 

Proteins were then electroblotted to polyvinylidene 

difluoride (PVDF) membranes (Cat#: 88518; Thermo 

Fisher Scientific). Protein-loaded membranes were 

incubated with primary antibodies overnight at 4° C on 

a shaker. The primary antibodies included: CD9 (1/500; 

Cat#: ab92726), CD63 (1/500; Cat#: ab134045), CD81 

(1/500; Cat#: ab109201), HSP70 (1/1000; Cat#: 

ab5442), BDNF (1/500; Cat#: ab216443) and β-Actin 

(1/1000; Cat#: ab179467) (Abcam). Nonspecific 

binding was blocked with 5% non-fat dry milk in 

TBST. Protein band intensity was measured using 

Imagej software [45]. 

 

Fluorescence staining  

 

The 293T-Exo was labeled with green fluorescent-tag 

using the ExoGlow-Protein Exosome/EV Protein 

Labeling Kit (Cat#: EXOGP300A-1-SBI; BioCat.) 

according to the manufacturer's instruction.  

 

Establishment of retinal ischemia model in vitro 

 

The R28 cells were subjected to the OGD assay to 

mimic ischemia injury [46]. Briefly, R28 cells (control) 

were cultured in normal medium to reach 80% 

confluence. For OGD treatment, R28 cells were 

cultured in glucose-free medium and then subjected to 

hypoxia condition (5% CO2, 1% O2) for 24 hours. 
Afterward, cells were supplied oxygen-enriched 

conditions (5% CO2, 21% O2) for 18 hours. Lactate 

dehydrogenase (LDH) assays (Cat#: ab102526; Abcam) 
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and ethynyl-deoxyuridine (EdU) assays (Cat#: 

ab219801; Abcam) were performed to measure 

cytotoxicity and proliferation according to the 

manufacturer's instruction.  

 

Endocytosis assay 

 

The R28 cells were plated in a 6-well plate and 

cocultured with 293T-Exo (50 μl) labeled with green 

fluorescent-tag or PBS for 1 hour at 37° C. Then, 

coverslips were washed with PBS and fixed with 4% 

neutral buffered formalin and stained with antibodies: 

clathrin (1/1000; Cat#: MA1-065), tubulin (1/1000; 

Cat#: MA1-118), and caveolin-1 (1/500; Cat#: PA1-

064) (Thermo Fisher Scientific). Slides were 

photographed using fluorescence microscopy 

Observer.Z1 (Zeiss Axio). For the exosome dose-

dependent experiments, R28 cells were incubated with 

different amounts of 293T-Exo (1, 2, 4, 8, 16, 32, and 

64 μl) for 1 hour at 37° C. For the binding-blocking 

experiment, R28 cells (2×106) were pre-treated with 

Arginyl-glycyl-aspartic acid (RGD; 0, 0.5, 1 and 2 mM; 

Cat#: A9041-2MG; Sigma-Aldrich), heparin (0, 1, 5 

and 10 μM; Cat#: 9041-08-1; Sigma-Aldrich), or 

MBCD (Methyl-β- cyclodextrin; 0, 2 and 4  mM; Cat#: 

C4555-1G; Sigma-Aldrich) at 4° C for 1 hour and then 

incubated with 50 μl 293T-Exo. Each well was washed 

with PBS three times and fixed with 4% neutral 

buffered formalin. The fluorescence was determined 

using fluorescence microscopy Observer.Z1 (Zeiss 

Axio). 

 

Establishment of the retinal ischemia rat model 

 

All animal-involved experimental procedures were 

approved by Beijing Friendship Hospital, Capital 

Medical University. Male Sprague Dawley rats (7-10 

weeks old, 220-250 g, n=10) were used in this study. 

A retinal ischemia rat model was established as 

previously described [47].  Null-293T-Exo 

conditioned medium was prepared by isolating 293T-

Exo from the medium. Normoxic Null-293T-Exo 

conditioned medium (5 μl), 293T-Exo (5 μl), or PBS 

(5 μl) were injected into the vitreous humor of both 

non-ischemic (left) and ischemic (right) eyes, 24 

hours after retinal ischemia. The left eye was used as 

the control for each animal. Retinal tissues were 

collected at seven days post-injection.  

 

TUNEL fluorescence assay 

 

The TUNEL fluorescence assay was performed at 24 

hours post-injection using the Cell Meter™ TUNEL 
Apoptosis Assay Kit (Cat#: 22844; Bioquest) according 

to the manufacturer's instruction. The TUNEL-positive 

cells were quantified using Imagej software [45].  

Fluorescent assay for localization of 293T-Exo in rat 

retinal tissues 

 

Control and ischemic male Sprague Dawley rats (7-10 

weeks old, 220-250 g, n=10) were intravitreally injected 

with 293T-Exo labeled with green fluorescent-tag and 

anesthetized at seven days post-injection. The eyecup 

samples were prepared as previously described [46]. 

The primary antibodies were as follows: BRN3A 

(1/500; Cat#: ab81213), Beta III Tubulin (1/1000; Cat#: 

ab18207), and Iba1 (1/1000; Cat#: ab178846). Slides 

were photographed using the LSM 900 confocal 

microscope (ZEISS).  

 

Statistical analysis 

 

Data were presented as mean ± standard deviation (SD). 

Statistical analyses were performed using SPSS 13.0 

software. At least three independent replicates were 

available in each experimental group. Statistical 

difference was determined by one-way ANOVA and t-

test. P < 0.05 was considered statistically significant.  
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