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INTRODUCTION 
 

Lung cancer is the most common cancer worldwide, 

and it is one of the leading causes of cancer death [1, 2]. 

Lung adenocarcinoma is a major type of lung cancer. 

The human immune system is the natural enemy of 

tumor cells. In recent years, tumor immunotherapy has 

gradually developed into one of the primary methods 

for treating tumors [3, 4]. Many major breakthroughs 

have been achieved in utilizing immunotherapy to treat 

lung adenocarcinoma [5–7]. The immune system is the 
first line of defense against diseases. Single-cell 

analysis has been applied to detect changed T cell and 

NK cell compartments in lung adenocarcinoma [8]. 

Tumor-driven immune imbalance is likely to be a key 

factor affecting tumor development and progression. 

The tumorigenic process is highly complex, and it has 

been confirmed that immune cells are involved in many 

aspects of tumor formation [9–11]. 

 

As a novel cancer treatment strategy, immunotherapy 

remains limited to a relatively small proportion of cancer 

patients, although it has been employed to achieve 

satisfactory results in tumor treatment [12]. The efficacy 

of immunotherapy is closely related to the tumor 

microenvironment (TME). Tumor cell epigenetic 

differentiation and infiltration metastasis are associated 

with tumor-induced immune suppression. The TME is an 
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ABSTRACT 
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genders, and TNM stages. We found that the infiltration of resting memory CD4+ T cells, memory B cells, and 
M0 macrophages into the TME was co-regulated by these four DEGs. These four genes were closely related to 
the prognosis of LUAD and affected the infiltration of immune cells into the TME, which had predictive 
prognostic value in LUAD. 
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intricate system that includes various types of cells, 

cytokines and other extracellular components. The type 

and number of infiltrating immune cells are important in 

determining tumor occurrence and progression. The 

composition and proportion of tumor-infiltrating immune 

cells (TIICs) and stroma can also be utilized for the 

prognosis and prediction of various types of cancer  

[13–15]. For example, intraepithelial CD8-positive and 

PD1-positive tumor-infiltrating lymphocytes, as defined 

by CD103, have prognostic significance in endometrial 

adenocarcinoma [16]. Increased CD8 infiltration is 

associated with impaired progression-free survival (PFS) 

and overall survival (OS). Patients with high CD8+ T cell 

density often exhibit high expression of PD-L1, which 

indicates that adaptive immune resistance may occur in 

the tumor microenvironment [17]. Inhibition of the IL-9 

or IL-17 cytokines can reduce epithelial-mesenchymal 

transition (EMT) and slow the progression and metastasis 

of lung cancer [18]. While some TIICs kill tumor cells, 

some tumor-associated macrophages (TAMs) help tumor 

cells escape the body's immunity to promote tumor 

development. STAT-6 promotes the pro-tumoral M2-like 

phenotype of TAMs in advanced-stage EMT by 

upregulating the expression of immune suppression 

genes and tumor stromal remodeling [19]. As another cell 

type in the TME, stromal cells have a bidirectional and 

complex relationship with tumor cells. It has noted that 

carcinoma-associated fibroblast (CAF)-derived exosomes 

induce lung pre-metastatic niche formation and increase 

lung metastasis [20]. In addition, CAFs may block the 

delivery of drugs and induce drug resistance, which are 

significant factors that may contribute to the poor 

prognosis of cancer patients [21, 22]. Mining related 

genes and subsequently studying their impact on TME 

immune cell infiltration, as well as on tumor prognosis, 

may provide new targets for tumor treatment. 

 

In this study, we took advantage of the TCGA dataset, 

including 551 transcriptome profiles and 486 clinical 

datasets. Subsequently, ESTIMATE software was 

employed to score the immune and stromal cells in each 

sample. After GO and KEGG enrichment analysis, PPI 

analysis, Cox regression analysis, and correlation 

analysis of immune infiltrating cells and gene 

expression were performed, four genes (CCR2, CCR4, 

P2RY12, and P2RY13) were finally identified;, these 

genes were determined to co-regulated the infiltration of 

M0 macrophages, resting memory CD4+ T cells, and 

memory B cells in the TME of LUAD. We found that 

low expression levels of these four genes correlated 

with poor clinical prognosis and infiltration of tumor 

immune cells in LUAD. These defined immune-related 

genes with potential prognostic value provide a new 
method for predicting the progression of LUAD and 

provide ideas for the development of novel immuno-

therapies for LUAD. 

RESULTS 
 

Tumor microenvironment score is associated with 

prognosis, age, gender, and TNM stage of LUAD 

patients 
 

In order to identify the immune characteristics of the 

tumor microenvironment of LUAD and screen 

prognostic-related genes, an analysis process was 

established to show the screening process 

(Supplementary Figure 1). After analyzing the FPKM 

data from TCGA, we divided the immune and stromal 

cells in each sample into high-score and low-score 

groups. LUAD patients with a high overall score or 

immune score presented a longer survival time than did 

those with a low score (p<0.05) (Figure 1A, 1B). 

However, the survival time of patients with high 

stromal scores was not significantly different from that 

of patients with low stromal scores (p > 0.05) (Figure 

1C). The overall score in tumor samples differed 

between ages < 65 and > 65 and varied by gender 

(Figure 1D). The overall score in T1 patients was 

different from that in obtained in T2, T3, and T4 

patients, and the overall score in M0 patients was 

different from that in M1 patients (Figure 1D). Except 

for the significant difference in overall score observed 

between stage I and stage IV, there were no significant 

differences among other clinical stages (Figure 1D). 

The immune score in tumor samples was significantly 

different between ages < 65 and > 65 and varied by 

gender (Figure 1E). Immune scores in T1 patients were 

different from those in T2, T3, and T4 patients (Figure 

1E). Except for the significant difference in immune 

score between stage I and stage III, there were no 

significant differences among other clinical stages 

(Figure 1E). The stromal score in tumor samples 

differed significantly between males and females and 

varied across different M stages (Figure 1F). Although 

the stromal score of stage IV patients was different from 

that of stage I and stage II patients, there were no 

significant differences among the other clinical stages 

(Figure 1F). 
 

Obtaining DEGs and performing enrichment 

analysis 

 

The samples were divided into a high immune (or 

stromal) score group and a low immune (or stromal) 

score group. A total of 623 upregulated genes and 142 

downregulated genes were screened from the high 

immune score group, and 673 upregulated genes and 

112 downregulated genes were screened from high 

stromal score group (Figure 2A, 2B). We obtained 318 
upregulated genes and 56 downregulated genes by 

taking the intersection of the DEGs in the two groups 

(Figure 2C, 2D). All 374 DEGs were further employed 
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to conduct GO (Figure 2E, 2F) and KEGG (Figure 2G, 

2H) enrichment analyses to elucidate their functions in 

tumorigenesis and progression. T cell activation, 

leukocyte proliferation and lymphocyte proliferation 

were the most enriched pathways, and most genes were 

related to immune- or stromal- cell activation and 

proliferation. These TME-related genes and cells are the 

primary causes of tumor growth and deterioration. 

 

Screening of the most important DEGs 

 

We first conducted PPI network analysis based on 374 

DEGs using STRING (Figure 3A) and Cytoscape 

software (Figure 3B). A total of 371 nodes and 732 

edges were identified from PPI network analysis of 374 

immune-related DEGs (minimum required interaction 

score > 0.9). The top 30 proteins that had the 

maximum number of nodes in the PPI network are 

displayed in Figure 3C. We further conducted Univariate 

Cox regression analysis on 374 immune-related DEGs, 

and 98 prognostic genes were identified as risk factors for 

LUAD (Figure 3D). The four core target genes (CCR2, 

CCR4, P2RY12, and P2RY13) were screened out by 

taking the intersection of the top 30 genes and 98 

candidate prognostic genes (Figure 3E). 

 

Expression levels and survival curve of the four 

target genes in LUAD 

 

To verify the effect of these four genes on LUAD, we 

measured the expression levels of the four genes in 

tumor tissues and normal tissues. The expression levels 

of CCR2, P2RY12, and P2RY13 in tumor tissues were 

significantly lower than those observed in normal 

tissues, and the expression level of CCR4 did not differ 

between tumor tissues and normal tissues (Figure 4A). 

 

 
 

Figure 1. Correlation of tumor score with different clinical features. Survival analysis of patients with LUAD based on overall score 

(A), immune score (B), and stromal score (C). Effect of age, gender or tumor TNM stage on overall score (D), immune score (E), and stromal 
score (F). 
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We further compared the expression levels of these four 

genes in paired tumor and adjacent normal tissues, 

which showed that the expression levels of  

CCR4, P2RY12, and P2RY13 in tumor tissues were 

significantly lower than those in adjacent normal 

tissues, and the expression level of CCR2 did not differ 

between paired tumor and adjacent normal tissues 

(Figure 4B). To further study the impact of these four 

genes on survival time, LUAD patients were divided 

into a high-expression group and a low-expression 

 

 
 

Figure 2. DEGs of high immune score (stromal score) and low score groups and functional enrichment analysis. Heatmap of 
significantly differentially expressed genes based on immune (A) and stromal (B) scores for LUAD. Venn diagram analysis of high (C) and low 
(D) expressed genes based on immune and stromal scores. (E) GO analysis of aberrantly expressed genes at the intersection of two groups. 
(F) CircleMap showing the functional interactions between pathways and genes as extracted from GO. (G) KEGG analysis of aberrantly 
expressed genes at the intersection of two groups. (H) CircleMap showing the functional interactions between pathways and genes as 
extracted from KEGG. 
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Figure 3. Screening of differentially expressed genes based on protein-protein interaction (PPI) and Univariate Cox 
regression analysis. (A) PPI network of the aberrantly expressed genes based on STRING (interaction confidence value > 0.95). (B) 
Visualized PPI analysis of differentially expressed genes using Cytoscape. (C) Top 30 genes with maximum adjacent nodes. (D) Univariate Cox 
regression analysis for the aberrantly expressed genes. Genes with a p value less than 0.05 are shown in the forest plot. (E) Venn diagram of 
key genes in PPI and Cox regression analysis. Four TIIC-related genes (CCR2, CCR4, P2RY12, and P2RY13) were finally screened as prognostic 
factors of LUAD. 
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Figure 4. Expression levels of the four genes (CCR2, CCR4, P2RY12, and P2RY13) and their prognostic value in LUAD patients. 
(A) The expression levels of the four genes in LUAD and normal tissues. (B) The levels of these four genes in paired tumor and adjacent 
normal tissues. (C) Survival curves of the expression of these four genes in the high-expression (red line) and low-expression (blue line) 
groups. The expression levels of CCR2 (D), CCR4 (E), P2RY12 (F), and P2RY12 (G) in patients with LUAD of different ages, genders and tumor 
TNM stages. 
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group based on the expression levels of the four genes. 

The results indicated that LUAD patients with high 

expression levels of the four genes had a better 

prognosis and higher survival time (Figure 4C). We also 

investigated the distribution of the expression of these 

four genes across different ages, genders and TNM 

stages. The CCR2 expression level in female LUAD 

patients or patients aged > 65 was higher than that in 

male LUAD patients or patients aged ≤ 65(Figure 4D) 

(p < 0.05). The CCR2 expression level in T1 patients 

was higher than that in T2 and T3 patients (Figure 4D) 

(p < 0.05). The CCR2 expression level in N0 patients 

was higher than that observed in N2 patients (Figure 

4D) (p < 0.05). Except for the finding that the CCR2 

expression levels in LUAD patients with stage I disease 

were higher than those in LUAD patients with stage III 

disease, no difference appeared between patients with 

other clinical stages of disease (Figure 4D) (p < 0.05). 

The CCR4 expression level in female LUAD patients or 

patients aged > 65 was higher than that in male LUAD 

patients or patients aged ≤ 65(Figure 4E) (p < 0.05). 

The CCR4 expression level in T1 patients was different 

from that in T2, T3, and T4 patients, and the CCR4 

expression level in T2 patients was different from that 

in T3 patients (Figure 4E) (p < 0.05). The CCR4 

expression level in LUAD patients with stage I disease 

was higher than that in patients with stage II, stage III, 

and stage IV disease (Figure 4E) (p < 0.05). The 

P2RY12 expression level in female LUAD patients or 

patients aged > 65 was higher than that in male LUAD 

patients and patients aged < 65(Figure 4F) (p < 0.05). 

Except for the finding that P2RY12 expression levels in 

T1 patients were higher than those in T2 and T3 

patients, no difference was observed between patients 

with other clinical TNM stages (Figure 4F) (p < 0.05). 

The P2RY13 expression level in female LUAD patients 

or patients aged > 65 was higher than that in male 

LUAD patients or patients aged < 65(Figure 4G) (p < 

0.05). P2RY13 expression levels in T1 patients were 

different from those in T2 and T3 patients (Figure 4G) 

(p < 0.05). Except for the finding that P2RY13 

expression levels in LUAD patients with stage I disease 

were higher than in those with stage III disease, no 

differences between other clinical stages were observed 

in patients (Figure 4G) (p < 0.05). 

 

GSEA for the four genes 

 

To research signaling pathways related to these four 

genes (CCR2, CCR4, P2RY12, and P2RY13), gene set 

enrichment analysis (GSEA) was performed to select 

significantly enriched signaling pathways according to 

NES, nominal p-value, FDR q-value and FWER p-
value. The 10 most important signaling pathways 

enriched in highly expressed phenotypes of CCR2 were 

autoimmune disease, B cell receptor signaling pathway, 

cell adhesion molecules, chemokine signaling pathway, 

cytokine- cytokine interaction, hematopoietic cell 

lineage, Leishmania infection, NK cell-mediated 

cytotoxicity, T cell signaling pathway, and Toll-like 

receptor signaling pathway (Figure 5A). The 10 most 

important signaling pathways enriched in highly 

expressed phenotypes of CCR4 were the B cell receptor 

signaling pathway, cell adhesion molecules, cytokine- 

cytokine interaction, Fc epsilon RI signaling pathway, 

hematopoietic cell lineage, JAK-STAT signaling 

pathway, Leishmania infection, NK cell-mediated 

cytotoxicity, and T cell receptor signaling pathway 

(Figure 5B). The 10 most important signaling pathways 

enriched in highly expressed phenotypes of P2RY12 

were autoimmune disease, cell adhesion molecules, 

chemokine signaling pathway, cytokine- cytokine 

interaction, hematopoietic cell lineage, intestinal 

immune network for IgA production, Leishmania 

infection, NK cell-mediated cytotoxicity, systemic 

lupus erythematosus, and viral myocarditis (Figure 5C). 

The 10 most important signaling pathways enriched in 

highly expressed phenotypes of P2RY13 were cell 

adhesion molecules, chemokine signaling pathway, 

cytokine- cytokine interaction, FcγR -mediated 

phagocytosis, hematopoietic cell lineage, JAK-STAT 

signaling pathway, Leishmania infection, NK cell-

mediated cytotoxicity, T cell receptor signaling, and toll 

like receptor signaling pathway (Figure 5D). 

 

Distribution characteristics of immune cells in the 

TME of LUAD 

 

To characterize the role played by immune cells in the 

progression of LUAD, the CIBERSORT algorithm was 

employed to estimate the differences in immune 

infiltration of 22 immune cell types in the TME. Figure 

6A shows the landscape of the TME immune infiltration 

model, and every bar plot represents the proportion of 

22 immune cells in each sample. Furthermore, the 

correlation matrix reflected the correlation of different 

TIICs, ranging from weak to strong, in LUAD (Figure 

6B). As shown in the above analysis, CD4 memory 

resting T cells and CD8 T cells had a strong negative 

correlation (Cor = -0.44). CD8 T cells exhibited a 

positive correlation with CD4 memory activated T cells 

(Cor = 0.48). 

 

Impact of the expression of the four genes on TIICs 

in LUAD 

 

To further clarify the mechanism underlying the 

functions of the four previously discovered key genes 

(CCR2, CCR4, P2RY12, and P2RY13) in the tumor 
microenvironment, we divided LUAD patients into 

high-expression groups and low-expression groups 

according to the four gene expression levels. Our results 
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indicated that memory B cells (p = 0.015), CD8 T cells 

(p = 0.021), CD4 memory resting T cells (p = 0.008), 

CD4 memory activated T cells (p < 0.001), monocytes 

(p < 0.001), M1 macrophages (p = 0.018), resting 

dendritic cells (p < 0.001), and resting mast cells (p = 

0.013) were present in higher proportions in the high 

CCR2-expression group than in the others (Figure 7A). 

The relative proportions of follicular helper T cells (p = 

0.038), gamma delta T cells (p = 0.002), M0 

macrophages (p < 0.001), and activated mast cells (p = 

0.002) were significantly upregulated in the low CCR2 

group (Figure 7A). Naive B cells (p = 0.024), memory 

B cells (p < 0.001), CD8 T cells (p < 0.001), CD4 

memory resting T cells (p < 0.001), CD4 memory 

activated T cells (p < 0.001), and M1 macrophages (p = 

0.004) were present in higher proportions in the high 

CCR4-expression group than in the low CCR4-

expression group, and gamma delta T cells (p = 0.015), 

activated NK cells (p < 0.001), M0 macrophages (p < 

0.001), and M2 macrophages (p = 0.01) were 

significantly upregulated in the low CCR4 group 

(Figure 7B). Memory B cells (p < 0.001), CD4 memory 

resting T cells (p < 0.001), monocytes (p < 0.001), M2 

macrophages (p < 0.001), resting dendritic cells (p < 

0.001), resting mast cells (p < 0.001), and eosinophils  

(p = 0.009) were present in higher proportions in the 

high P2RY12-expression group than in the others 

(Figure 7C). The relative proportions of plasma cells  

(p < 0.001), follicular helper T cells (p = 0.029), gamma 

delta T cells (p = 0.019), activated NK cells (p = 0.023), 

M0 macrophages (p < 0.001), and activated mast cells 

(p < 0.001) were significantly upregulated in the low 

P2RY12 group (Figure 7C). Memory B cells (p<0.001), 

CD8 T cells (p=0.017), CD4 memory resting T cells  

(p = 0.03), CD4 memory activated T cells (p < 0.001), 

monocytes (p < 0.001), M1 macrophages (p = 0.003), 

resting dendritic cells (p < 0.001), resting mast cells  

(p = 0.005), and activated mast cells (p = 0.002) were 

present in higher proportions in the high P2RY13-

expression group than in the low P2RY13-expression 

groups, and plasma cells (p < 0.001) and M0 

macrophages (p < 0.001) were significantly upregulated 

in the low P2RY13 group (Figure 7D). 

 

Correlation analysis of the expression of the four 

genes with TIICs in LUAD 

 

To further study the relationships among the four genes 

(CCR2, CCR4, P2RY12, and P2RY13) and immune 

cell infiltration, we investigated the correlations of the 

expression of these four genes with TIICs. The TIICs 

correlated with these four genes are presented in Figure 

8. The results indicated that CCR2 was positively 
correlated with the infiltration of memory B cells, 

resting dendritic cells, eosinophils, M1 macrophages, 

monocytes, neutrophils, CD4 memory activated T cells, 

CD4 memory resting T cells, CD8 T cells, and gamma 

delta T cells but negatively correlated with the 

infiltration of activated dendritic cells, M0 

macrophages, activated mast cells, activated NK cells, 

follicular helper T cells, and regulatory T cells (Figure 

8A). CCR4 was positively correlated with the 

infiltration of memory B cells, naive B cells, resting 

dendritic cells, resting mast cells, CD4 memory 

activated T cells, CD4 memory resting T cells, and CD8 

T cells but was negatively correlated with the 

infiltration of M0 macrophages, M2 macrophages, 

activated mast cells, activated NK cells, and follicular 

helper T cells (Figure 8B). P2RY12 was positively 

correlated with the infiltration of memory B cells, 

resting dendritic cells, eosinophils, M2 macrophages, 

resting mast cells, monocytes, CD4 memory resting T 

cells, and gamma delta T cells but was negatively 

correlated with the infiltration of M0 macrophages, 

activated mast cells, activated NK cells, resting NK 

cells, plasma cells, and regulatory T cells (Figure 8C). 

P2RY13 was positively correlated with the infiltration 

of memory B cells, resting dendritic cells, eosinophils, 

M1 macrophages, resting mast cells, monocytes, 

neutrophils, CD4 memory activated T cells, CD4 

memory resting T cells, CD8 T cells, and gamma delta 

T cells but was negatively correlated with the 

infiltration of activated dendritic cells, M0 macro-

phages, activated mast cells, activated NK cells, and 

plasma cells (Figure 8D). 

 

Screening of immune cells most closely related to the 

expression of the four genes 

 

To screen out immune cells that were most closely 

related to the expression of the four genes (CCR2, 

CCR4, P2RY12, and P2RY13), we took the intersection 

of immune cells differentially infiltrating in high-/low-

expression groups and immune cells correlated with the 

expression of the four genes. Figure 9A indicates that 11 

kinds of TIICs correlated with CCR2 expression, which 

was codetermined by difference and correlation analysis 

depicted in violin and scatter plots, respectively. Figure 

9B indicates that nine kinds of TIICs correlated with 

CCR4 expression, as co-determined by difference and 

correlation analysis displayed in violin and scatter plots, 

respectively. Figure 9C indicates that 13 kinds of TIICs 

correlated with P2RY12 expression, as co-determined by 

difference and correlation analysis displayed in violin 

and scatter plots, respectively. Figure 9D indicates that 

11 kinds of TIICs correlated with P2RY13 expression, 

as co-determined by difference and correlation analysis 

displayed in violin and scatter plots, respectively. In 

addition, we took the intersection of all the above TIICs, 
which indicated that the abundance of memory B cells, 

CD4 memory resting T cells, and M0 macrophages was 

jointly regulated by these four genes (Figure 9E). 
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Figure 5. Select GSEA plots of signatures for the four genes. (A) Enriched gene sets in KEGG collection by high expression of CCR2 (A), 

CCR4 (B), P2RY12 (C), and P2RY13 (D). Each line with a unique color represents one particular gene set. The upregulated genes are located on 
the left of the x-axis, and the downregulated genes are on the right. Only the gene sets with FDR q < 0.05, NOM p < 0.05, and FWER p < 0.05 
are displayed. The top 10 leading gene sets are presented in the plot. 
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Figure 6. CIBERSORT for estimating TIIC components in the LUAD microenvironment. (A) Stacked bar chart representing the 

component of TIICs in LUAD samples. (B) Correlation matrix of the different tumor-infiltrating immune cell proportions in LUAD. 
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DISCUSSION 
 

The percentage of tumor cells determines the purity of 

the tumor in the TME, which is significantly correlated 

with the prognosis of cancer patients [23–27]. Rhee et al. 

determined that tumor purity is an important factor in 

assessing the correlation between gene expression  

and clinical pathological features (such as mutation 

burden, and molecular taxonomy) [26]. It was observed 

that the purity of glioma is correlated with the main 

molecular and clinical characteristics of the tumor [27]. 

Purity-independent subtypes of tumors are closely  

related to patient prognosis and affect the efficacy of 

FOLIFIRNOX in the treatment of pancreatic cancer [28]. 

Immune cells and stromal cells are important components 

of the tumor microenvironment, affect the purity of 

tumor cells, and serve anti-tumor functions [29–33]. 

 

The ESTIMATE algorithm is employed to calculate the 

immune score and stromal score based on immune 

genes and stromal genes in the TME, which can be 

utilized to reflect the purity of the tumor [34, 35]. In this 

study, we utilized this algorithm to evaluate the score of 

stromal and immune-related cells from LUAD patients 

in the TCGA database. Achieving a better understanding 

of stromal and immune cells in the TME may establish  

a foundation for further research characterizing LUAD. 

 

In this research, the immune cells and stromal cells in 

each sample were scored by ESTIMATE, and the effect 

of high score or low score on patient prognosis was 

evaluated. We observed that patients with a high overall 

score or immune score had a better prognosis and 

longer survival time than those with a low score. We 

also analyzed DEGs between patients with high scores 

and those with low scores. A total of 374 DEGs were 

employed to perform GO and KEGG pathway 

enrichment analysis, and it was found that proliferation 

and activation of immune cells (such as leukocyte 

proliferation, T cell activation, mononuclear cell 

proliferation, lymphocyte proliferation, and regulation 

of lymphocyte activation) were regulated by most of 

these DEGs. Immune cells regulate tumor behavior and 

treatment response by interacting with tumor cells  

with the assistance of cytokines and chemokines  

[36–39]. Hence, identifying prognostic risk factors 

related to tumor microenvironmental immunity is highly 

important for the treatment of tumors. After the Cox 

 

 
 

Figure 7. Effect of the four genes on TIIC levels in patients with LUAD. Violin plot indicating the ratio differentiation of 21 types of 

TIICs in high/low CCR2 (A), CCR4 (B), P2RY12 (C), and P2RY13 (D) expression relative to the median expression level. 
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regression analysis, 98 DEGs were considered to have 

significant predictive value for patient prognosis. By 

intersection of the 98 DEGs and the top 30 genes with 

the maximum PPI network nodes, four target genes 

(CCR2, CCR4, P2RY12, and P2RY13) were selected 

for further study. Except for CCR4, these genes were 

significantly downregulated in the LUAD immune 

microenvironment (p < 0.05). Interestingly, patients 

 

 
 

Figure 8. Correlation of the expression of the four genes with immune cell infiltration levels in patients with LUAD. (A) Scatter 

plot showing that 16 kinds of TIICs were correlated with the CCR2 expression (p < 0.05). (B) Scatter plot showing that 13 kinds of TIICs were 
correlated with CCR4 expression (p < 0.05). (C) Scatter plot showing 14 kinds of TIICs correlated with P2RY12 expression (p < 0.05). (D) Scatter 
plot showing 16 kinds of TIICs correlated with P2RY13 expression (p < 0.05). 
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with high expression of these four genes exhibited a 

better prognosis and longer survival time (p < 0.05). 

To a certain extent, this result also indicated that the 

immune microenvironment of LUAD is an important 

factor affecting tumor immunotherapy. Although there 

are many research reports on screening tumor 

prognostic markers [40–42], research on the 

correlation between these markers and TIICs in the 

TME of LUAD is scarce. To elucidate the mechanism 

underlying the functions of CCR2, CCR4, P2RY12, and 

P2RY13 in immune microenvironment of LUAD, we 

performed GSEA and correlation analysis. 

 

 
 

Figure 9. Venn diagram analysis of aberrantly TIICs based on the difference analysis method and correlation analysis 
method. (A) Venn diagram indicating 11 kinds of TIICs correlated with CCR2 expression co-determined by difference and correlation analysis 

displayed in violin and scatter plots, respectively. (B) Venn diagram indicating 9 kinds of TIICs correlated with CCR4 expression co-determined 
by difference and correlation analysis displayed in violin and scatter plots, respectively. (C) Venn diagram indicating 13 kinds of TIICs 
correlated with P2RY12 expression co-determined by difference and correlation analysis displayed in violin and scatter plots, respectively. (D) 
Venn diagram indicating 11 kinds of TIICs correlated with P2RY13 expression co-determined by difference and correlation analysis displayed 
in violin and scatter plots, respectively. (E) Venn diagram indicating 3 kinds of TIICs that were co-related by these four genes. 



 

www.aging-us.com 2410 AGING 

The expression levels of these four genes were closely 

related to the infiltration of immune cells and the 

activation or dormancy of immune signaling pathways. 

We identified the 10 most important signaling pathways 

enriched in the highly expressed phenotypes of each 

gene. In addition, we found that the CCR2 expression 

level was closely related to M0 macrophages, CD4 

memory activated T cells, and dendritic cell resting cells. 

The CCR4 expression level was closely related to 

memory B cells, CD4 memory resting T cells, and M0 

macrophages. The P2RY12 expression level was closely 

related to dendritic cell resting cells, monocytes, and 

CD4 memory resting T cells. P2RY13 expression levels 

were closely related to dendritic cell resting cells, plasma 

cells, and M0 macrophages. The relative abundances of 

memory B cells, CD4 memory resting T cells, and M0 

macrophages were jointly regulated by these four genes. 

 

It was reported that ablation of CCR2 could inhibit breast 

cancer bone metastasis by suppressing macrophages [43]. 

In addition, a CCR4 inhibitor restrained triple-negative 

breast cancer progression by reducing myeloid-derived 

immunosuppressor cell recruitment, angiogenesis and 

metastasis [44]. Most studies have shown that 

CCR2/CCR4 are highly expressed in tumors and promote 

tumor progression. Interestingly, and in contrast with the 

findings of with previous research, our study based on 

RNA-seq data indicated that LUAD patients with high 

levels of CCR2 and CCR4 had a better overall survival 

rate (Figure 4C). These discrepant results may be due to 

the small sample size. As a family of P2 purinergic 

receptors (P2RY12), P2RY12 consists of seven 

transmembrane GPCRs and was reported to be a specific 

marker for microglial cells. The presence of P2RY12-

positive cells was positively correlated with survival rate 

[45]. P2RY13 is another member of a family of P2 

purinergic receptor, which has been reported to be 

associated with the prognosis of lung cancer [46]. There 

are few studies on P2RY13 at present. Although P2RY13 

has been reported in lung cancer research, this study 

further investigated the role and possible mechanism of 

P2RY13 in lung adenocarcinoma from two aspects, 

namely, of the tumor microenvironment and immune cell 

infiltration. 

 

To further verify the predictive value of these four genes 

on the prognosis of lung cancer, the four genes were used 

to make a cluster. A risk model was calculated based on 

the expression data of these four genes and Multivariate 

coefficients. Patients with LUAD were divided into a 

high-risk group and low-risk group based on the median 

risk score. The survival curves of patients with high and 

low risk scores in each subgroup are shown in 
Supplementary Figure 2, which indicated that patients 

with high risk score presented a poor survival possibility. 

All the above records confirmed that the expression of 

these four genes expression was closely related to the 

prognosis of LUAD patients and could be utilized as 

potential markers for the prognosis of lung cancer or 

targets for the treatment of lung cancer. There are also 

several limitations to this study. First, this study may 

have biases resulting from confounding factors due to the 

lack of wet-lab experiments. Second, the mechanisms by 

which CCR2, CCR4, P2RY12, and P2RY13 affect 

immune cell infiltration warrant further study. 

 

In summary, we obtained 318 upregulated genes and 56 

downregulated genes by taking the intersection of 

DEGs between high and low stromal (immune) groups, 

of which 98 genes might regulate the prognosis of 

patients with LUAD via Cox regression analysis. The 

main four target genes (CCR2, CCR4, P2RY12, and 

P2RY13) were screened out by taking intersection of 

the top 30 genes with maximum PPI network nodes and 

98 candidate prognostic genes. LUAD patients with 

high expression levels of the four genes had better 

prognoses and longer survival times. The expression 

levels of these four genes were closely related to TIICs, 

which jointly regulated the relative abundances of 

memory B cells, CD4 memory resting T cells, and M0 

macrophages. 

 

MATERIALS AND METHODS 
 

Sample and data collection 

 

The transcriptome profiles (n = 551) and clinical data (n 

= 486) along with adjacent solid tissue normal data for 54 

LUAD patients were obtained from publicly available 

datasets, TCGA, deposited in Genomic Data Commons 

(GDC) portal (https://portal.gdc.cancer.gov/). All the 

patients' samples are untreated. Meanwhile, the “estimate 

score”, “immune score” and “stromal score” in LUAD 

samples were calculated by the ESTIMATE algorithm 

using the “estimate” package in R software [47]. 

 

Identification of DEGs and functional enrichment 

 

The R package “limma” was employed to identify 

DEGs in the immune-score group and stromal-score 

group in LUAD tissues. To research the biofunctions of 

DEGs, the R package “clusterProfiler” was used to 

perform functional annotations, which included three 

categories of GO (biological processes (BP), molecular 

functions (MF), and cellular components (CC)) and 

KEGG enrichment analysis. 

 

PPI network and cox analysis for screening the four 

DEGs 

 

To research interactions between the transcription 

products of these DEGs, we built the PPI network using 

https://portal.gdc.cancer.gov/
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Cytoscape software and the Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) 

database. At the same time, Univariate Cox regression 

analysis was conducted on DEGs to identify 124 

candidate prognostic genes with p-values less than 0.05. 

The most important four target genes (CCR2, CCR4, 

P2RY12, and P2RY13) were identified by taking the 

intersection of the top 30 genes with the most nodes and 

98 candidate prognostic genes. 

 

Difference analysis and survival curve plotting of the 

target four genes 

 

Difference analysis of the four genes (CCR2, CCR4, 

P2RY12, and P2RY13) was performed using the R 

packages “limma” and “ggpubr”. Survival analysis of 

these four genes was conducted using the R packages 

“survival” and “survminer”. The survival curve was 

plotted using the Kaplan-Meier method, and log rank 

was used as a significance test. 

 

GSEA analysis of key prognostic immune-related 

genes 

 

Gene set enrichment analysis (GSEA) was employed 

to identify correlation coefficients between biological 

processed enrichment and the expression of four genes 

(CCR2, CCR4, P2RY12, and P2RY13). We defined 

high expression and low expression of these four genes 

in each cancer type, and then identified the KEGG 

pathways utilizing GSEA with an adjusted p-value < 

0.05. The gene sets used in this work were 

downloaded from the Molecular Signatures Database 

(MSigDB). 

 

Characterization of the TME in LUAD 

 

Cell-type identification by estimating relative subsets of 

RNA transcripts (CIBERSORT) is a method to research 

cell components of tumor or normal tissues. After 

normalizing gene expression, the 22 types of infiltrating 

immune cells (including plasma cells, natural killer 

cells, 7 T-cell types, macrophages, neutrophils, myeloid 

subsets, dendritic cells, B cells, among others) were 

distinguished and deduced the relative proportions by 

running algorithm CIBERSORT in R in combination 

with the LM22 signature matrix. Correlation analysis 

between different TIIC subpopulations was achieved by 

the "corrplot" package. Twenty-one TIICs between high 

and low expression of the four genes (CCR2, CCR4, 

P2RY12, and P2RY13) samples were visualized by the 

“vioplot” package. CD4 naive cells were excluded 

because their relative proportion was 0 in all samples. 
The correlation of the expression of these four genes 

with the abundance of TIICs was performed by the 

“limma”, “ggplot2”, “ggpubr”, and “ggExtra” packages. 

Statistical analysis 

 

We used Mann-Whitney U tests or Wilcoxon signed-

rank tests to compare gene expression profiles. The 

Cox, survival, tumor microenvironment, gene 

difference, and clinical characteristics analyses were 

carried out using packages implemented in R (v. 3.6.1). 

The “ggpubr” and “limma” packages were used to 

validate correlations between the expression of four 

genes (CCR2, CCR4, P2RY12, and P2RY13) and 

immune genes. A p < 0.05 was considered to be 

significant. Spearman’s or Pearson’s correlation test 

was used to evaluate the correlation of two variables. 

The value of R and p-values < 0.05 were the criteria for 

judging whether there was a correlation. 

 

AUTHOR CONTRIBUTIONS 
 

T.F. designed the study and conducted data analysis. 

M.Z. and N.S. performed data collection. T.F., L.W, 

Y.L. H.T., and F.T. drafted the manuscript. J.H. and 

C.L. revised and approval the paper. 

 

ACKNOWLEDGMENTS 
 

We are very grateful to TCGA databases for providing 

valuable data resources to enable us to perform this 

study. 

 

CONFLICTS OF INTEREST 
 

We declare no conflicts of interest. 

 

FUNDING 
 

This work was supported by the National Key R&D 

Program of China (2018YFC1312100), the National 

Natural Science Foundation of China (81972196), The 

CAMS Innovation Fund for Medical Sciences (CIFMS) 

(2017-I2M-1-005, 2019-I2M-2-002), The Non-profit 

Central Research Institute Fund of Chinese Academy of 

Medical Sciences (2018PT32033), The Innovation team 

development project of Ministry of Education 

(IRT_17R10). 

 

REFERENCES 
 
1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, 

Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. 
CA Cancer J Clin. 2016; 66:115–32. 

 https://doi.org/10.3322/caac.21338  
PMID:26808342 

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. 
CA Cancer J Clin. 2019; 69:7–34. 

 https://doi.org/10.3322/caac.21551 PMID:30620402 

https://doi.org/10.3322/caac.21338
https://pubmed.ncbi.nlm.nih.gov/26808342
https://doi.org/10.3322/caac.21551
https://pubmed.ncbi.nlm.nih.gov/30620402


 

www.aging-us.com 2412 AGING 

3. Topalian SL, Wolchok JD, Chan TA, Mellman I, Palucka 
K, Banchereau J, Rosenberg SA, Dane Wittrup K. 
Immunotherapy: the path to win the war on cancer? 
Cell. 2015; 161:185–86. 

 https://doi.org/10.1016/j.cell.2015.03.045 
PMID:26042237 

4. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-
Soto A. The hallmarks of successful anticancer 
immunotherapy. Sci Transl Med. 2018; 10:eaat7807. 

 https://doi.org/10.1126/scitranslmed.aat7807 
PMID:30232229 

5. Schmidt L, Eskiocak B, Kohn R, Dang C, Joshi NS, 
DuPage M, Lee DY, Jacks T. Enhanced adaptive 
immune responses in lung adenocarcinoma through 
natural killer cell stimulation. Proc Natl Acad Sci USA. 
2019; 116:17460–69. 

 https://doi.org/10.1073/pnas.1904253116 
PMID:31409707 

6. Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, 
Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K, 
Stathopoulos GT, Zakynthinos S, Kalomenidis I, 
Soumelis V, et al. Wnt1 silences chemokine genes in 
dendritic cells and induces adaptive immune resistance 
in lung adenocarcinoma. Nat Commun. 2019; 10:1405. 

 https://doi.org/10.1038/s41467-019-09370-z 
PMID:30926812 

7. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann 
MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, 
Trabucco SE, Gay L, Ali SM, Elvin JA, Singal G, et al. 
STK11/LKB1 mutations and PD-1 inhibitor resistance in 
KRAS-mutant lung adenocarcinoma. Cancer Discov. 
2018; 8:822–35. 

 https://doi.org/10.1158/2159-8290.CD-18-0099 
PMID:29773717 

8. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, 
Bigenwald C, Remark R, Sweeney R, Becker CD, Levine 
JH, Meinhof K, Chow A, Kim-Shulze S, et al. Innate 
immune landscape in early lung adenocarcinoma by 
paired single-cell analyses. Cell. 2017; 169:750–65.e17. 

 https://doi.org/10.1016/j.cell.2017.04.014 
PMID:28475900 

9. Zhang C, Lin R, Li Z, Yang S, Bi X, Wang H, Aini A, Zhang 
N, Abulizi A, Sun C, Li L, Zhao Z, Qin R, et al. Immune 
exhaustion of T cells in alveolar echinococcosis patients 
and its reversal by blocking checkpoint receptor TIGIT 
in a murine model. Hepatology. 2020; 71:1297–315. 

 https://doi.org/10.1002/hep.30896  
PMID:31410870 

10. Liu M, Zhou J, Liu X, Feng Y, Yang W, Wu F, Cheung OK, 
Sun H, Zeng X, Tang W, Mok MT, Wong J, Yeung PC, et 
al. Targeting monocyte-intrinsic enhancer 
reprogramming improves immunotherapy efficacy in 
hepatocellular carcinoma. Gut. 2020; 69:365–79. 

 https://doi.org/10.1136/gutjnl-2018-317257 
PMID:31076403 

11. Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, 
Singh AP. Modulation of the tumor microenvironment 
by natural agents: implications for cancer prevention 
and therapy. Semin Cancer Biol. 2020; S1044-
579X:30105. 

 https://doi.org/10.1016/j.semcancer.2020.05.009 
PMID:32470379 

12. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, 
Zimmer L, Sucker A, Hillen U, Foppen MH, Goldinger 
SM, Utikal J, Hassel JC, Weide B, et al. Genomic 
correlates of response to CTLA-4 blockade in 
metastatic melanoma. Science. 2015; 350:207–11. 

 https://doi.org/10.1126/science.aad0095 
PMID:26359337 

13. Zhang WH, Wang WQ, Gao HL, Xu SS, Li S, Li TJ, Han X, 
Xu HX, Li H, Jiang W, Ye LY, Lin X, Wu CT, et al. Tumor-
infiltrating neutrophils predict poor survival of non-
functional pancreatic neuroendocrine tumor. J Clin 
Endocrinol Metab. 2020; 105:dgaa196. 

 https://doi.org/10.1210/clinem/dgaa196 
PMID:32285127 

14. Sato J, Kitano S, Motoi N, Ino Y, Yamamoto N, 
Watanabe S, Ohe Y, Hiraoka N. CD20+ tumor-
infiltrating immune cells and CD204+ M2 macrophages 
are associated with prognosis in thymic carcinoma. 
Cancer Sci. 2020; 111:1921–32. 

 https://doi.org/10.1111/cas.14409  
PMID:32277550 

15. Liu Z, Zhu Y, Xu L, Zhang J, Xie H, Fu H, Zhou Q, Chang Y, 
Dai B, Xu J. Tumor stroma-infiltrating mast cells predict 
prognosis and adjuvant chemotherapeutic benefits in 
patients with muscle invasive bladder cancer. 
Oncoimmunology. 2018; 7:e1474317. 

 https://doi.org/10.1080/2162402X.2018.1474317 
PMID:30393586 

16. Workel HH, Komdeur FL, Wouters MC, Plat A, Klip HG, 
Eggink FA, Wisman GB, Arts HJ, Oonk MH, Mourits MJ, 
Yigit R, Versluis M, Duiker EW, et al. CD103 defines 
intraepithelial CD8+ PD1+ tumour-infiltrating 
lymphocytes of prognostic significance in endometrial 
adenocarcinoma. Eur J Cancer. 2016; 60:1–11. 

 https://doi.org/10.1016/j.ejca.2016.02.026 
PMID:27038842 

17. Thompson ED, Zahurak M, Murphy A, Cornish T,  
Cuka N, Abdelfatah E, Yang S, Duncan M, Ahuja N, 
Taube JM, Anders RA, Kelly RJ. Patterns of PD-L1 
expression and CD8 T cell infiltration in gastric 
adenocarcinomas and associated immune stroma. 
Gut. 2017; 66:794–801. 

 https://doi.org/10.1136/gutjnl-2015-310839 
PMID:26801886 

https://doi.org/10.1016/j.cell.2015.03.045
https://pubmed.ncbi.nlm.nih.gov/26042237
https://doi.org/10.1126/scitranslmed.aat7807
https://pubmed.ncbi.nlm.nih.gov/30232229
https://doi.org/10.1073/pnas.1904253116
https://pubmed.ncbi.nlm.nih.gov/31409707
https://doi.org/10.1038/s41467-019-09370-z
https://pubmed.ncbi.nlm.nih.gov/30926812
https://doi.org/10.1158/2159-8290.CD-18-0099
https://pubmed.ncbi.nlm.nih.gov/29773717
https://doi.org/10.1016/j.cell.2017.04.014
https://pubmed.ncbi.nlm.nih.gov/28475900
https://doi.org/10.1002/hep.30896
https://pubmed.ncbi.nlm.nih.gov/31410870
https://doi.org/10.1136/gutjnl-2018-317257
https://pubmed.ncbi.nlm.nih.gov/31076403
https://doi.org/10.1016/j.semcancer.2020.05.009
https://pubmed.ncbi.nlm.nih.gov/32470379
https://doi.org/10.1126/science.aad0095
https://pubmed.ncbi.nlm.nih.gov/26359337
https://doi.org/10.1210/clinem/dgaa196
https://pubmed.ncbi.nlm.nih.gov/32285127
https://doi.org/10.1111/cas.14409
https://pubmed.ncbi.nlm.nih.gov/32277550
https://doi.org/10.1080/2162402X.2018.1474317
https://pubmed.ncbi.nlm.nih.gov/30393586
https://doi.org/10.1016/j.ejca.2016.02.026
https://pubmed.ncbi.nlm.nih.gov/27038842
https://doi.org/10.1136/gutjnl-2015-310839
https://pubmed.ncbi.nlm.nih.gov/26801886


 

www.aging-us.com 2413 AGING 

18. Salazar Y, Zheng X, Brunn D, Raifer H, Picard F, Zhang Y, 
Winter H, Guenther S, Weigert A, Weigmann B, 
Dumoutier L, Renauld JC, Waisman A, et al. 
Microenvironmental Th9 and Th17 lymphocytes induce 
metastatic spreading in lung cancer. J Clin Invest. 2020; 
130:3560–75. 

 https://doi.org/10.1172/JCI124037 PMID:32229721 

19. Gaydosik AM, Queen DS, Trager MH, Akilov OE, 
Geskin LJ, Fuschiotti P. Genome-wide transcriptome 
analysis of the STAT6-regulated genes in advanced-
stage cutaneous T-cell lymphoma. Blood. 2020; 
136:1748–59. 

 https://doi.org/10.1182/blood.2019004725 
PMID:32438399 

20. Kong J, Tian H, Zhang F, Zhang Z, Li J, Liu X, Li X, Liu J, Li 
X, Jin D, Yang X, Sun B, Guo T, et al. Extracellular 
vesicles of carcinoma-associated fibroblasts creates a 
pre-metastatic niche in the lung through activating 
fibroblasts. Mol Cancer. 2019; 18:175. 

 https://doi.org/10.1186/s12943-019-1101-4 
PMID:31796058 

21. Li K, Kang H, Wang Y, Hai T, Rong G, Sun H. Letrozole-
induced functional changes in carcinoma-associated 
fibroblasts and their influence on breast cancer cell 
biology. Med Oncol. 2016; 33:64. 

 https://doi.org/10.1007/s12032-016-0779-z 
PMID:27235140 

22. Ren Y, Zhou X, Liu X, Jia HH, Zhao XH, Wang QX, Han L, 
Song X, Zhu ZY, Sun T, Jiao HX, Tian WP, Yang YQ, et al. 
Reprogramming carcinoma associated fibroblasts by 
AC1MMYR2 impedes tumor metastasis and improves 
chemotherapy efficacy. Cancer Lett. 2016; 374:96–106. 

 https://doi.org/10.1016/j.canlet.2016.02.003 
PMID:26872723 

23. Yang SY, Lheureux S, Karakasis K, Burnier JV, Bruce JP, 
Clouthier DL, Danesh A, Quevedo R, Dowar M, Hanna 
Y, Li T, Lu L, Xu W, et al. Landscape of genomic 
alterations in high-grade serous ovarian cancer from 
exceptional long- and short-term survivors. Genome 
Med. 2018; 10:81. 

 https://doi.org/10.1186/s13073-018-0590-x 
PMID:30382883 

24. Shahar T, Rozovski U, Hess KR, Hossain A, Gumin J, Gao 
F, Fuller GN, Goodman L, Sulman EP, Lang FF. 
Percentage of mesenchymal stem cells in high-grade 
glioma tumor samples correlates with patient survival. 
Neuro Oncol. 2017; 19:660–68. 

 https://doi.org/10.1093/neuonc/now239 
PMID:28453745 

25. Mesnage SJ, Auguste A, Genestie C, Dunant A, Pain E, 
Drusch F, Gouy S, Morice P, Bentivegna E, Lhomme C, 
Pautier P, Michels J, Le Formal A, et al. Neoadjuvant 
chemotherapy (NACT) increases immune infiltration 

and programmed death-ligand 1 (PD-L1) expression in 
epithelial ovarian cancer (EOC). Ann Oncol. 2017; 
28:651–57. 

 https://doi.org/10.1093/annonc/mdw625 
PMID:27864219 

26. Rhee JK, Jung YC, Kim KR, Yoo J, Kim J, Lee YJ, Ko YH, 
Lee HH, Cho BC, Kim TM. Impact of tumor purity on 
immune gene expression and clustering analyses 
across multiple cancer types. Cancer Immunol Res. 
2018; 6:87–97. 

 https://doi.org/10.1158/2326-6066.CIR-17-0201 
PMID:29141981 

27. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, Han S, 
Jiang T, Wu A. Tumor purity as an underlying key factor 
in glioma. Clin Cancer Res. 2017; 23:6279–91. 

 https://doi.org/10.1158/1078-0432.CCR-16-2598 
PMID:28754819 

28. Rashid NU, Peng XL, Jin C, Moffitt RA, Volmar KE, Belt 
BA, Panni RZ, Nywening TM, Herrera SG, Moore KJ, 
Hennessey SG, Morrison AB, Kawalerski R, et al. Purity 
independent subtyping of tumors (PurIST), a clinically 
robust, single-sample classifier for tumor subtyping in 
pancreatic cancer. Clin Cancer Res. 2020; 26:82–92. 

 https://doi.org/10.1158/1078-0432.CCR-19-1467 
PMID:31754050 

29. Zeng H, Zhou Q, Wang Z, Zhang H, Liu Z, Huang Q, 
Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Xu L, Dai B, et al. 
Stromal LAG-3+ cells infiltration defines poor prognosis 
subtype muscle-invasive bladder cancer with 
immunoevasive contexture. J Immunother Cancer. 
2020; 8:e000651. 

 https://doi.org/10.1136/jitc-2020-000651 
PMID:32540859 

30. Zheng S, Zou Y, Liang JY, Xiao W, Yang A, Meng T, Lu S, 
Luo Z, Xie X. Identification and validation of a 
combined hypoxia and immune index for triple-
negative breast cancer. Mol Oncol. 2020; 14:2814–33. 

 https://doi.org/10.1002/1878-0261.12747 
PMID:32521117 

31. Job S, Rapoud D, Dos Santos A, Gonzalez P, Desterke C, 
Pascal G, Elarouci N, Ayadi M, Adam R, Azoulay D, 
Denis C, Vibert E, Cherqui D, et al. Identification of four 
immune subtypes characterized by distinct 
composition and functions of tumor microenvironment 
in intrahepatic cholangiocarcinoma. Hepatology. 2019; 
72:965–81. 

 https://doi.org/10.1002/hep.31092  
PMID:31875970 

32. Liu X, Xu J, Zhang B, Liu J, Liang C, Meng Q, Hua J, Yu X, 
Shi S. The reciprocal regulation between host tissue 
and immune cells in pancreatic ductal 
adenocarcinoma: new insights and therapeutic 
implications. Mol Cancer. 2019; 18:184. 

https://doi.org/10.1172/JCI124037
https://pubmed.ncbi.nlm.nih.gov/32229721
https://doi.org/10.1182/blood.2019004725
https://pubmed.ncbi.nlm.nih.gov/32438399
https://doi.org/10.1186/s12943-019-1101-4
https://pubmed.ncbi.nlm.nih.gov/31796058
https://doi.org/10.1007/s12032-016-0779-z
https://pubmed.ncbi.nlm.nih.gov/27235140
https://doi.org/10.1016/j.canlet.2016.02.003
https://pubmed.ncbi.nlm.nih.gov/26872723
https://doi.org/10.1186/s13073-018-0590-x
https://pubmed.ncbi.nlm.nih.gov/30382883
https://doi.org/10.1093/neuonc/now239
https://pubmed.ncbi.nlm.nih.gov/28453745
https://doi.org/10.1093/annonc/mdw625
https://pubmed.ncbi.nlm.nih.gov/27864219
https://doi.org/10.1158/2326-6066.CIR-17-0201
https://pubmed.ncbi.nlm.nih.gov/29141981
https://doi.org/10.1158/1078-0432.CCR-16-2598
https://pubmed.ncbi.nlm.nih.gov/28754819
https://doi.org/10.1158/1078-0432.CCR-19-1467
https://pubmed.ncbi.nlm.nih.gov/31754050
https://doi.org/10.1136/jitc-2020-000651
https://pubmed.ncbi.nlm.nih.gov/32540859
https://doi.org/10.1002/1878-0261.12747
https://pubmed.ncbi.nlm.nih.gov/32521117
https://doi.org/10.1002/hep.31092
https://pubmed.ncbi.nlm.nih.gov/31875970


 

www.aging-us.com 2414 AGING 

 https://doi.org/10.1186/s12943-019-1117-9 
PMID:31831007 

33. Chen GM, Azzam A, Ding YY, Barrett DM, Grupp SA, 
Tan K. Dissecting the tumor-immune landscape in 
chimeric antigen receptor T-cell therapy: key 
challenges and opportunities for a systems 
immunology approach. Clin Cancer Res. 2020; 
26:3505–13. 

 https://doi.org/10.1158/1078-0432.CCR-19-3888 
PMID:32127393 

34. Meng Z, Ren D, Zhang K, Zhao J, Jin X, Wu H.  
Using ESTIMATE algorithm to establish an 8-mRNA 
signature prognosis prediction system and identify 
immunocyte infiltration-related genes in pancreatic 
adenocarcinoma. Aging (Albany NY). 2020; 12:5048–70. 

 https://doi.org/10.18632/aging.102931 
PMID:32181755 

35. Zhou M, Zhao H, Wang Z, Cheng L, Yang L, Shi H, Yang 
H, Sun J. Identification and validation of potential 
prognostic lncRNA biomarkers for predicting survival in 
patients with multiple myeloma. J Exp Clin Cancer Res. 
2015; 34:102. 

 https://doi.org/10.1186/s13046-015-0219-5 
PMID:26362431 

36. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, 
Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, 
Grossman AB, Balkwill F, Korbonits M. Chemokines 
modulate the tumour microenvironment in pituitary 
neuroendocrine tumours. Acta Neuropathol Commun. 
2019; 7:172. 

 https://doi.org/10.1186/s40478-019-0830-3 
PMID:31703742 

37. Forsthuber A, Lipp K, Andersen L, Ebersberger S, 
Graña-Castro, Ellmeier W, Petzelbauer P, Lichtenberger 
BM, Loewe R. CXCL5 as Regulator of Neutrophil 
Function in Cutaneous Melanoma. J Invest Dermatol. 
2019; 139:186–194. 

 https://doi.org/10.1016/j.jid.2018.07.006 
PMID:30009831 

38. Püschel F, Favaro F, Redondo-Pedraza J, Lucendo E, 
Iurlaro R, Marchetti S, Majem B, Eldering E, Nadal E, 
Ricci JE, Chevet E, Muñoz-Pinedo C. Starvation and 
antimetabolic therapy promote cytokine release and 
recruitment of immune cells. Proc Natl Acad Sci USA. 
2020; 117:9932–41. 

 https://doi.org/10.1073/pnas.1913707117 
PMID:32312819 

39. Jiang K, Li J, Zhang J, Wang L, Zhang Q, Ge J, Guo Y, 
Wang B, Huang Y, Yang T, Hao D, Shan L. SDF-1/CXCR4 
axis facilitates myeloid-derived suppressor cells 
accumulation in osteosarcoma microenvironment and 
blunts the response to anti-PD-1 therapy. Int 
Immunopharmacol. 2019; 75:105818. 

 https://doi.org/10.1016/j.intimp.2019.105818 
PMID:31437795 

40. Wang Z, Xu H, Zhu L, He T, Lv W, Wu Z. Establishment 
and evaluation of a 6-gene survival risk assessment 
model related to lung adenocarcinoma 
microenvironment. Biomed Res Int. 2020; 
2020:6472153. 

 https://doi.org/10.1155/2020/6472153 
PMID:32337264 

41. Lin JP, Lin JX, Ma YB, Xie JW, Yan S, Wang JB, Lu J, Chen 
QY, Ma XF, Cao LL, Lin M, Tu RH, Zheng CH, et al. 
Prognostic significance of pre- and post-operative 
tumour markers for patients with gastric cancer. Br J 
Cancer. 2020; 123:418–25. 

 https://doi.org/10.1038/s41416-020-0901-z 
PMID:32451469 

42. Richter AM, Woods ML, Küster MM, Walesch SK, Braun 
T, Boettger T, Dammann RH. RASSF10 is frequently 
epigenetically inactivated in kidney cancer and its 
knockout promotes neoplasia in cancer prone mice. 
Oncogene. 2020; 39:3114–27. 

 https://doi.org/10.1038/s41388-020-1195-6 
PMID:32047266 

43. Ma RY, Zhang H, Li XF, Zhang CB, Selli C, Tagliavini G, 
Lam AD, Prost S, Sims AH, Hu HY, Ying T, Wang Z, Ye Z, 
et al. Monocyte-derived macrophages promote breast 
cancer bone metastasis outgrowth. J Exp Med. 2020; 
217:e20191820. 

 https://doi.org/10.1084/jem.20191820 
PMID:32780802 

44. Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, 
Alicea-Torres K, Gluck C, Sinha S, Gabrilovich D, 
Chakrabarti R. ΔNp63-driven recruitment of myeloid-
derived suppressor cells promotes metastasis in 
triple-negative breast cancer. J Clin Invest. 2018; 
128:5095–109. 

 https://doi.org/10.1172/JCI99673  
PMID:30295647 

45. Zhu C, Kros JM, van der Weiden M, Zheng P, Cheng C, 
Mustafa DA. Expression site of P2RY12 in residential 
microglial cells in astrocytomas correlates with M1 and 
M2 marker expression and tumor grade. Acta 
Neuropathol Commun. 2017; 5:4. 

 https://doi.org/10.1186/s40478-016-0405-5 
PMID:28073370 

46. Li L, Peng M, Xue W, Fan Z, Wang T, Lian J, Zhai Y, Lian 
W, Qin D, Zhao J. Integrated analysis of dysregulated 
long non-coding RNAs/microRNAs/mRNAs in 
metastasis of lung adenocarcinoma. J Transl Med. 
2018; 16:372. 

 https://doi.org/10.1186/s12967-018-1732-z 
PMID:30587197 

https://doi.org/10.1186/s12943-019-1117-9
https://pubmed.ncbi.nlm.nih.gov/31831007
https://doi.org/10.1158/1078-0432.CCR-19-3888
https://pubmed.ncbi.nlm.nih.gov/32127393
https://doi.org/10.18632/aging.102931
https://pubmed.ncbi.nlm.nih.gov/32181755
https://doi.org/10.1186/s13046-015-0219-5
https://pubmed.ncbi.nlm.nih.gov/26362431
https://doi.org/10.1186/s40478-019-0830-3
https://pubmed.ncbi.nlm.nih.gov/31703742
https://doi.org/10.1016/j.jid.2018.07.006
https://pubmed.ncbi.nlm.nih.gov/30009831
https://doi.org/10.1073/pnas.1913707117
https://pubmed.ncbi.nlm.nih.gov/32312819
https://doi.org/10.1016/j.intimp.2019.105818
https://pubmed.ncbi.nlm.nih.gov/31437795
https://doi.org/10.1155/2020/6472153
https://pubmed.ncbi.nlm.nih.gov/32337264
https://doi.org/10.1038/s41416-020-0901-z
https://pubmed.ncbi.nlm.nih.gov/32451469
https://doi.org/10.1038/s41388-020-1195-6
https://pubmed.ncbi.nlm.nih.gov/32047266
https://doi.org/10.1084/jem.20191820
https://pubmed.ncbi.nlm.nih.gov/32780802
https://doi.org/10.1172/JCI99673
https://pubmed.ncbi.nlm.nih.gov/30295647
https://doi.org/10.1186/s40478-016-0405-5
https://pubmed.ncbi.nlm.nih.gov/28073370
https://doi.org/10.1186/s12967-018-1732-z
https://pubmed.ncbi.nlm.nih.gov/30587197


 

www.aging-us.com 2415 AGING 

47. Chakraborty H, Hossain A. R package to estimate 
intracluster correlation coefficient with confidence 
interval for binary data. Comput Methods Programs 
Biomed. 2018; 155:85–92. 

 https://doi.org/10.1016/j.cmpb.2017.10.023 
PMID:29512507 

  

https://doi.org/10.1016/j.cmpb.2017.10.023
https://pubmed.ncbi.nlm.nih.gov/29512507


 

www.aging-us.com 2416 AGING 

SUPPLEMENTARY MATERIALS 
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Supplementary Figure 1. A flowchart showing the screening process. 
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Supplementary Figure 2. Validation the prognostic performance of the four immune related gene signature stratified by 
overall survival, gender, age and stage. Kaplan-Meier curves for overall survival (A), female (B), male (C), age {less than or equal to} 65 
(D), age >65 (E), early stage (F), and advanced stage (G) patients based on risk score. 


