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INTRODUCTION 
 

Acute myeloid leukemia (AML) is an aggressive 

malignancy characterized by accumulation of immature 

myeloid cells in the bone marrow [1, 2]. There are two 

main subsets of AML. The minority of patient with the 

acute promyelocytic leukemia (APL) variant are 

characterized by specific genetic abnormalities, 

accumulation of immature promyelocytic cells, a 

clinical picture including severe coagulopathy, specific 

treatment and relatively good prognosis even for elderly 

patients [3]. In contrast, the non-APL variants of the 

disease are usually characterized by accumulation of 

immature blast cells in the bone marrow, it is very 

heterogeneous with regard to genetic abnormalities and 

elderly patients often have a more chemoresistant 

disease and thereby an adverse prognosis compared 

with younger patients [4]. All patients in the present 
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ABSTRACT 
 

Patients with acute myeloid leukemia (AML) have a median age of 65-70 years at diagnosis. Elderly patients 
have more chemoresistant disease, and this is partly due to decreased frequencies of favorable and increased 
frequencies of adverse genetic abnormalities. However, aging-dependent differences may also contribute. We 
therefore compared AML cell proteomic and phosphoproteomic profiles for (i) elderly low-risk and younger 
low-risk patients with favorable genetic abnormalities; and (ii) high-risk patients with adverse genetic 
abnormalities and a higher median age against all low-risk patients with lower median age. Elderly low-risk and 
younger low-risk patients showed mainly phosphoproteomic differences especially involving transcriptional 
regulators and cytoskeleton. When comparing high-risk and low-risk patients both proteomic and 
phosphoproteomic studies showed differences involving cytoskeleton and immunoregulation but also 
transcriptional regulation and cell division. The age-associated prognostic impact of cyclin-dependent kinases 
was dependent on the cellular context. The protein level of the adverse prognostic biomarker mitochondrial 
aldehyde dehydrogenase (ALDH2) showed a similar significant upregulation both in elderly low-risk and elderly 
high-risk patients. Our results suggest that molecular mechanisms associated with cellular aging influence 
chemoresistance of AML cells, and especially the cytoskeleton function may then influence cellular hallmarks of 
aging, e.g. mitosis, polarity, intracellular transport and adhesion. 
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study have non-APL disease (referred to as AML in our 

article). 

 

The median age at the first time of AML diagnosis is 

65-70 year [1]; the elderly patients with chemoresistant 

disease thus constitute a large subset of patients. The 

chemoresistance and thereby the adverse prognosis even 

when receiving the most intensive treatment is probably 

caused by several factors. First, favorable cytogenetic 

abnormalities are less frequent in elderly patients [1, 4]. 

Second, a relatively large subgroup of these patients 

have secondary AML (i.e. secondary to previous 

cytotoxic therapy or a less aggressive chronic 

hematological malignancy) that can be associated with 

an adverse prognosis [4], although the independent 

prognostic impact of this factor in elderly AML patients 

has recently been questioned [5]. Third, cytogenetic as 

well as molecular genetic abnormalities (e.g. DNA 

(cytosine-5)-methyltransferase 3A, DNMT3A, and 

polycomb group protein ASXL1, ASXL1, mutations) 

with adverse prognostic impact are also more frequent 

in elderly patients [1, 4, 6]. However, additional aging-

dependent abnormalities are probably also important for 

the adverse prognosis of elderly patients. The 

hematopoietic stem cells in elderly differ from the stem 

cell in younger individuals with regard to accumulation 

of mutations and increased frequency of clonal 

hematopoiesis that seems to predispose to later AML 

[7]. Age-associated epigenetic changes have also been 

described [7], and age-associated changes in the bone 

marrow microenvironment may preferentially support 

the expansion of cells with preleukemic characteristics 

[8–12]. Finally, aging hematopoietic stem cells are also 

characterized by increased numbers of mitochondria, 

metabolic alterations with decreased autophagy, nuclear 

abnormalities with decreased levels of lamin (LMNA) 

in the nuclear envelope and altered cellular polarity with 

differences in the intracellular distribution of important 

biomolecules [13–20]. A previous mRNA microarray 

study suggested that aged AML cells differed in their 

expression of certain mediators such as RAS, tyrosine-

protein kinase Src (SRC) and tumor necrosis factor 

(TNF) [21]. 

 

Taken together all the observations described above 

suggest that several mechanisms contribute to the 

chemoresistance of many elderly AML patients. These 

mechanisms include factors that have a generally 

accepted prognostic impact independent of age but with 

age-dependent differences in their frequency. However, 

additional biological factors that become more frequent 

with aging are probably also important, and these last 

observations have led to the hypothesis that aging 

contributes to leukemogenesis [7]. It is not known 

whether similar aging-associated characteristics also 

contribute to the chemoresistance of elderly patients. 

To further elucidate possible molecular mechanisms 

that contributes to chemoresistance especially in elderly 

individuals we compared the liquid chromatography 

tandem mass spectrometry (LC-MS/MS)-generated 

proteomic and phophoproteomic profiles of AML cells 

derived from contrasting patient groups: (i) elderly low-

risk (median age of 68 years) vs younger low-risk 

patients (median age of 47 years) with favorable genetic 

abnormalities; and (ii) high-risk patients (median age of 

74 years) with adverse genetic abnormalities vs all the 

low-risk patients (median age of 64.5 years) [1]. Both 

these comparisons demonstrated high aldehyde 

dehydrogenase (ALDH2) levels, altered expression of 

cytoskeletal proteins and an altered transcriptional 

regulation in AML cells derived from elderly patients. 

 

RESULTS 
 

Patients included in the study 
 

Based on the AML cell samples collected at the first 

time of diagnosis and the predefined genetic criteria we 

selected 18 low-risk patients with favorable genetic 

prognosis and 15 high-risk patients with adverse genetic 

prognosis (see Materials and Methods for group 

definitions; Tables 1, 2 and Supplementary Tables 1, 2). 

In our present context the terms high- and low-risk refer 

to the risk of having a chemoresistant relapse even after 

the most intensive antileukemic therapy. The two groups 

differed significantly with regard to age, cause of their 

leukemia and morphological signs of differentiation. 

Low-risk patients were generally younger, none of them 

had secondary AML and half of them had normal 

karyotype (Tables 1, 2). The frequency of patients with 

monocytic AML cell differentiation (i.e. FAB M4/5) 

was higher in the low-risk group. However, the 

expression of the CD34 stem cell marker did not differ 

significantly between the two groups. Most high-risk 

patients were older and had complex cytogenetic 

abnormalities (i.e. ≥3 abnormalities). 

 

In order to study the impact of morphological signs of 

differentiation in patient groups that differed significantly 

with regard to age, we carried out proliferation assays 

with primary AML cells derived from an alternative 

cohort of consecutive patients in the presence of 

hematopoietic growth factors (Supplementary Analysis 

Tables 1, 2). Our results showed that the proliferative 

responsiveness of patients with or without morphological 

signs of differentiation and with age above or below 65 

years did not differ significantly. Thus, based on this 

analysis that included consecutive patients, i.e. not only 

high-/low-risk karyotypes but also normal and 

intermediate risk karyotype, we could not find any 

evidence for a general association between proliferative 

capacity and patient age/AML cell differentiation. 
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Table 1. Characteristics of the AML patient cohort of this study. 

 
High-risk patient 

group 

Low-risk patient 

group 
P value 

Number of patients  15 18  

Median age (range), years 74 (50-87) 64.5 (33-79) 0.005 

Sex (males/females) 10/5 10/8 NS 

Secondary AML cases 6 0 0.005 

Chemotherapy predisposing to later AML 1 0  

Previous hematological disease 5 0  

Signs of differentiation    

FAB M4/M5 (monocytic differentiation) 3 11 0.039 

CD34 expression 12 10 NS 

Adverse genetic abnormalities    

Complex karyotype 10   

Monosomal karyotype 1   

del 5, del 12, -7 4   

Favorable genetic abnormalities    

inv16, t(16;16)  4  

t(8;21)  5  

Normal karyotype, FLT3 WT or low ITD ratio, NPM1-INS  8  

Normal karyotype, FLT3 WT, NPM1 WT, CEBPA mutated  1  

FAB, French-American-British; WT, wild-type; ITD, internal tandem duplication; INS, a 4 bp-insertion/duplication; NS, not 
significant. 
 

Table 2. Characteristics of the elderly low-risk and younger low-risk patient subgroups based on an age threshold of 
65 years. 

 
Elderly low-risk 

patient group 

Younger low-risk 

patient group 
P value 

Number of patients  9 9  

Median age (range), years 68 (66-79) 47 (33-64) <0.0001 

Sex (males/females) 3/6 7/2 NS 

Signs of differentiation    

FAB M4/M5 (monocytic differentiation) 7 4 NS 

CD34 expression 5 5 NS 

Favorable genetic abnormalities    

inv16, t(16;16) 3 1 NS 

t(8;21) 2 3 NS 

Normal karyotype, FLT3 WT or low ITD ratio, NPM1-INS 4 4 NS 

Normal karyotype, FLT3 WT, NPM1 WT, CEBPA mutated 0 1 NS 

FAB, French-American-British; WT, wild-type; ITD, internal tandem duplication; INS, a 4 bp-insertion/duplication; NS, not 
significant. 
 

The 33 AML patient samples were used to perform 

MS-based proteomics and phosphoproteomics 

analyses as follows. Firstly, we have carried out an 

age-dependent analysis in low-risk patients and 

compared the proteomic and phosphoproteomic 

profiles between nine elderly low-risk and nine 

younger low-risk (see Materials and Methods for 

subgroup definitions). Secondly, we have investigated 

whether the identified age-dependent differences were 

also observed when comparing high-risk and all the 

low-risk patients that differed in age and cytogenetics-

related prognosis. 
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Effects of aging on the AML cell proteome; a 

proteomic comparison between elderly and younger 

low-risk patients 

 

We obtained the proteome profiles of AML cells 

derived from nine elderly low-risk and nine younger 

low-risk patients using our FASP-based workflow 

(Figure 1). We quantified 5966 proteins, of which 4369 

had a quantitative value in at least five patients in each 

group (Figure 2A). The proteome profiles from the 

elderly low-risk and younger low-risk patients were 

compared using t-test based statistical analysis and 

resulted in a small set of only 29 differentially 

expressed proteins, with 18 of them being upregulated 

and 11 downregulated for the elderly low-risk patients 

(Figure 2A, Supplementary file 1, Supplementary Table 

3 upper part, Supplementary Table 4). Gene ontology 

(GO) enrichment analyses showed that regulation of T 

cell mediated immunity (i.e. syntaxin-7, STX7, and 

galectin-10, CLC) and oxidoreductase activity (i.e. 

aspartyl/asparaginyl beta-hydroxylase, ASPH, and 

ribosomal oxygenase 2, RIOX2) were more abundant 

GO terms in elderly low-risk patients (Figure 2B, top 

plot). The proteins enriched in this group were primarily 

located in organelles such as mitochondria and 

endoplasmic reticulum. Kyoto Encyclopedia for Genes 

and Genomes (KEGG) pathways analysis demonstrated 

that the upregulated elderly low-risk proteome was 

enriched with histidine, ascorbate and aldarate 

metabolism pathways (i.e. mitochondrial aldehyde 

dehydrogenase, ALDH2). In contrast, proteins involved 

in tRNA aminoacylation for protein translation (e.g. 

mitochondrial tryptophan-tRNA ligase, WARS2, and 

mitochondrial methionine-tRNA ligase, MARS2) and 

5’-3’ exodeoxyribonuclease activity (e.g. aprataxin, 

APTX) were less plenteous in elderly low-risk patients 

(Figure 2B, bottom plot). 

 

It can be seen from Supplementary Table 3 that a major 

part of the proteins with differential expression is 

involved in either transcriptional regulation (five 

proteins), protein homeostasis/modulation (10 proteins) 

or mitochondrial functions/metabolism (10 proteins). 

Altered epigenetic/transcriptional regulation is regarded 

as a characteristic feature of aging in hematopoietic 

stem cells [7, 22, 23] together with alterations in 

metabolism [24–26] and/or mitochondrial functions 

[27–30], protein homeostasis [13, 22] and DNA 

repair/genomic instability [7, 23, 31]. Thus, even 

though the comparative analysis of the proteome from 

elderly and younger low-risk AML patients showed 

only 29 differentially expressed proteins, most of these 

proteins are involved in the regulation of cellular 

processes that are known to be altered in aging cells. 

Among them, NUMB (protein numb homolog) is of 

particular interest because it is involved in the 

regulation of asymmetrical cell division [32] and altered 

cell polarity is a hallmark of aging [31]. 

 

The effect of aging on the AML cell phosphoproteome; 

a comparison of elderly and younger low-risk patients 

 

We constructed a dataset comprising 14,574 identified 

phosphopeptides, from which 11,962 class I protein 

 

 
 

Figure 1. Overview of the high-risk and low-risk AML patient cohort and the liquid chromatography tandem mass 
spectrometry (LC-MS/MS) workflow for the proteome and phosphoproteome analysis. The study included AML cell samples from 
15 high-risk and 18 low-risk patients collected at the time of first diagnosis. Patients were classified after cytogenetic and molecular genetic 
analyses. Low-risk patients were further split into elderly low-risk and younger low-risk patients. AML sample preparation steps for proteome 
and phosphoproteome analysis included AML cell enrichment by density gradient separation, genetic analyses with classification of patients, 
cell lysis, addition of the super-SILAC (stable isotope labeling with amino acids in cell culture) mix, filter-aided sample preparation (FASP)-
based protein digestion and additional immobilized metal affinity chromatography (IMAC) enrichment of phosphopeptides before data-
dependent acquisition (DDA) on the mass spectrometer. *Median age of each patient group or subgroup. 
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phosphorylation sites were quantified on 2818 proteins 

of nine elderly low-risk and nine younger low-risk 

patients. We identified 105 differentially regulated 

phosphorylation sites based on statistical analysis of 

4767 phosphosites that could be quantified in at least 

five patients in each of these two groups (Figure 3A and 

Supplementary file 2). A cluster including 43 

significantly upregulated and another cluster including 

62 downregulated phosphosites in the elderly relative to 

the younger low-risk group were subjected to GO and 

KEGG pathways enrichment analysis (Supplementary 

Tables 3, 5, 6). 

 

Regulation of filopodium assembly, vesicle cytoskeletal 

trafficking and RNA polymerase II transcription cofactor 

activity (Figure 3B, upper plot) represented GO terms 

with higher protein phosphorylation in elderly low-risk 

patients. These terms include phosphoproteins such as 

formin-binding protein 1-like (FNBP1L), protein kinase 

C-binding protein 1 (ZMYND8), Rho family-interacting 

cell polarization regulator 2 (FAM65B), dysbindin 

(DTNBP1), TP53-binding protein 1 (TP53BP1) and 

arginine-glutamic acid dipeptide repeats protein (RERE). 

The phosphoproteins enriched in elderly low-risk patients 

were primarily located in nuclear chromosomes, WASH 

complex, transverse tubules and endosome membranes. 

ARID1A (AT-rich interactive domain-containing protein 

1A) may be of particular importance because this protein 

is a regulator of CDC42 (cell division control protein 42 

homolog) which plays an essential role in the regulation

 

 
 

Figure 2. The regulated proteome in the study of elderly low-risk vs younger low-risk patients. (A) Overview of proteomic data 

analysis from elderly low-risk and younger low-risk patient samples. Volcano plot analysis of proteins quantified in at least five patients per 
group. Points (in magenta) above the non-axial horizontal grey line represent proteins with significantly different abundances (P <0.05). 
Heatmap of the 29 differentially expressed proteins in the elderly low-risk and younger low-risk groups. The log2 of fold change (FC) of 
protein levels in the elderly low-risk relative to the younger low-risk group is displayed on the right of the heatmap. (B) Gene Ontology (GO; 
BP, biological processes, with lilac bars; CC, cellular compartments, with light grey bars; MF, molecular functions, with yellow bars) and KEGG 
pathways (orange bars) analyses of upregulated and downregulated proteins in the elderly low-risk group. The various enriched GO terms 
and KEGG pathways are displayed on the y-axis while the corresponding –log10 P values are shown on the x-axis. The number of genes 
associated to a specific GO term or KEGG pathway is shown on the right side of the corresponding bar. Abbreviations were used in cases of 
long GO term (Immunoglob. for Immunoglobulin; Pos. for Positive and Neg. for Negative). 
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of actin and tubulin organization and thereby regulation of 

cellular polarity that can be lost in aging hematopoietic 

cells [13, 22]. KEGG pathways analysis showed 

similarities with the results from the GO term enrichment, 

i.e. the upregulated elderly low-risk phosphoproteome 

was enriched for protein export pathways. Several 

phosphoproteins involved in nitrogen compound metabolic 

process (e.g. histone-lysine N-methyltransferase 2A, 

KMT2A, and eukaryotic translation initiation factor 3 

subunit F, EIF3F), regulation of cell cycle arrest (e.g. 

cyclin-dependent kinase 1 and 2, CDK1 and CDK2; 

nucleophosmin, NPM1) and transcriptional activator 

 

 
 

Figure 3. The regulated phosphoproteome in the study of elderly low-risk vs younger low-risk patients. (A) Overview of 

phosphoproteomic data analysis from elderly low-risk and younger low-risk patient samples. Volcano plot analysis of phosphosites quantified 
in at least five patients per group. Points (in magenta) above the non-axial horizontal grey line represent phosphosites with significantly 
different phosphorylation levels (P <0.05). (B) GO (BP terms with lilac bars; CC terms with light grey bars; MF terms with yellow bars) and 
KEGG pathways (orange bars) analyses of proteins with increased and decreased phosphorylation in elderly low-risk patients. The various 
enriched GO terms and KEGG pathways are displayed on the y-axis while the corresponding –log10 P values are shown on the x-axis. The 
number of genes associated to a specific GO term or KEGG pathway is shown on the right side of the corresponding bar. (C) Networks of 
protein-protein interactions (PPI) based on STRING database and visualized in Cytoscape after ClusterONE analysis. The significance of 
networks with high cohesiveness is shown with the P value of a one-sided Mann-Whitney U test. The differentially regulated phosphorylation 
sites are shown in yellow boxes next to each protein. FC of phosphorylation are color-coded; red-colored proteins showed a higher 
phosphorylation in elderly low-risk patients and blue-colored proteins showed a higher phosphorylation in the younger low-risk group. (D) 
Sequence motif analysis of the ± eight amino acids flanking the differentially regulated phosphorylation sites for each patient group and 
kinase-substrate enrichment analysis (KSEA) of differentially regulated and unregulated phosphorylation sites. The kinase z-score (x-axis) is 
the normalized score for each kinase (y-axis), weighted by the number of identified substrates indicated on the right side of the plot. Only 
significant predicted kinases with false discovery rate (FDR) values <0.05 were shown. 
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activity (e.g. ribosomal RNA processing protein 1 

homolog B, RRP1B) were less phosphorylated in elderly 

low-risk patients (Figure 3B, bottom plot). Proteins less 

phosphorylated in this group showed a significant 

enrichment of DNA replication and p53 signaling KEGG 

pathways. 

 

Several protein-protein interactions (PPI) networks of 

significant cohesiveness were found after ClusterONE 

analysis based on STRING interactions of differentially 

phosphorylated proteins (Figure 3C). The most 

significant network (cluster 1) consisted of three 

phosphoproteins with higher phosphorylation in elderly 

low-risk patients and being involved in plasma 

membrane organization and endocytosis (i.e. protein 

export found in the KEGG analysis). The second 

significant cluster involved mRNA stabilization and 

splicing proteins. Serine/arginine repetitive matrix 

protein 1 and 2 (SRRM1 and SRRM2) showed higher 

phosphorylation on multiple sites in younger low-risk 

relative to elderly low-risk patients. These splicing 

factors are phosphorylated on multiple serine and 

threonine residues by dual specificity tyrosine-

phosphorylation-regulated kinase 3 (DYRK3) during 

the G2-to-M transition, after the nuclear-envelope 

breakdown [33] (i.e. regulation of transcription and cell 

cycle, see the KEGG analyses). 

 

As shown in Supplementary Table 3, a majority of the 

total set of the differentially regulated phosphorylated 

sites were located in proteins involved in RNA 

synthesis/function (i.e. transcription factors, epigenetic 

regulation, histone modulation, RNA splicing and 

ribosomal regulation). Such altered transcriptional 

regulation is regarded as a hallmark of aging [31]; it is 

also a characteristic of hematopoietic stem cell aging 

[19, 20] and thus an important characteristic of AML in 

elderly patients [7]. 

 

Differences in AML cell kinase activity when 

comparing elderly low-risk and younger low-risk 

patients 

 

To identify protein kinases differentially activated in 

elderly low-risk and younger low-risk patients we 

performed phosphorylation site motif analysis with the 

WebLogo tool [34] (Figure 3D, left plots). We found 

higher activity of several kinases such as protein kinase 

A and C (PRKACA, PRKCD; basophilic motif 

upstream to the differentially phosphorylated site), 

calmodulin-dependent protein kinase II (CaM kinase II; 

basophilic motif upstream to the differentially 

phosphorylated site), serine/threonine protein kinase 

PAK2 (basophilic motif upstream to the differentially 

phosphorylated site), casein kinase 2 (CSK2; acidic 

amino acid-based motif downstream to the differentially 

phosphorylated site) and extracellular signal-regulated 

kinases (ERK1/2; proline-directed motif downstream to 

the differentially phosphorylated site) in elderly low-

risk patients. In contrast, cyclin-dependent kinases 

(CDKs; proline-directed motif downstream to the 

differentially phosphorylated site) substrates appeared 

more phosphorylated in the younger low-risk group. 

 

The kinase-substrate enrichment analysis (KSEA) [35, 

36], which is based on phosphorylation fold changes 

(FCs) to estimate kinase’s activity, confirmed the higher 

activity of PAK2 and mitogen-activated protein kinases 

(MAPKs) in elderly low-risk patients and the higher 

activity of CDKs in the younger low-risk group (Figure 

3D, right plot). KSEA analysis revealed a high number 

of CDK1 and CDK2 substrates from proteins such as 

ARID1A, LIG1 (DNA ligase 1), FOXK2 (forkhead box 

protein K2), NPM1 and retinoblastoma-associated 

protein (RB1). 

 

We found five phosphosites in three different protein 

kinases in this data set using the activation loop analysis 

tool (see Materials and Methods). All of them (CDK1 

T14, CDK2 T14, CDK1 Y15, CDK2 Y15 and GSG2 

S147) can be phosphorylated during mitosis and were 

upregulated in younger low-risk relative to elderly low-

risk patients. 

 

Proteomic comparison of high-risk and all low-risk 

patients; different expression of neutrophil 

degranulation, platelet degranulation and cytoskeleton 

proteins 
 

We compared the proteome profiles of AML cells 

derived from 15 high-risk and 18 low-risk patients. We 

quantified 6569 proteins, of which 5009 had a 

quantitative value in at least five patients in each group. 

The t-test based statistical analysis resulted in 205 

differentially expressed proteins, 82 proteins were 

upregulated and 123 were downregulated in high-risk 

relative to low-risk patients (Supplementary Figure 1A 

and Supplementary file 3). Hierarchical clustering based 

on the 205 regulated proteins identified two main patient 

clusters (Figure 4A, left part), which corresponded to the 

high-risk and low-risk samples, although a distinct 

separation was not obtained. GO enrichment analysis 

showed that cytoskeleton organization, actin binding and 

integrin binding as biological process and molecular 

function GO terms were over-represented in high-risk 

patients (Figure 4A, right part). These terms include 

several tubulin (TUBB) chains, protein-tyrosine kinase 

2-beta (PTK2B), cytoplasmic linker-associated protein 1 

(CLASP1), actin-related protein 2/3 complex subunit 1A 

(ARPC1A), NCK-interacting protein with SH3 domain 

(NCKIPSD), TNF receptor-associated factor 2 (TRAF2) 

and NCK-interacting protein kinase (TNIK), alpha-
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Figure 4. Proteomic differences between high-risk and low-risk patients; the importance of the cytoskeleton reflected in 
levels of neutrophil degranulation, platelet degranulation and endomembrane trafficking proteins. (A) Hierarchical clustering of 

33 patients was based on the expression (SILAC log2 ratio) of 205 proteins with significantly different regulation in AML cells from high-risk 
(dark grey squares) and low-risk patients (light grey squares). Two vertical main clusters were observed, one dominated by proteins with 
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higher abundance in mostly high-risk patients (upper cluster) and the other by proteins with higher abundance in low-risk patients (lower 
cluster). GO and KEGG pathways analyses of the two protein clusters were performed to reveal enriched BP, CC and MF terms for the high-
risk and low-risk patients. The various enriched GO terms and KEGG pathways are displayed in the scatter plot. The number of genes 
associated to a specific GO term or KEGG pathway (count) and the corresponding –log10 P values are shown on the x-axis and y-axis, 
respectively. Abbreviations were used in cases of long GO term or KEGG pathway name (Pathogen. for Pathogenic; fil. for filament).  
(B) Reactome term enrichment was performed using the STRING app (1.5.1) in Cytoscape. The five Reactome pathways with highest 
significance are shown with the corresponding FDR values. The protein nodes are colored according to their high-risk/low-risk FC, i.e. orange 
indicates increased abundance in the high-risk group and blue increased abundance in the low-risk group. 

 

actinin-1 (ACTN1) and integrin-linked protein kinase 

(ILK). Moreover, KEGG pathways analysis confirmed 

that the focal adhesion and pathogenic E. coli infection 

pathways (i.e. several tubulin chains and actin-related 

protein 2/3 complex subunits) were enriched in the 

upregulated high-risk proteome. 

 

In the low-risk proteome, proteins involved in neutrophil 

degranulation (i.e. extracellular secretion) and lipid 

metabolic processes such as complement factor D (CFD), 

myeloperoxidase (MPO), lysosome-associated membrane 

glycoprotein 1 and 2 (LAMP1/2), mitochondrial enoyl-

CoA delta isomerase 1 (ECI1), 3-ketoacyl-CoA thilase, 

mitochondrial (ACAA2) and lysophosphatidylcholine 

acyltransferase 2 (LPCAT2) were higher expressed 

(Figure 4A, right part). Arylsulfatase and procollagen 

galactosyltransferase activities were the molecular 

functions more abundant in the low-risk group. As much 

as 43% of the proteins with higher abundance in low-risk 

patients were annotated to the organelle membrane in the 

cellular component analysis. 

 

Analysis of Reactome terms showed that neutrophil 

degranulation (Reactome pathways I), platelet 

degranulation (Reactome pathways II) -both these 

granulation processes reflecting the extracellular 

secretion in myeloid cells-, post-translational protein 

modification (Reactome pathways III), COPI-dependent 

Golgi-to-ER retrograde traffic (Reactome pathways IV) 

and cell-extracellular matrix interactions (Reactome 

pathways V) pathways were enriched in the set of 205 

regulated proteins (Figure 4B and Supplementary Table 

7). We observed several clusters of upregulated proteins 

in the high-risk patient group in Reactome pathways III, 

IV and V including cytoskeleton proteins such as 

tubulin chains, ACTN1, ILK, beta-parvin (PARVB) and 

Ras suppressor protein 1 (RSU1). Clusters of 

upregulated proteins in the low-risk patient group were 

found in other Reactome pathways, such as the one 

comprised of arylsulfatase A (ARSA), arylsulfatase B 

(ARSB), MPO, N(4)-(beta-N-acetylglucosaminyl)-L-

asparaginase (AGA), beta-glucuronidase (GUSB) and 

serine/threonine-protein kinase 11-interacting protein 

(STK11IP) in Reactome pathways I; ARSA, ARSB and 

inactive C-alpha-formylglycine-generating enzyme 2 

(SUMF2) in Reactome pathways III; and syntaxin-18 

(STX18), neuroblastoma-amplified sequence (NBAS) 

and coatomer subunit gamma-2 (COPG2) in Reactome 

pathways IV. 

 

Few proteins in Reactome pathways I and II show an 

expression mainly or limited to myeloid cells, whereas a 

majority of them are expressed by various tissues/organs/ 

cells and are important for membrane/organellar functions 

or protein metabolism/modulation. Thus, these networks 

seem to mainly reflect differences in fundamental and 

common cellular processes more than differences in the 

differentiation status of the cells. 

 

Only ALDH2 had a similar differential expression 

both when comparing elderly low-risk vs younger 

low-risk and high-risk vs all low-risk patients 

 

A main difference between our first comparison of 

elderly low-risk vs younger low-risk patients and this 

second comparison of high-risk vs all low-risk patients 

is the higher number of differentially expressed  

proteins in the latter analysis. Furthermore, only three 

proteins, ALDH2, Ufm1-specific protease 2 (UFSP2) 

and BAG family molecular chaperone regulator 2 

(BAG2) were differentially regulated in both studies 

(Supplementary Figure 2A). Only ALDH2, a poor 

prognosis predictor in AML as well as in urothelial 

cancer ([37]; http://www.proteinatlas.org) showed a 

similar upregulation in both comparisons. Western blot 

analyses using lysates from nine high-risk and nine low-

risk (five elderly low-risk and 4 younger low-risk) 

patient cells showed higher ALDH2 expression in  

high-risk and elderly low-risk when compared to all 

low-risk and younger low-risk patients, respectively 

(Supplementary Figure 3), although differences between 

groups were not statistically significant according to the 

Mann-Whitney test. 

 

These observations are consistent with the hypothesis 

that ALDH2 expression reflects an adverse prognostic 

impact of age in AML. 

 

Phosphoproteomic comparison of high-risk vs all 

low-risk patients; detection of differences in mitotic 

cell cycle regulation 
 

We identified and quantified 14,990 class I protein 

phosphorylation sites from 3279 proteins when 

http://www.proteinatlas.org/
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comparing 15 high-risk and 18 low-risk patients. We 

found 239 differentially regulated phosphorylated sites 

based on statistical analysis of 6682 phosphosites, 

which were quantified in at least five patients in each 

group (Supplementary Figure 1B and Supplementary 

file 4). Hierarchical clustering using these 239 

phosphosites clearly distinguished the phosphoproteome 

of the two patient groups (Figure 5A, left part). Two 

clusters, one containing 124 phosphosites and another 

with 115 phosphosites, were upregulated in the high-

risk and in the low-risk patient group, respectively. 

 

Cellular component GO analysis revealed an enrichment 

of upregulated cytoplasmic, cytoskeleton and membrane 

phosphoproteins for the high-risk patients, whereas 

organelle, organelle envelope and nuclear envelope 

structures were enriched in low-risk patients (Figure 5A, 

right part). While cell adhesion molecule binding, 

positive regulation intracellular signal transduction and 

small molecule metabolic process were the biological 

process and molecular function GO terms enriched in the 

high-risk group, positive regulation chromosome 

segregation, cell cycle checkpoint and Rho guanyl-

nucleotide exchange factor activity were enriched in the 

low-risk patient group (Figure 5A, right part). 

 

Reactome pathways for apoptotic execution phase and 

for mitotic prophase were found significantly enriched 

with proteins mainly of higher phosphorylation in the 

high-risk and in the low-risk patient group, respectively 

(Figure 5B and Supplementary Table 7). Two PPI 

networks of significant cohesiveness were found after 

ClusterONE analysis based on STRING interactions of 

differentially phosphorylated proteins (Figure 5C and 

Supplementary Table 7). The most significant network 

(cluster 2) consisted of six phosphoproteins involved  

in RNA processing and mRNA splicing, most of  

them with higher phosphorylation in low-risk patients. 

The other significant cluster included phosphoproteins  

of the mitotic cell cycle process (cluster 1). All 

phosphoproteins, except nuclear mitotic apparatus protein 

1 (NUMA1), were significantly more phosphorylated in 

high-risk patients. A sequence logo analysis of the amino 

acids surrounding the phosphosites in cluster 1 suggested 

PRKACA and kinases of the PRKC family involved in 

the phosphorylation of the six cell cycle proteins 

(Supplementary Figure 4). 

 

A final analysis of the regulated high-risk vs low-risk 

phosphosite set to study the interactions of their 

corresponding phosphoproteins in signal transduction 

with SIGNOR [38] (Figure 5D) confirmed the relevant 

roles of CDKs in the regulation of the cell cycle, RNA 

processing, translation and cytoskeleton function that 

are observed in AML patients with different risk-related 

cytogenetics abnormalities. 

Several protein kinases are differentially activated in 

AML cells derived from high-risk and all low-risk 

patients 

 

To identify protein kinases differentially activated in the 

two groups we performed phosphorylation site motif 

analysis with IceLogo [39]. We found a basophilic 

motif upstream to the differentially phosphorylated site 

in high-risk patients when compared to low-risk 

patients, suggesting an activation of PRKACA, PRKCA 

and PRKCD (Figure 6A). Furthermore, KSEA 

confirmed the higher activity of PRKACA and 

predicted several other serin/threonine protein kinases 

(PRKG1, PRKD1 and PRKCD), MAPKs and RAC-

alpha serine/threonine protein kinase (AKT) isoforms 

activated in the high-risk patient group (Figure 6B). 

Although PRKACA and AKT1 phosphorylated a large 

number of substrates (52 and 51, respectively), CDK1 

(significantly predicted with unadjusted P= 0.022 in the 

KSEA; therefore not displayed in Figure 6B which 

shows predicted kinases at FDR <0.05) phosphorylated 

140 substrates in this group. Serine/threonine protein 

kinase MAK, which phosphorylates proteins involved 

in protein ubiquitation and in the transcriptional 

coactivation of androgen receptor, was activated in the 

low-risk patient group. 

 

We found eight phosphosites on five different protein 

kinases in the data set of 239 differentially regulated 

phosphorylation sites. Three phosphosites on serine/ 

threonine-protein kinase D2 (PRKD2; S197, S198 and 

S706; the latter located in the activation loop of the 

kinase), involved in the regulation of cell proliferation 

via ERK1/2 signaling, in Golgi membrane trafficking 

and cell adhesion, were significantly more phosphorylated 

in the high-risk patient group. PRKD2 S706 is probably 

phosphorylated by the members of the PRKC family 

[40]. SRC S17 and CDK1 Y15 were also significantly 

more phosphorylated in the high-risk patient group. 

Phosphorylation of CDK1 Y15 by Wee-1 like protein 

kinase 1/2 (WEE1/2) inhibits the protein kinase activity 

and acts as a negative regulator of entry into mitosis (G2 

to M transition) whilst phosphorylation by PRKCD 

activates the G2-M DNA damage checkpoint after UV 

irradiation [41]. Dephosphorylation at CDK1 Y15 by 

active M-phase inducer phosphatase 1/2 (CDC25A/B) 

leads to CDK1 activation at the G2-M transition [42]. 

The higher phosphorylation of CDK1 (and CDK2) Y15, 

along with T14 phosphorylation, was further confirmed 

by a separate MS-based immune-affinity enrichment 

(Supplementary Table 8 and Supplementary file 5). The 

significantly higher phosphorylation of CDK1/2 T14 

alone in high-risk patients was also observed in the latter 

analysis (not significant in the general phosphopeptide 

enrichment analysis with P= 0.078). Finally, tyrosine-

protein kinase Fes/Fps (FES), a regulator of the actin 
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Figure 5. Phosphoproteomic differences between high-risk and low-risk patients; the importance of the cytoskeleton, 
mitotic cell cycle regulation and CDK activities. (A) Hierarchical clustering of the 33 patients based on the phosphorylation level 

(SILAC log2 ratio) of 239 phosphosites with significant differences between high-risk and low-risk patient samples. Two vertical main 
clusters were observed, one dominated by phosphosites with higher phosphorylation in low-risk patients (upper cluster) and the other 
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by phosphosites with higher phosphorylation in high-risk patients (lower cluster). GO and KEGG pathways analyses of the two 
corresponding phosphoprotein clusters were performed to reveal enriched BP, CC and MF terms in the high-risk and low-risk patient 
samples. The various enriched GO terms and KEGG pathways are displayed in the scatter plot. The number of genes associated to  a 
specific GO term or KEGG pathways (count) and the corresponding –log10 P values are shown on the x-axis and y-axis, respectively. 
Abbreviations were used in cases of long GO term or KEGG pathway name (reg. for regulation). (B) Visualization of hit Reactome 
pathways was performed using the ReactomeFIViz app (7.2.3) in Cytoscape. Two significant Reactome networks (FDR <0.05) that 
mapped phosphoproteins with differential phosphorylation in our dataset are shown. The protein nodes  are colored according to their 
high-risk vs low-risk log2 phosphorylation FC, i.e. orange indicates increased phosphorylation in the high-risk group and blue increased 
phosphorylation in the low-risk group. (C) Networks of PPI based on STRING database and visualized in Cytoscape after ClusterONE 
analysis. The significance of networks with high cohesiveness is shown with the P value of a one-sided Mann-Whitney U test. The 
differentially regulated phosphorylation sites are shown in light green boxes next to each protein. FC of phosphorylation are color-
coded; orange-colored proteins showed a higher phosphorylation in the high-risk group and blue-colored proteins showed a higher 
phosphorylation in the low-risk group. (D) Causal relationships between phosphoproteins with differentially regulated phosphorylation 
sites in the high-risk vs low-risk phosphoproteome set was studied with SIGNOR. The analysis showed the pivotal role of CDKs in the 
control of cell cycle, cytoskeleton and translation phosphoproteins. Nodes and types of relationships are displayed as indicated on the 
bottom part of the design. 

 

cytoskeleton and microtubule assembly, S408; and 

STK26 (serine/threonine-protein kinase 26), a mediator 

of cell growth, T327 and T328 were significantly more 

phosphorylated in the low-risk patient group. 

 

The results from Western blotting did not show any 

significant difference in protein phosphorylation of 

several kinase candidates between the high-risk and the 

low-risk groups (Supplementary Figure 5). However, 

despite the different spectrum of sensitivity of both 

methods, the increased activity of CDK1, PRKCD and 

PRKACA in the high-risk group detected by the MS-

based data was also observed in the Western blots 

(Supplementary Figure 5). We also noticed a distinct 

CDK1 T161-Y15 phosphorylation pattern for each of 

the patient groups. While these two phosphosites were 

similarly phosphorylated in low-risk patients, CDK1 

T161 phosphorylation was different of that observed in 

CDK1 Y15 in high-risk patients suggesting a different 

CDK1 regulation for each of the groups. Moreover, the 

phosphorylation levels of PRKCD S645 and PRKACA 

T197 were parallel for each patient showing a joint 

activation of both kinases. 

 

Only LSP1 had a similar differential phosphorylation 

both when comparing elderly low-risk vs younger 

low-risk and high-risk vs all low-risk patients 

 

Five phosphosites on proteins lymphocyte-specific 

protein 1 (LSP1), lamina-associated polypeptide 2, 

isoform alpha (TMPO), CDK1, CDK2 and N-

acetyltransferase ESCO2 (ESCO2) were quantified in 

both our comparisons, i.e. elderly low-risk vs younger 

low-risk and high-risk vs all low-risk patients 

(Supplementary Figure 2B). Only LSP1_S177, an actin-

binding cytoskeleton protein involved in cell migration 

and possibly phosphorylated at that residue by 

MAPKAPK2 and/or protein kinase C [43], showed 

significant associations with high age/increased risk of 

relapse in both our comparisons. However, CDK1/2 

Y15 showed increased phosphorylation in high-risk and 

in younger low-risk patients. These apparently 

conflicting observations on CDK’s activity illustrate 

that the impact of certain age-associated proteomic 

differences may differ between patient subsets and 

depend on the biological/genetic context. 

 

DISCUSSION 
 

Elderly AML patients seem to have more 

chemoresistant disease than younger patients; this is at 

least partly due to a lower frequency of low-risk genetic 

abnormalities and a higher frequency of at least certain 

high-risk abnormalities in elderly patients [1, 6] 

although some high-risk abnormalities (e.g. MLL 

abnormalities) do not show such age-dependent 

differences [44]. 
 

Many elderly patients cannot receive intensive and 

potentially curative treatment due to an unacceptable 

risk of treatment-related mortality [1], and elderly 

patients receiving intensive treatment do not receive the 

same consolidation therapy as the younger patients, e.g. 

patients above 60 years of age cannot receive high-dose 

cytarabine [1]. A difference in the survival for younger 

and elderly AML patients may therefore reflect 

differences in chemotherapy and not (only) differences 

in chemosensitivity. However, younger and elderly 

AML patients often receive the same induction 

chemotherapy, and differences in the complete 

remission rate will therefore reflect differences in 

chemosensitivity that also are relevant for long-term 

survival [45]. Several observations suggest that elderly 

patients have a lower remission rate. First, the initial 

experience after introduction of the conventional “7+3” 

cytarabine/anthracycline induction regimen showed a 

long-term remission of 20-25% for younger and 10% 

for elderly patients [46]. Second, a large study of 

intensive treatment showed a significant decrease of 

complete remission rate with age; the rate was 65% for 
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patients below 56 years of age but only 33% for patients 

above 75 years [47]. Finally, several studies have 

investigated the remission rate of patients above 60 years 

of age receiving the conventional “7+3” regimen but 

with the increased daunorubicine dose of 60 mg/m
2
/day. 

 

 
 

Figure 6. Kinase prediction analysis of the high-risk vs 
low-risk phosphoproteome. (A) Sequence motif analysis of 

the ± six amino acids flanking the differentially regulated 
phosphorylation sites for either group. (B) KSEA of differentially 
regulated and unregulated phosphorylation sites. The kinase z-
score (x-axis) is the normalized score for each kinase (y-axis), 
weighted by the number of identified substrates indicated on the 
right side of the plot. Significant predicted kinases with FDR <0.05 
are shown. 

Complete remission rates corresponding to 33-51% of 

the patients have been observed for elderly patients [48, 

49] whereas younger patients have shown remission 

rates exceeding 70% [50, 51] and this higher rate is 

expected because previous studies of younger patients 

have described remission rates corresponding to 60-85% 

[52]. Taken together these observations suggest that 

elderly AML patients have a more chemoresistant 

disease. 

 

Normal hematopoietic stem cells develop biological 

signs of aging [12–20] and the aim of our study was 

therefore to investigate whether similar biological 

characteristics of aging could be detected at the 

proteomic and phosphoproteomic level in AML cells 

derived from elderly patients. To do so we only included 

patients with relatively high levels of circulating AML 

cells (i.e. peripheral blood leukemization) so that 

enriched cell populations could then be prepared by 

simple gradient separation alone [53, 54]. 

 

In the present study we wanted to compare patient 

subsets with regard to in vivo chemosensitivity (i.e. 

AML-free survival) and the association between 

leukemization and in vivo chemosensitivity is regarded 

as uncertain or weak compared with the impact of 

genetic abnormalities [45]. Several studies have 

suggested that a prognostic impact of leukemization is 

seen only when peripheral blood blast counts exceed 

100 x 10
9
/L [55–57]. Only a small minority of our 

patients had such high blood blast counts; therefore, the 

impact of those few patients on our present results is in 

our opinion limited. 

 

Bone marrow samples were not used because the 

diagnostic criteria for AML is usually at least 20% 

blasts, but for patients with favorable cytogenetic 

abnormalities there is no such blast criteria [58]. More 

extensive cell separation procedures that may alter the 

biological characteristics of the leukemic cells [53] 

would have therefore been necessary if bone marrow 

samples had been used. Moreover, blood and bone 

marrow AML cells seem to have only minor differences 

[59], and even clonal heterogeneity as well as 

hierarchical organization of the AML cell clones can be 

demonstrated in peripheral blood AML cells [60, 61]. 

The use of cryopreserved biobank samples allowed us 

to carefully select patients according to our predefined 

cytogenetic criteria, and follow-up experiments of the 

same patients were also possible. 

 

Our study should be regarded as population-based 

because we included all patients in a defined 

geographical area who were diagnosed with AML 

during a defined time period. For this reason, our study 

included a relatively large number of elderly patients, 
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and many elderly and unfit patients did not receive 

intensive and potentially curative antileukemic 

treatment [1]. Twelve out of 18 low-risk patients 

received intensive treatment, and this is expected from 

the age distribution of these patients. Only four of these 

12 patients became long-term survivors. This is not 

unexpected as one patient was lost from follow-up, we 

had one early death due to hyperleukocytosis, three 

elderly patients died from toxicity during intensive 

consolidation therapy, one patient did not receive 

consolidation therapy due to severe toxicity and one 

allotransplanted patient died from Graft versus host 

disease. Taken together this explains why we have a 

relatively low long-term AML free survival even for 

patients with low-risk disease who received intensive 

chemotherapy. 

 

A relatively high non-relapse mortality is expected for 

elderly patients [1], and this was also seen in our 

present study. Our patients were selected according to 

cytogenetic criteria, and when taking into account that 

the median age of patients with first diagnosis of AML 

is 65-70 years [1] it is expected that relatively few of 

our patients received intensive and potentially curative 

therapy because of their age. Due to this heterogeneity 

of our patients with regard to antileukemic treatment, 

extensive survival analyses were not possible. 

 

Our high- and low-risk cell populations showed 

additional differences respecting patient age, frequency 

of secondary AML and morphological signs of 

differentiation. These differences are expected because 

favorable cytogenetic abnormalities are most common 

in younger patients [1, 6, 58]; AML secondary to 

previous chemotherapy or chronic myeloid malig-

nancies (i.e. chronic myeloproliferative neoplasia, 

myelodysplastic syndrome) is most common for elderly 

patients [5, 62]; and both favorable cytogenetic 

abnormalities as well as NPM1 mutations are associated 

with morphological signs of differentiation [58, 63, 64]. 

High age is associated with adverse prognosis, and to 

further investigate age-dependent factors independent of 

the genetic abnormalities we firstly investigated a group 

of patients with a limited number of well-defined 

genetic abnormalities (karyotype; receptor-type 

tyrosine-protein kinase FLT3, FLT3, NPM1 and 

CCAAT/enhancer-binding protein alpha, CEBPA, 

mutations) generally accepted to be associated with a 

good prognosis [1]. Thus, we compared elderly and 

younger patients with a favorable prognosis based on 

analyses of these cytogenetic abnormalities (i.e. the 

elderly low-risk and the younger low-risk patient groups 

with median age of 68 and 47 years, respectively). This 

scientific strategy was chosen because we assumed that 

an additional age-dependent adverse prognostic impact 

may be easier to detect for patients with favorable 

prognosis than for patients with an already adverse 

prognosis due to their cytogenetic abnormalities. This 

approach is supported by a recent publication describing 

an independent adverse prognostic impact of secondary 

AML only for younger patients [5]. 

 

In the second analysis of this study we compared a group 

with adverse prognosis (i.e. the high-risk patient group 

with a higher median age of 74 years) vs a group with 

favorable prognosis (the whole low-risk patient group 

with a lower median age of 64.5 years) to investigate 

whether possible proteomic or phosphoproteomic 

characteristics identified in the first comparison could 

still be detected when comparing high-risk and low-risk 

patients. Our MS-based methodology is reliable and 

reproducible for this kind of studies as we have shown by 

validation with alternative non MS-based technologies in 

two previous papers [65, 66]. 

 

Among the hallmarks of aging, including hematopoietic 

stem cell aging, are altered cellular communication, 

altered intracellular trafficking/polarity influencing  

the communication with neighboring cells/stroma, 

detoxification/stress responses, and altered transcriptional 

regulation due to various different mechanisms including 

altered epigenetic regulation [23, 31]. The most 

important age-associated differences described in our 

present studies are increased ALDH2 levels (stress 

responses), cytoskeletal modulation (trafficking/mitosis/ 

transport/polarity) and transcriptional regulation. These 

main differences can all be relevant for aging and may 

then be involved in leukemogenesis and chemosensitivity 

for elderly AML patients. 

 

Aldehyde dehydrogenase (ALDH) proteins are 

intracellular enzymes that oxidize cellular aldehydes and 

thereby participate in regulation of differentiation and 

development of chemoresistance [67]. Both our primary 

AML cell comparisons suggested that the protein levels 

of ALDH2 are increased in elderly AML patients; this 

was true both when comparing elderly low-risk and 

younger low-risk patients, and high-risk vs all low-risk 

patients. Both experimental and clinical studies suggest 

that ALDH2 activity is important for leukemogenesis 

and/or chemosensitivity in AML. First, ALDH2 activity 

and ALDH2 gene polymorphisms seem to be involved in 

carcinogenesis for various malignancies [68]. This 

seems to be true not only for solid tumors but also for 

leukemogenesis; the involvement of ALDH (including 

ALDH2) for progression of preleukemic Fanconi anemia 

to bone marrow failure/AML is suggested both by 

animal models and clinical studies [69–72]. Second, 

ALDH2 can influence the signaling through several 

intracellular pathways involved in regulation of 

apoptosis, and it can thereby have antiapoptotic effects 

[73]. ALDH inhibition has a synthetically lethal effect in 
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AML cells when combined with glutathione peroxidase-

4 inhibition [74], and it can overcome both bortezomib 

and cytarabine resistance in Down syndrome-associated 

AML [75]. High ALDH2 activity is also associated with 

resistance to doxorubicin [76], the drug that is combined 

with cytarabine in conventional AML induction 

chemotherapy [1]. Third, ALDH activity can be detected 

in primary human AML cells, but the activity differs 

between patients and also between cells within the same 

hierarchically organized AML cell populations [77]. 

Patients with a generally high ALDH activity in their 

AML cells show decreased survival [77]. There is an 

association between high ALDH activity and high-risk 

karyotype [78] and high ALDH activity in AML cells is 

associated with an increased risk of relapse for patients 

with the favorable t(8;21) abnormality [79]. A recent 

study even suggested that ALDH2 expression could be 

included in a 4-gene expression prognostic signature for 

patients with intermediate-risk AML [80]. Finally, 

ALDH activity is detected both in normal hematopoietic 

and leukemic stem cells, but the activity in these two cell 

types seems to differ [81]. This may explain the 

observations from previous studies describing that 

ALDH inhibition can eradicate leukemic stem cells but 

at the same time spares normal hematopoietic stem cells 

[73, 78]. Taken together these observations suggest that 

ALDH activity/ALDH2 expression is important for 

chemosensitivity in human AML, and our present study 

suggests that this impact is associated with aging. 

 

Our comparison of patient cohorts also identified several 

cytoskeletal proteins that were associated with 

differences in age. The cytoskeleton is important for 

intracellular trafficking and exocytosis/endocytosis, 

mitosis, for the cellular contact with neighboring cells 

and the extracellular matrix [82, 83]. Firstly, cytoskeletal 

proteins differed both in their expression level and  

in their phosphorylation when comparing elderly  

low-risk and younger low-risk patients (Figure 3B, 3C; 

Supplementary Tables 3–6). Second, differences in 

cytoskeletal proteins were also detected when comparing 

high-risk vs all low-risk patients (Figures 4B, 5B and 

Supplementary Table 7), especially those ones involved 

in membrane trafficking, post-translational protein 

modification and extracellular matrix interactions. 

Cytoskeleton proteins can be altered as a part of the aging 

process [84, 85] and the associations between age and 

altered levels/phosphorylation of cytoskeletal proteins 

may therefore reflect an impact of aging in AML. 

Finally, it should be emphasized that ALDH2 is a 

cytoskeleton-interacting protein [86] and cytoskeletal 

proteins were also included in the various interacting 

molecular networks identified in our studies. 

 

It can be seen from Supplementary Table 1 and Table 1 

that morphological signs of monocytic differentiation is 

more common for younger patients with low-risk 

disease. This difference is expected because both 

favorable cytogenetic abnormalities as well as NPM1 

insertions are associated with myeloid differentiation 

[58, 63, 64]. Furthermore, the data presented in Figure 4 

showed that high- and low-risk patients also differ with 

regard to proteins involved in neutrophil and platelet 

degranulation. The question is therefore whether  

the other observed proteomic or phosphoproteomic 

differences (e.g. organellar functions, regulation of 

proliferation/mitosis) observed in our study reflect 

differences in differentiation rather than chemosensitivity, 

but in our opinion associations with differentiation seem 

less likely. Important characteristics of the identified 

proteins belonging to the neutrophil and platelet 

degranulation networks (Figure 4B) are summarized in 

Supplementary Table 7. Most of these proteins are 

expressed in a wide range of cells/tissues and not only in 

myeloid cell subsets; an observation suggesting that 

these proteins are important for cellular functions with 

regard to organellar functions/intracellular trafficking 

and not only for myeloid cell subsets (i.e. not specific 

signs of myeloid differentiation). Furthermore, we 

investigated the in vitro proliferative responsiveness of 

primary AML cells derived from an external cohort of 

consecutive patients. Even though we observed an 

expected and statistically significant association between 

young age and monocytic differentiation for this cohort, 

neither in vitro proliferative responsiveness nor 

expression of stem cell/molecular differentiation markers 

showed any significant associations with morphological 

AML cell differentiation (Supplementary Analysis 

Tables 1, 2). Taken together these observations therefore 

suggest that the organellar/degranulation/mitosis net-

works identified in Figures 4B, 5B, 5C represented 

aging-dependent rather than differentiation-dependent 

differences between AML cells. 

 

Both the proteomic and phosphoproteomic analyses 

suggested that mitotic regulation differs between 

elderly/high-risk and younger/low-risk patients. When 

analyzing the proliferative AML cell capacity for a 

group of consecutive patients we did not find any 

evidence for a general association between proliferative 

capacity and differentiation of the AML cells 

(Supplementary Analysis Table 2). These observations 

support the hypothesis that the observed differences in 

regulation of mitosis/proliferation are not caused by 

differences in AML cell differentiation. Previous 

clinical studies also support the hypothesis that 

regulation of proliferation/mitosis is important for 

chemosensitivity of primary human AML cells. First, 

autonomous in vitro proliferation detected with a 6 days 

[
3
H]-thymidine incorporation assay similar to our 

present suspension culture assay (Supplementary 

Analysis Table 2) was associated with an adverse 
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prognosis in a clinical study including AML patients 

below 60 years of age and receiving intensive 

chemotherapy [87]. The same was observed in another 

study using a 7 days colony formation assay [88] and in 

a study of cytokine-dependent proliferation [89]. Third, 

growth of leukemic cells after subcutaneous inoculation 

in immunodeficient mice is also associated with poor 

clinical outcome [90] and the same is true for primary 

human AML cells capable of long-term in vitro 

proliferation in suspension cultures prepared in 

cytokine-supplemented medium alone without stromal 

cell support [60]. Even though most of these 

observations were made for young AML patients, they 

illustrated that differences in the regulation of AML  

cell proliferation were associated with differences in 

prognosis/chemosensitivity, and the differences in 

molecular regulators of proliferation/mitosis detected in 

our present study may therefore reflect age-dependent 

contributions to a molecular profile that is important for 

the regulation of both mitosis/proliferation and clinical 

chemosensitivity. 

 

Targeting of the cytoskeleton is regarded as a possible 

therapeutic strategy in human AML, and several Aurora 

kinase inhibitors are now in clinical trials for various 

malignancies [91, 92]. However, despite these clinical 

studies very few previous investigations have focused 

on the cytoskeleton in primary AML cells [93–95]. To 

the best of our knowledge the present study is the first 

to give a broad and detailed characterization of the 

cytoskeleton in primary AML cells including a 

description of patient heterogeneity and possible 

associations with chemoresistance and/or aging. Our 

present observations suggesting that the cytoskeletal 

function is important for chemosensitivity are further 

supported by a recent study where the development  

of chemoresistant AML relapse after intensive 

chemotherapy was associated with altered expression 

and/or phosphorylation of cytoskeletal proteins [66]. 

 

Transcriptional networks are altered in AML patients by 

several mechanisms that include transcription factor 

dysregulation by mutation or by translocation or 

downstream of signaling pathways [96]. We observed 

higher levels of several transcription repressors (e.g. 

RERE and ZMYND8) and lower phosphorylation of 

mRNA stabilization/splicing proteins (e.g. SRRM1/2) 

in elderly low-risk patients (Figure 3B, 3C). A lower 

phosphorylation of the same and different RNA 

processing proteins was also detected (e.g. SRRM1 and 

serine/arginine-rich splicing factor 11, SRSF11) in 

high-risk patients when they were compared to all low-

risk patients (Figure 5C). Several transcriptional 

networks of different AML subtypes have been recently 

described as well as their required role for tumor 

maintenance and targeting of these altered networks 

might offer new therapeutic approaches to eliminate the 

subsistence program of AML cells [97]. 

 

Our phosphoproteomics analysis showed that the CDK 

family appeared to be more activated in younger low-

risk patients, especially CDK1 and CDK2 with 110 and 

88 substrate counts, respectively, according to the KSEA 

(Figure 3D). Among these substrates we identified 

FOXK2 and RB1. FOXK2 is hyperphosphorylated 

during mitosis by CDK1 and, to a lower extent, CDK2 

[98]. The underphosphorylated, active form of RB1 

interacts with transcription factor E2F1 (E2F1) and 

represses its transcription activity, leading to cell cycle 

arrest [99]. As RB1 was more phosphorylated in 

younger low-risk patients, E2F1 might be more active 

and induce myeloid cell-cycle progression [100]. Thus, 

our results suggest a tight control of the cell-cycle 

progression in younger low-risk patients. 

 

Our studies also suggest that other biological 

characteristics of the leukemic cells also differ 

between elderly low-risk and younger low-risk 

patients. This includes molecules of the p53 signaling 

pathway (Figure 3B), which can also be altered as a 

part of the aging process [101–103]. G2 and S phase-

expressed protein 1 (GTSE1), a protein that regulates 

microtubules (MT) stability during mitosis by 

inhibiting the mitotic centromere-associated kinesin 

(MCAK) MT depolymerase activity [104], appeared 

more phosphorylated in younger low-risk patients. 

 

The regulated phosphoproteome of high-risk patients was 

involved in apoptotic execution, mitotic prophase, cell 

cycle progress and RNA processing (Figure 5B–5D). The 

higher phosphorylation of CDK1 and CDK2 at T14 and 

Y15, identified by general phosphoenrichment and 

phosphotyrosine immunoaffinity enrichment, and the 

higher number of CDK1 substrates identified by KSEA 

revealed a pivotal performance of these kinases in high-

risk patients. Among these substrates, we identified 

NUMA1, a MT-binding protein that plays a role in the 

formation and maintenance of the spindle poles and the 

alignment and the segregation of chromosomes during 

mitotic cell division [105]. Phosphorylation and 

dephosphorylation of this protein determine its 

enrichment at the cell cortex and its association with the 

dynein-dynactin complex. 

 

The phosphoproteomic analysis of both comparisons of 

the present study shows that CDKs seem to be activated 

in both younger low-risk and high-risk patients and 

target different substrates that might influence prognosis 

in AML. Moreover, the phosphorylation of CDK1/2 

T161 and Y15 active sites was more heterogeneous 

among high-risk than among low-risk patients 

(Supplementary Figure 5). We have previously shown 
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that CDKs were also more activated at the time of first 

diagnosis for patients that relapsed within a 5-year 

follow-up after intensive and potentially curative 

therapy [65]. Taking together, CDKs play determinant 

roles in AML prognosis and relapse, and the prognostic 

impact seems to differ between patient subsets and 

depends on the genetic/biological context. 

 

CONCLUSIONS 
 

Our comparison of elderly low-risk and younger low-risk 

AML patients suggest that ALDH2 levels, cytoskeletal 

modulation and altered transcriptional regulation are 

consistent with an effect of aging on leukemogenesis and 

chemosensitivity in human AML. The role of kinases 

such as CDKs on age and disease seems to depend on the 

biological context and to differ between patient subsets. 

Elderly patients with high-risk AML seem to differ from 

all younger patients with low-risk disease with regard to 

the same cellular processes, even though the molecular 

mechanisms differ, and few other single molecules (e.g. 

LSP1) were identified in the two comparisons. Thus, our 

study suggests age-dependent alterations contributes to 

chemoresistance in human AML. 

 

MATERIALS AND METHODS 
 

Selection of patients and preparation of patient cells 
 

All cell samples in the present study were derived at the 

first time of diagnosis before start of any antileukemic 

treatment. Our institution is responsible for diagnosis 

and treatment of patients with AML in a defined 

geographical area, and the patients included in our 

present study represent all patients from this area during 

a defined time period that fulfilled defined criteria 

established before start of the study. First, to ensure a 

high quality of the analyzed samples with at least 95% 

AML cells we included only patients with high levels of 

peripheral blood AML cells, i.e. at least 10 x 10
9
 total 

leukocytes and at least 80% of these circulating 

leukocytes being leukemic cells. Second, among these 

consecutive patients with high levels of circulating AML 

cells, we selected all patients who fulfilled predefined 

genetic criteria for adverse and favorable prognosis as 

can been seen from Supplementary Table 1. These 

criteria are based on the European Leukemia Net (ELN) 

guidelines [1]. The ELN classification of AML is based 

on karyotyping together with molecular-genetic 

analyses, and patients are classified as having favorable, 

intermediate or adverse prognosis. This risk stratification 

does not take into account other pretreatment risk factors 

like peripheral blood blast count at the time of diagnosis, 

previous hematological malignancy (i.e. myelodysplastic 

syndrome, chronic myelomonocytic leukemia or chronic 

myeloproliferative neoplasia) and previous exposure to 

cytotoxic therapy for other diseases [1]. The 

classification does not take into account response to first 

induction cycle and minimal residual disease (MRD) 

after remission induction either [1, 45, 106, 107]. 

 

The patients with adverse prognosis included ten 

patients with complex karyotype and five patients with 

either monosomal karyotype, del 5 or -7. These adverse 

prognosis patients represent all patients who fulfilled the 

cytogenetic criteria for high-risk disease. Patients were 

screened for FLT3 and NPM1 mutations but additional 

mutational analyses for identification of additional 

adverse prognosis patients were not available during the 

defined time period, and for this reason these adverse 

prognosis patients were selected based on cytogenetic 

criteria alone. These patients will be referred to as high-

risk patients. The median age of this patient group is  

74 years. 

 

The patients with favorable prognosis included all 

patients with the cytogenetic abnormalities inv(16), 

t(16;16) and t(8;21). We also included all patients with 

normal karyotype, wild-type FLT3 and NPM1 insertion 

as well as one patient with normal karyotype, low ratio of 

internal tandem duplication mutation of FLT3, FLT3-

ITD, and NPM1 insertion (Supplementary Table 1, 

patient F17) and another patient with CEBPA mutation 

(Supplementary Table 1, patient F18). Analysis of the 

FLT3-ITD ratio was not available as a routine analysis 

during this time period and only one patient could be 

classified as favorable based on these criteria 

(Supplementary Table 1). These patients will be referred 

to as low-risk patients. The median age of this patient 

group is 64.5 years. 

 

More characteristics of the high-risk and low-risk 

patient groups are summarized in Tables 1, 2, and more 

detailed comparisons are presented in Supplementary 

Tables 1, 2. All patients were Caucasians. 

 

As we included patients with high levels of circulating 

AML blasts at the time of first diagnosis, we could 

prepare highly enriched AML cell populations (>95% 

purity) by a standardized method based on density 

gradient separation alone (for a detailed discussion see 

references [53, 54, 65]). All samples were cryopreserved 

by using the same standardized method. The patient 

samples included in our study did not differ significantly 

with regard to peripheral blood blast count or storage 

time in liquid nitrogen. 

 

Patient grouping for MS-based proteomic and 

phosphoproteomic analysis 

 

In order to compare patient groups with different 

cytogenetics-based prognosis, we selected 15 high-risk 
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and 18 low-risk patients for subsequent proteomics 

analyses. The difference of the median age between the 

two groups was statistically significant (P= 0.005, Table 

1). In order to study the influence of age in low-risk 

patients, we further divided the 18 patients in two 

subgroups of nine patients each, according to an age 

threshold of 65 years at the time of diagnosis, i.e. the 

elderly low-risk (median age of 68 years) and the 

younger low-risk (median age of 47 years). This 

threshold was chosen because it corresponds to the 

median age of patients at the first diagnosis of AML and 

it has also been used to distinguish between 

young/middle aged and elderly patients (i.e. not fit for 

the most intensive chemotherapy) in previous clinical 

studies [1, 108, 109]. The difference of the median age 

between the two subgroups was statistically significant 

(P <0.0001). This and other patient characteristics of the 

low-risk subgroups are shown in Table 2. 

 

Peptide preparation 
 

Our standard sample preparation of patient cell lysate in 

4% sodium dodecyl sulfate (SDS)/0.1 M Tris-HCl (pH 

7.6), the filter-aided sample preparation (FASP) 

procedure with AML patient samples and the 

immobilized metal affinity chromatography (IMAC) 

for phosphopeptide enrichment have been described 

previously [65, 110]. In short, 20 µg of each patient 

lysate was mixed with 10 µg of an AML-specific 

super-SILAC mix [111] for proteomic analyses, and 

digested according to the standard FASP protocol [110, 

112]. The super-SILAC spiked peptide samples were 

fractionated using styrenedivinylbenzene-reversed 

phase sulfonate (SDB-RPS) plugs (Empore Discs, 3M) 

for proteome analysis [113]. The phosphoproteomics 

samples (226-2506 µg) were mixed with the super-

SILAC mix at 1:2 ratio (w:w; super-SILAC mix:AML 

patient sample), FASP processed and enriched using 

the IMAC procedure. Extra labeled peptides samples 

(600-1479 µg) were also FASP prepared for 

phosphotyrosine immunoprecipitation (IP). IP was 

performed using PTMScan pTyr antibody beads (p-

Tyr-1000; Cell Signaling Technology) according to the 

manufacturer’s protocol. All the peptides samples were 

brought to equal volumes of binding buffer before 

antibody incubation. Eluted Tyr-phosphopeptides were 

cleaned up with 3-C18-disks-stage tips before MS 

analysis. 

 

LC-MS/MS measurements 

 

Peptide sample preparation prior to proteome and 

phosphoproteome analysis and settings of the LC-

MS/MS runs on a Q Exactive HF Orbitrap mass 

spectrometer coupled to an Ultimate 3000 Rapid 

Separation LC system (Thermo Scientific) were carried 

out as described earlier [65]. Tyr-phosphopeptides were 

pre-concentrated on a 2 cm × 75 µm ID Acclaim 

PepMap 100 trapping column and separated on a 25 cm 

× 75 µm ID EASY-spray PepMap RSLC analytical 

column (Thermo Scientific). The Tyr-phosphopeptides 

were eluted during a 105 min binary gradient with 

solvent A (0.1% formic acid) and solvent B (0.1% 

formic acid/acetonitrile). The gradient started at 5% B 

from 0–5 min and increased to 7% B from 5–5.5 min, 

then to 22% B from 5.5–65 min, to 35% B from 65–87 

min, and to 90% B from 87–92 min. Hold at 90% from 

92-102 min, then ramped to 5% B from 102–105 min. 

The Q Exactive HF mass spectrometer was operated in 

data dependent acquisition (DDA) mode. Full MS 

scans (scan range 375–1500 m/z) were acquired in 

profile mode with a resolution R = 60 000 using an 

AGC target value of 3 × 10
6
 charges. MS/MS scans 

were acquired in profile mode for the top 10 

precursors. The AGC target value was set to 1 × 10
5
 

charges with a maximum injection time of 110 ms and 

a resolution R = 60 000. The normalized collision 

energy was 28 and the isolation window was 1.2 m/z 

with null m/z offset. The dynamic exclusion lasted  

for 20s. 

 

The super-SILAC proteomic, phosphoproteomic and 

Tyr-phosphoproteomic samples were analyzed as three 

separate experiments in a controlled randomized order 

(i.e. samples from each patient group were distributed 

equally over the analysis sequence) with a LC-MS 

quality control (HeLa protein digest) run approximately 

every 10 patient samples. 

 

Data analysis 

 

LC-MS/MS raw files were processed with MaxQuant 

software version 1.5.2.8 [114, 115]. The spectra were 

searched against the concatenated forward and reversed-

decoy Swiss-Prot Homo sapiens database version 

2018_02 using the Andromeda search engine [116]. The 

Perseus 1.6.1.1 platform was used to analyze and 

visualize protein groups and phosphosites [117]. 

MaxQuant-normalized SILAC ratios were inverted, log2 

transformed and normalized again using width 

adjustment. Hierarchical clustering of significantly 

differential proteins and phosphosites was done with 

Perseus using the Pearson correlation function and 

complete linkage. Volcano plots were done with Prism8 

(GraphPad). GO and KEGG pathways analysis was 

performed using a GO tool [118]. The most significantly 

over-represented GO and KEGG pathways terms with P 

<0.05 were displayed in bar or scatter plots in Prism8. 

The amino acid distribution surrounding the phosphosites 

was analyzed using iceLogo (P= 0.05) with the sequence 

windows obtained in the MaxQuant-generated 

phosphosite output file [39]. Sequence logo analyses 
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from a small number of phosphopeptide sequences were 

generated with WebLogo [34]. Kinase activity estimates 

were inferred by the KSEA App. [35, 36]. Regulated and 

unregulated phosphosites were analyzed with the 

PhosphoSitePlus [119] and NetworKin [120] databases 

using a substrate count and a NetworKin score cutoff of 

5. Kinase activation loop analysis was performed with 

the tools for phosphoproteomics data analysis at 

http://phomics.jensenlab.org. PPI networks were obtained 

by using the STRING database version 11.0 with 

interactions derived from experiments and databases at a 

high confidence score of 0.7 [121]. Networks were 

visualized using the Cytoscape platform version 3.3.0 

[122]. The ClusterONE plugin was used to identify 

protein groups of high cohesiveness [123]. Reactome 

term enrichment and visualization of hit pathways were 

performed using the STRING app (1.5.1) [124] and the 

ReactomeFIViz app (7.2.3) [125, 126], respectively. 

Causal relationships between phosphoproteins were 

studied with the SIGnaling Network Open Resource 

(SIGNOR) 2.0 [38]. Venn diagrams were made with 

Biovenn [127]. 

 

Western blotting 

 

Western blotting from nine high-risk and nine low-risk 

patient cells were performed. Twenty µg of each SDS-

based cell lysate was loaded on a NuPAGE 4-12% Bis-

Tris protein gel (ThemoFisher Scientific) and transferred 

onto a nitrocellulose membrane (Amersham Protran, GE 

Healthcare Life Sciences) in an XCell II Blot Module 

(ThermoFisher Scientific). Antibodies were purchased 

from Cell Signaling Technology and Abcam. They  

were used according to manufacturer’s guidelines. 

Chemiluminescence was developed with SuperSignal 

West kits (Thermo Scientific) and measured on a LAS-

3000 imager (Fujifilm). Band intensities for each protein 

were determined by densitometry software Image J 

[128]. Band intensities of a protein spotted at 

approximately 62 kDa on Ponceau-stained membranes 

were used for normalization. 

 

Statistical analysis 

 

Proteins and phosphosites (localization probability 

>0.75) with at least five individual SILAC ratios in each 

patient group were selected for two-sample unequal 

variance t-test and Z-statistics [129] to find significantly 

different FC for proteins and phosphosites between the 

different patient groups. Tyrosine phosphoproteomic 

data were tested for significance using linear models  

for microarray data (LIMMA) using the VSClust app 

[130]. Data from Western blotting bands were 

expressed as the median ± 95% confidence interval. 

Statistical analysis was performed using the Mann-

Whitney test in Prism8. 

Ethics statement 

 

Primary AML cells were collected from AML patients 

after written informed consent in accordance with the 

Declaration of Helsinki. The storage of cells in our 

biobanks (REK 1759/2015) and the use of cells in the 

present project (REK 305/2017) were approved by the 

Regional Ethics Committee. 
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The LC-MS/MS raw files and MaxQuant output files 
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via the PRIDE partner repository [131, 132] with dataset 

identifier PXD019785. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Volcano plot analyses of the data from the high-risk vs low-risk cohort. Points (in magenta) above the 

non-axial horizontal grey line represent proteins or phosphosites with significantly different abundances or phosphorylation (P < 0.05), 
respectively. (A) All proteins with at least 5 quantitative values in each group were used in the analysis. (B) All phosphosites with at least 5 
quantitative values in each group were used in the analysis. 
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Supplementary Figure 2. Venn diagrams of regulated proteins and phosphoproteins in the studies of elderly low-risk vs 
younger low-risk, and high-risk vs all low-risk patients. (A) Overlap of 29 and 204 regulated proteins in the elderly low-risk vs younger 

low-risk, and high-risk vs low-risk studies, respectively, with table of the fold change (FC) values of overlapped proteins obtained in both 
studies. (B) Overlap of 101 and 231 unique differentially regulated phosphorylation sites in the elderly low-risk vs younger low-risk, and high-
risk vs low-risk studies, respectively, with table of the FC values of overlapped phosphosites obtained in both studies. 
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Supplementary Figure 3. Western blots of sample lysates from nine high-risk and nine low-risk patients to study the activity 
of ALDH2. Band intensities of ALDH2 protein were normalized before statistical analysis. Data from Western blot bands were expressed as 

the median ± 95% confidence interval in the bar plots. Band intensities from the high-risk and low-risk as well as from elderly low-risk and 
younger low-risk samples were compared using the Mann-Whitney test. None of the comparisons were statistically significant. Western blots 
were not replicated. 
 

 
 

Supplementary Figure 4. Sequence logo analysis of the phosphoprotein Cluster 1 showed in Figure 5C on the main text. 
Thirty-one amino acid sequence windows surrounding the phosphorylation sites (located on position 16 on the x-axis) described in the 
protein cluster. 
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Supplementary Figure 5. Western blots of sample lysates from nine high-risk and nine low-risk patients to study the activity 
of CDK1, PRKCD and PRKACA. Band intensities of phosphorylated proteins were normalized before statistical analysis. Data from Western 

blot bands were expressed as the median ± 95% confidence interval in the bar plots. Band intensities from the high-risk and low-risk samples 
were compared using the Mann-Whitney test. None of the comparisons were statistically significant. Western blots were not replicated. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 4–7. 

 

Supplementary Table 1. Clinical and biological characteristics of individual patients included in the study. 

ID Sex Age FAB CD34 Karyotype FLT3 NPM1 

High-risk patients, i.e. adverse cytogenetic abnormalities  

A1-P105 F 64 M1 + Complex
2
 WT WT 

A2-P112 F 51 M0 + Complex WT WT 

A3-P114 M 72 M1 + Complex WT - 

A4-P117 F 64 M1 + Complex ITD WT 

A5-P122 M 84 M1 + Complex WT WT 

A6-P130 M 78 M0 - Complex WT WT 

A7-P133 M 74 M4 - Complex WT - 

A8-P134 M 80 M1 + Complex - - 

A9-P140 F 50 M2 + Complex WT WT 

A10-P128 M 77 M2 + Complex ITD WT 

A11-P115 F 87 M0 + del 5  WT WT 

A12-P107 M 73 M2 + Monosomal ITD WT 

A13-P123 M 81 M2 - -7  WT WT 

A14-P124 M 76 M5 + del 12, -7  WT WT 

A15-P129 M 63 M5 + -7 WT WT 

Low-risk patients, i.e. favorable genetic abnormalities 

F1-P110 F 67 M4 + t(16;16), +22 - - 

F2-P116 M 36 M5 + inv16, +8, +22 ITD WT 

F3-P139 M 66 M5 + t(16;16) WT WT 

F4-P141 M 79 M2 - inv16, del 7 WT WT 

F5-P127 M 41 M1 + t(8;21), del 9, -3, -20, -22 WT WT 

F6-P131 F 33 M1 + t(8;21) WT WT 

F7-P137 F 74 M4 + t(8;21) ITD WT 

F8-P144 F 66 M4 + t(8;21) WT WT 

F9-P154 M 47 M4 - t(8;21) WT WT 

F10-P101 M 50 M2 - Normal WT INS 

F11-P118 F 61 M5 - Normal WT INS 

F12-P120 F 68 M5 - Normal WT INS 

F13-P125 M 64 M5 - Normal WT INS 

F14-P138 M 65 M4 - Normal WT INS 

F15-P143 M 64 M1 + Normal WT INS 

F16-P153 F 70 M4 + Normal WT INS 

F17-P155
3
 F 71 M0 - Normal ITD

low
 INS 

F18-P142
4
 M 33 M2 + Normal WT WT 

The table presents individually patient characteristics (sex, gender), morphological (FAB classification) and molecular signs of 
differentiation (CD34 expression), karyotype and FLT3/NPM1 mutational status

1
. 

1
Abbreviations: FAB, French-American-British; INS, a 4 bp-insertion/duplication; ITD, internal tandem duplication; WT, wild-

type; -, not determined. 
2
Defined as ≥ 3 cytogenetic abnormalities. 

3
The patient had a low ITD ratio and could therefore be classified as having a favorable prognosis.  He was initially classified 

as ITD negative but later reclassified based on a new analysis. 
4
This patient has CEBPA mutation. 
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Supplementary Table 2. Patient treatment and survival. 

ID Treatment
1
 Survival (months) 

High risk patients, i.e. adverse cytogenetic abnormalities 

A1-P105 Best supportive care <1 

A2-P112 AML-stabilizing therapy based on ATRA and valproic acid 3 

A3-P114 AML-stabilizing therapy based on ATRA and valproic acid 13 

A4-P117 Best supportive care 3 

A5-P122 AML-stabilizing therapy based on ATRA and valproic acid 5 

A6-P130 Valproic acid plus hydroxyurea 3 

A7-P133 Best supportive care <1 

A8-P134 AML-stabilizing therapy based on ATRA and valproic acid 1 

A9-P140 Intensive chemotherapy followed by allogeneic SCT >46
2
 

A10-P128 Best supportive care <1 

A11-P115 ATRA, valproic acid, low-dose cytarabine <1 

A12-P107 Best supportive care 2 

A13-P123 ATRA, valproic acid, low-dose cytarabine 16 

A14-P124 Valproic acid plus hydroxyurea 6 

A15-P129 Best supportive care 6 

Low risk patients, i.e. favorable genetic abnormalities 

F1-P110 Best supportive care <1 

F2-P116 Death from acute GVHD after allogeneic SCT in second CR 25 

F3-P139 ATRA, valproic acid, low-dose cytarabine <1 

F4-P141 Valproic acid plus hydroxyurea 3 

F5-P127 Lost from follow-up - 

F6-P131 Intensive chemotherapy followed by autologous SCT >56 

F7-P137 Azacitidine 3 

F8-P144 Intensive induction and consolidation chemotherapy >38 

F9-P154 High-dose chemotherapy >144 

F10-P101 
One cycle of intensive induction therapy with CR, no further chemotherapy due to severe 

toxicity  
28 

F11-P118 Intensive induction therapy with CR, toxic death during consolidation 2 

F12-P120 Death from hyperleukocytosis <1 

F13-P125 Intensive induction with CR, toxic death during consolidation therapy 2 

F14-P138 Intensive chemotherapy followed by autologous SCT, non-relapse death 14 

F15-P143 Intensive induction with CR, toxic death during consolidation chemotherapy 2 

F16-P153 AML-stabilizing therapy based on ATRA and valproic acid 2 

F17-P155 Best supportive care 2 

F18-P142 Intensive chemotherapy followed by autologous SCT >44 

1
Abbreviations: ATRA, all-trans retinoic acid; CR, complete transmission; GVHD, Graft versus host disease; SCT: stem cell 

transplantation. 
2
The sign > means that the patient is still alive without relapse. 
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Supplementary Table 3. Classification of differentially expressed proteins and phosphorylated phosphoproteins 
found in the comparative studies between nine elderly low-risk and nine younger low-risk patients based on 
hallmarks of aging as explained in previous publications [1–3]. 
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APTX 

CAAP1 

NME3 

POLB 

CDC27 

KIAA1279 

NUMB 

CHD2 

MARS2 

MINA 

RPS6KA4 

WARS2 

ASPH 

BAG2 

CDC27 

KIAA1279 

NME3 

PDP1 

PTPLAD2 

STX7 

UFSP2 

NUMB 

ALDH2 

CLC 

COX6A1 

KIAA1279 

MARS2 

NXT2 

PDF 

PDP1 

PTDSS1 

WARS2 

CAP1 

GIT1 

SKAP2 

KIAA1279 

NXT2 

STX7 
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MOB4 
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SKAP2 
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PTPLAD2  CAAP1 

              

In
cr

ea
se

d
 p

h
o
sp

h
o

ry
la

ti
o

n
 i

n
 e

ld
er

ly
 l

o
w

-r
is

k
 

p
a

ti
en

ts
 

RMI1 

TOX4 

TP53BP1 

CBX1 

HECA 

TMPO 

ARID1A 

AHNAK 

CBX1 

DDX41 

IRF2BP1 

KANSL1 

KDM3B 

RERE 

RPS6KA4 

SP100 

TCEAL3 

TMPO 

TOX4 

TP53BP1 

ZMYND8 

DTNBP1  ARIDA1 

FAM21C 

FNBP1L 

LSP1 

MYO18A 

REPS1 

BIN1 

REPS1 

SEC61B 

WDR44 

DOCK5 

FAM65B 

LILRB3  BIN1 

TP53BP1 

 BIN1 
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LIG1 CDK1 

CDK2 

ESCO2 

FAM83H 

FOXK2 

GSG2 

INCENP 

RB1 

AATF 

ATAD2 

BCLAF1 

CHAF1A 

CHD4 

CHD9 

CNP 

EIF3F 

ESCO2 

FOXK2 

GSG2 

HIST1H1D 

IGF2BP1 

ING5 

KMT2A 

NPM1 

PPIG 

PRPF40A 

RPRD2 

RRP1B 

RRP36 

SRRM1 

SRRM2 

ATAD2 

BCLAF1 

EEF2 

HSP90AB1 

NPM1 

POLA2 

PPP6R3 

CDK2 

ESYT2 

FOXK2 

PCYT1B 

 

IGF2BP1 

SCRIB 

 

 IGF2BP1 

IRS2 

  AATF 

EIF3F 

ING5 

RB1 

SCRIB 

CDK2 AATF 

BCLAF1 

FOXK2 

N
2
 8 14 43 18 14 11 7 8 2 2 8 1 6 

The table is based on information from the Gene database and selected references are from the PubMed database as 
described more in detail in Supplementary Tables 4–6. 
Abbreviations: 

1
ER, endoplasmic reticulum; 

2
N, number of proteins. 
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Supplementary Table 4. Proteins with significantly altered level in low-risk patients. 

Supplementary Table 5. Proteins with significantly higher phosphorylation in elderly low-risk patients. 

Supplementary Table 6. Proteins with significantly lower phosphorylation in elderly low-risk patients. 

Supplementary Table 7. Proteins with significantly different expression and phosphorylation levels in high-risk and 
low-risk patients. 

 

Supplementary Table 8. Differentially regulated CDK1/2 
phosphorylation sites identified by immunoprecipitation and 
LC-MS/MS analysis. 

Protein Phosphosites FC high-risk/low-risk (LIMMA) 

CDK1 T14 2.82 

CDK2 T14 2.82 

CDK1 T14 Y15 2.32 

CDK2 T14 Y15 2.30 

Phosphosites CDK1/2 T14 and Y15 were enriched using anti-pTyr-
antibody immunoprecipitation and analyzed by LC-MS/MS. Significant 
phosphorylation differences between the high-risk and the low-risk 
groups were calculated with LIMMA statistics. The table below shows 
differentially regulated tyrosine-phosphorylated peptides with  
Q-values <0.05. 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1–5. 

 

Supplementary File 1. Proteomic quantification of 18 low-risk patients. 

Supplementary File 2. Phosphoproteomic quantification of 18 low-risk patients. 

Supplementary File 3. Proteomic quantification of 15 high-risk and 18 low-risk patients. 

Supplementary File 4. Phosphoproteomic quantification of 15 high-risk and 18 low-risk patients. 

Supplementary File 5. pTyr_Phosphoproteomic quantification of 5 high-risk and 6 low-risk patients. 
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Supplementary Data Analysis 
 

 

Supplementary Analysis 

 

The proliferative in vitro responsiveness of primary 

human AML cells derived from 63 consecutive patients. 

 

The proliferative responsiveness was tested by a [
3
H]-

thymidine incorporation assay prepared in serum-free 

medium as described in a previous article [1]. All 

growth factors were tested at a final concentration of 20 

ng/ml. During in vitro culture AML cells undergo 

spontaneous apoptosis. We tested [
3
H]-thymidine by 

adding [
3
H]-thymidine after six days of culture, and the 

cultures were harvested 24 hours later. Thus, the 

proliferative responsiveness reflects the characteristics 

for a subset of cells within the hierarchically organized 

AML cell population that is capable of surviving for at 

least six days and still be able to show detectable 

proliferation.  

 

The results are presented as number of patients with 

detectable proliferation, this was defined as a [
3
H]-

thymidine incorporation corresponding to >1000 cpm. 

Patient characteristics are described in the first table 
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Supplementary Analysis Table 1. Characteristics of 63 consecutive patients used in the study of possible associations 
between age and differentiation. 

Younger patients (<65 years of age, n=38) Elderly patients (>65 years of age, n=25) 

Male/female 20/18 Karyotype Male/female 15/10 Karyotype 

  Favorable           2   Favorable           1 

FAB classification  Adverse              4 FAB classification  Adverse              4 

 M0           3  Intermediate      10  M0           5  Intermediate       2 

 M1           6  Normal              18  M1           5  Normal               3 

 M2          10  Not tested           4  M2           7  Not tested          15 

 M4          11   M4           5  

 M5           7 FLT3 abnormalities  M5           3 FLT3 abnormalities 

 M6           1  ITD                   11  M6           0  ITD                    8 

  D835                  2   D835                  2 

  WT                   18   WT                    12 

  Not tested          7   Not tested           3 

     

CD34 expression    18   CD34 expression    11   

    

de novo    31  de novo    16  

    

Predisposition NPM1 abnormalities Predisposition NPM1 abnormalities 

 MDS                     1  Insertion               8  MDS                     6  Insertion              2 

 MPN                     1  WT                      14  MPN                     1  WT                     20 

 Chemotherapy      5  Not tested            16  Chemotherapy      2  Not tested            3 

COMMENTS: We investigated 63 consecutive patients with high peripheral blood blast counts (REK 1759/2015, REK 
305/2017). Enriched AML cells could thereby be prepared by density gradient separation alone (see Material and methods in 
the main text). CD34 positivity was defined as at least 20% positive cells in flow cytometric analysis compared with the 
negative isotype control. The data above are presented as the number of patients. Red font indicates statistical difference 
between the two age groups.  
In contrast to our main patient cohort that included only high- and low-risk patients, this second cohort included consecutive 
patients (and thereby unselected) patients and also patients with intermediate prognosis, i.e. normal or intermediate 
karyotype that constitutes approximately 60% of all patients in our biobank. 
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Supplementary Analysis Table 2. Proliferative responsiveness of the AML cells from 63 patients. 

Younger patients (<65 years of age, n=38) Elderly patients (>65 years of age, n=25) 

Culture condition Number of responders Culture condition Number of responders 

Medium alone 15 Medium alone 7 

IL1β 27 IL1β 16 

IL3 28 IL3 20 

SCF 27 SCF 19 

FLT3-ligand 24 FLT3-ligand 15 

GM-CSF 27 GM-CSF 20 

G-CSF 25 G-CSF 20 

M-CSF 17 M-CSF 12 

Thrombopoietin 15 Thrombopoietin 12 

Patients without morphological signs of monocytic 

differentiation (n=36) 

Patients with morphological signs of monocytic 

differentiation (FAB-M4/M5, n=27) 

Culture condition Number of responders Culture condition Number of responders 

Medium alone 14 Medium alone 8 

IL1β 24 IL1β 16 

IL3 30 IL3 18 

SCF 29 SCF 17 

FLT3-ligand 27 FLT3-ligand 12 

GM-CSF 29 GM-CSF 18 

G-CSF 29 G-CSF 16 

M-CSF 16 M-CSF 13 

Thrombopoietin 16 Thrombopoietin 11 

COMMENTS: In this analysis we compared morphology, CD34 expression and proliferative responsiveness in the presence of 
several growth factors for a group of consecutive patients. It can be seen from Supplementary Table 1 and Table 1 that 
morphological signs of monocytic differentiation (i.e. FAB M4/M5) were more common among low-risk (i.e. relatively young) 
than among high-risk patients (Fisher’s exact test, P= 0.039). We therefore investigated whether there were any significant 
associations between age (i.e. comparing patients above and below 65 years of age) and differentiation in an additional 
cohort that included 63 consecutive/unselected AML patients. None of the patients from the high-/low-risk groups (see 
Supplementary Table 1) was included among these 63 patients. Morphological signs of monocytic differentiation were 
significantly more frequent among younger patients also in this cohort (Fisher’s exact test, P= 0.0334). However, patient age 
showed no significant associations with expression of the CD34 stem cell marker, molecular differentiation markers (i.e. 
CD13, CD14, CD15, CD33; data not shown) or the proliferative responsiveness to hematopoietic growth factors with (G-CSF, 
M-CSF, thrombopoietin) or without (IL1β, IL3, SCF, FLT3-ligand) lineage associations. The proliferative responsiveness of 
patients with and without morphological signs of differentiation did not differ significantly either. 
CONCLUSION: Although we observed a difference in the expression of mitosis/proliferation regulatory proteins when 
comparing high-risk and low-risk AML patients, we could not find any evidence for a general association between 
differentiation status and proliferative capacity of primary human AML cells when investigating this consecutive group of 
patients. 
Abbreviations: FAB, French-American-British; G/GM/M-CSF, granulocyte/granulocyte-monocyte/monocyte colony-
stimulating factor; IL, interleukin; ITD, internal tandem duplication; MDS, myelodysplastic syndrome; MPN, myeloproliferative 
neoplasia; SCF, stem cell factor: WT, wild –type. 


