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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is among the most 

lethal malignancies, with high morbidity and mortality 

worldwide. HCC is the second leading cause of cancer-

related deaths globally, with only a 5-year survival rate 

of ~10% and resulting in 700,000 deaths annually [1]. 

The main risk factors for HCC are hepatitis B or C 

infection, alcoholism, diabetes, autoimmune hepatitis, 

and possibly several metabolic diseases. In developed 

countries, there has been an increase in HCC incidence, 

partly attributed to obesity and diabetes [2, 3]. 
 

Treatment strategies for HCC, including radiofrequency 

ablation, liver transplantation, or resection, might be 

curative only when diagnosed early. However, most 

patients are relatively asymptomatic during early stages, 

and due to the rapid progression of the disease, 80% of 

HCC patients are diagnosed at advanced stages. Less 

than 30% of patients with HCC can be managed by 

curative therapy, and sorafenib, a multi-target kinase 

inhibitor, has been approved in a number of randomized 

controlled trials (RCTs) for first-line treatment in 

patients with advanced liver cancer to improve overall 

survival [4, 5]. Sorafenib can block tumor cell 

proliferation by promoting apoptosis and suppressing 

anti-apoptotic and metastatic activity; however, the 

response rate to sorafenib is low, and many patients 

develop drug resistance and serious adverse side effects. 

Initiation and development of sorafenib resistance (SR) 
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1) were identified as key genes related to SR in HCC and as independent prognostic factors significantly 
associated with clinical cancer stages and pathological tumor grades of liver cancer. These genes can affect the 
cytotoxicity of sorafenib to regulate the proliferation and invasion of Huh7 cells in vitro. Additionally, immune-
cell infiltration according to tumor immune dysfunction and exclusion, a biomarker integrating the mechanisms 
of dysfunction and exclusion of T cells showed good predictive power for SR, with an AUC of 0.869. These 
findings suggest that immunotherapy may be a potential strategy for treating sorafenib-resistant HCC. 
Furthermore, the results enhance the understanding of the underlying molecular mechanisms of SR in HCC and 
will facilitate the development of precision therapy for patients with liver cancer. 

mailto:qning@vip.sina.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 3970 AGING 

is considered a multi-step process, although the precise 

molecular events that underlie resistance remain only 

partially understood. This highlights the need for 

continued development of biomarkers allowing 

determination of which patients are more likely to 

benefit from sorafenib and a better understanding of the 

molecular mechanisms involved. 

 

Novel treatments are under intense exploration. 

Combination with traditional treatment or other drugs 

has potential clinical utility [6–8]. Histone deacetylase is 

one of the potential therapeutic targets [9]. Panostatin 

combined with sorafenib resulted in decreased tumor 

volume and increased survival in a murine xenograft 

model [10]. Tegafur/uracil can be used in combination 

with sorafenib in patients with advanced liver cancer, 

which can improve the efficacy of sorafenib while 

showing safety [11]. Recently, immunotherapy based on 

immune checkpoint inhibitors (ICIs) has delivered 

unprecedented success. ICIs targeting the programed cell 

death protein 1/programmed death ligand-1 (PD-L1) 

pathway demonstrated clinical activity in HCC, whereas 

many other ICIs are in clinical development [12]. The 

role of the tumor microenvironment (TME) has received 

increased attention across a number of cancers in recent 

years; however, to date, there remains a paucity of 

discussion concerning cellular characterization of 

immune infiltrates and relationship between TME and 

SR in HCC patients treated with sorafenib. 

 

Here, we conducted a comprehensive and integrative 

analysis, as well as experimental validation, to identify 

biomarkers predicting SR in HCC and factors 

independently associated with prognosis. Two 

microarray datasets from the Gene Expression Omnibus 

(GEO) were analyzed using a series of bioinformatics 

tools and another independent dataset from The Cancer 

Genome Atlas (TCGA) as the validation series. This 

study provides predictive biomarkers and potential 

therapeutic targets for SR in HCC patients and might 

contribute to the development of precision therapy for 

HCC. 

 

RESULTS 
 

Identification of DEGs 

 

The GSE109211 dataset contained 140 samples from 

HCC patients, of whom 67 were treated with sorafenib 

and 73 with Plac. The sorafenib group was divided into 

“responder” (n = 21) and “non-responder” (n = 46) 

groups in terms of RFS. Compared with the responder 

group, sorafenib non-responders were defined as patients 

in whom sorafenib had no effect (those not reaching the 

median RFS) [13]. To screen genes associated with 

resistance or response to sorafenib (|log2FoldChange| ≥ 1 

and false discovery rate < 0.05), 3,714 DEGs between 

responders and non-responders were identified 

according to the selection criteria, whereas 567 DEGs 

were identified between untreated parental Huh7 cells (n 

= 3) and SR pool cells (n = 3) in GSE94550. The top 

200 DEGs from GSE109211 and GSE94550 are shown 

in the heatmap (Figure 1A, 1B), with DEGs visualized 

by volcano plot (Figure 1C, 1D). The overlap of the two 

datasets included 85 genes (Figure 1E). 

 

Functional enrichment analysis of the DEGs 

 

To explore the potential function(s) of the DEGs, GO 

and KEGG enrichment analyses were performed. We 

detected enrichment in several biological process GO 

terms, such as extracellular structure organization, 

posttranslational protein modification, and negative 

regulation of proteolysis (Figure 2A). Regarding 

molecular function, enzyme inhibitor activity was the 

most significant (Figure 2B). Furthermore, several 

cellular components GO terms, such collagen-containing 

extracellular matrix, blood microparticle, and 

endoplasmic reticulum lumen, were enriched (Figure 

2C). KEGG pathway analysis revealed that complement 

and coagulation cascades, cholesterol metabolism, and 

peroxisomes were mostly associated with the DEGs 

(Figure 2D). To further explore the relationship between 

these terms, genes were layered into a tree based on 

Kappa-statistical similarities among their gene members, 

with terms having a similarity >0.3 connected by edges 

(Figure 2E). 

 

Screening of hub genes 

 

A PPI network for the DEGs was constructed by 

STRING (Figure 3A), with interactions with a combined 

score >0.4 considered statistically significant. Node pairs 

were uploaded to Cytoscape and analyzed using 

MCODE, resulting in 23 hub genes selected from the 

network according to the following criteria: MCODE 

score, >5; degree, >2; node score, >0.2; node density, 

>0.1; and k-score, 2 (Figure 3B). 

 

CeRNA network 

 

Among the 3,714 DEGs identified between “responder” 

and “non-responder” groups in GSE109211, 43 

DElncRNAs and 2,875 DEmRNAs were identified and 

annotated. TargetScan, MiRDB, and miRanda were 

used to predict potential miRNA targets for the 

DEmRNAs, resulting in formation of 293 of 2,875 

DEmRNAs and 29 miRNAs into 370 miRNA–mRNA 

pairs (Figure 4A). We then used miRcode to identify 
lncRNA–mRNA pairs, resulting in formation of 27 of 

43 DElncRNAs and 207 miRNAs into 1,612 lncRNA–

miRNA pairs. We ultimately selected 10 miRNAs 
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Figure 1. Identification of DEGs in sorafenib-treated HCC. To screen the genes associated with resistance or response of sorafenib 

(|log2FoldChange| ≥1 and FDR <0.05), 3714 DEGs between responder and non-responder were identified following the selection criteria, 
while 567 DEGs between untreated parental Huh7 cells (n=3) and sorafenib-resistant pool cells (n=3) in GSE94550. The DEGs were visualized 
with Heatmaps and volcano plots. (A) Heatmap plot of the top 200 DEGs of GSE109211. (B) Heatmap plot of the top 200 DEGs of GSE94550. 
(C, D) Volcano plot of the DEGs of GSE109211 and GSE94550, in which red stands for upregulations, green stands for downregulations, and 
black stands for normal expression. Each point represents a gene. (E) The overlap unified among the 2 datasets contained 85 DEGs was 
shown by Venn diagram. DEGs, differentially expressed genes. 
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Figure 2. GO and KEGG pathway analysis of 85 overlap DEGs. GO and KEGG analysis of 85 overlap DEGs. (A) Biological process GO 
terms for DEGs. (B) Molecular function GO terms for DEGs. (C) Cellular component GO terms for DEGs. (D) KEGG analysis for DEGs. (E) 
Enriched Ontology Clusters of statistically enriched terms. Each term is represented by a circle node, where its size is proportional to the 
number of input genes that fall into that term, and its color represents its cluster identity. The y-axis represents the pathways and the x-axis 
represents enriched gene numbers, and the color means adjust P-value. The netplot of KEGG pathways means the enrichment of genes in 
different pathways. And the number adjacent to nodes stands for gene ID. GO, Gene Ontology; BP, biological process; MF, molecular 
function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes. 
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Figure 3. PPI network and the most significant module of DEGs. (A) The PPI network of DEGs was constructed based on database 
STRING and Cytoscape software. (B) The most significant module was obtained from the PPI network by MCODE with criteria as follows: 
MCODE scores > 5, degree cut-off = 2, node score cut-off= 0.2, node density cut-off=0.1, Max depth=100 and k-score = 2. PPI, protein-protein 
interaction; DEGs, differentially expressed genes; MCODE, Molecular Complex Detection (version 1.6), an APP of Cytoscape for clustering a 
given network based on the topology to find densely connected regions. 
 

 
 

Figure 4. ceRNA network of GSE109211. Among the 3714, DEGs between the responder and non-responder in GSE109211, 43 

DElncRNAs and 2875 DEmRNAs were identified. miRDB, miRanda, and TargetScan were used to predict the potential miRNA target by 
DEmRNAs. Only the miRNA-mRNA pairs that exist in all three databases were enrolled in the ceRNA network. The miRcode was applied to 
predict the potential miRNA target by DElncRNAs. As a result, a total of 26 lncRNAs, 194 mRNAs, and 10 miRNAs were enrolled in the ceRNA 
network. (A) Venn diagram of miRNA-mRNA pairs. (B) Venn diagram of target miRNAs. (C) CeRNA network of GSE109211. The yellow, red, 
and blue represent lncRNA, miRNA, and mRNA, respectively. Pink edges indicate lncRNA-miRNA-mRNA interactions. DEGs, differentially 
expressed genes; LncRNA, long non-coding RNA; miRNA, micro RNA; mRNA, messenger RNA; CeRNA, competing endogenous RNA. 
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(Figure 4B) and finalized the ceRNA network with a 

total of 26 lncRNAs, 194 mRNAs, and 10 miRNAs 

(Figure 4C). 

 

Construction and validation of the lasso regression 

model 

 

We divided 67 sorafenib-treated samples from 

GSE109211 into responder (n = 21) and non-responder 

(n = 46) sets according to RFS. To further screen genes 

associated with SR among the hub genes (mRNA) and 

the key lncRNAs, we constructed a risk score model of 

SR prediction using Lasso regression, with the penalty 

regularization parameter λ determined along with an n-

fold value equal to 10 (Figure 5A, 5B). Fourteen genes 

were identified according to the minimum λ value, 

including seven mRNAs [complement factor B (CFB), 

collagen type I alpha 2 chain, cystatin C, G protein-
coupled estrogen receptor 1, insulin-like growth factor 2 

receptor (IGF2R), profilin 1 pseudogene 2, paraoxonase 

1 (PON1)] and seven lncRNAs (BMS1P1, C2orf27A, 
CYP4F30P, DEFB122, OR2A20P, ZNF826P, and 

ZSCAN12P1). A Wilcoxon signed rank test performed to 

compare sorafenib non-responders with responders 

 

 
 

Figure 5. Lasso regression establishment and validation in GSE109211. (A) LASSO coefficient profiles of the genes associated with 

the sorafenib resistance in HCC patients. (B) The mean-squared error was plotted versus log (lambda). The two dashed lines indicate two 
special lambda values, one is lambda.min and the other is lambda.1se, and the lambda between the two values is considered appropriate. 
We finally chose lambda.min, because it’s the value of Lambda that gives a minimum mean cross-validated error. (C) Wilcoxon Signed Rank 
Test was performed to compare the sorafenib non-responder and responder. (D) ROC curves for the performance of the Lasso regression 
model in predicting sorafenib resistance in HCC patients. (E) Heatmap of differentially expressed genes that were enrolled in the Lasso 
regression model. LASSO, Least absolute shrinkage and selection operator; HCC, Hepatocellular Carcinoma; ROC, Receiver Operating 
Characteristic; tpr, true-positive rates; fpr, false-positive rates. 
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revealed a significant difference in polygenic risk scores 

(P = 6.9e−16) (Figure 5C), with the robustness and 

accuracy of this model indicated according to an AUC of 

0.993 (Figure 5D). A heatmap showing the gene 

expression of selected genes from GSE109211 is shown 

in Figure 5E. 

 

TCGA validation of the selected genes 

 

To investigate candidate predictive biomarkers, we 

analyzed the selected genes against TCGA-LIHC  

data. Univariate Cox regression performed to screen 

prognostic factors based on Lasso regression 

(Supplementary Table 1) revealed four genes selected 

according to their correlation with overall survival (3 

mRNAs and 1 lncRNA). To estimate their potential 

prognostic value and classification effect in HCC 

patients, their expression and subsequent protein levels 

were comprehensively evaluated using UALCAN and 

the Human Protein Atlas. 

 

As shown in Figure 6, expression of C2orf27A and 

IGF2R in 20 HCC samples relative to normal tissues 

was significantly higher according to TCGA datasets 

(Figure 6A, 6B), whereas CFB and PON1 were 

significantly downregulated (Figure 6C, 6D). We  

then assessed protein levels associated with the three 

mRNAs in HCC cells using the Human Protein  

Atlas, finding results similar to those for mRNA levels 

(Figure 7), with elevated IGF2R levels in HCC tissues 

relative to normal tissues (Figure 7A) and lower CFB 

and PON1 levels observed in HCC tissues relative to 

normal tissues (Figure 7B, 7C). These results indicated 

that C2orf27A and IGF2R upregulated in HCC  

patients, whereas CFB and PON1 were significantly 

downregulated. 

 

We then analyzed relationships between gene 

expression, cancer stage, and tumor grade. As shown in 

Figure 6, expression of the four candidate genes was 

notably correlated with cancer stage and tumor grade, 

with expression of C2orf27A and IGF2R higher in 

patients with advanced cancer or higher tumor grade, 

whereas CFB and PON1 expression was lower. The 

highest expression of C2orf27A and IGF2R was found 

at stage 3 (Figure 6E, 6F), and the lowest expression of 

CFB and PON1 was observed at stages 3 and 4 (Figure 

6G, 6H), although the reason for higher expression at 

stage 3 relative to stage 4 might be the small sample 

size (there were only 6 patients with stage 4 HCC). 

Similarly, the highest expression of C2orf27A and 

IGF2R was found at tumor grade 3 (Figure 6I, 6J), and 

the lowest expression of CFB and PON1 was found at 
grade 4 (Figure 6K, 6L). These results identified an 

association between the expression of four candidate 

genes with clinicopathological parameters in HCC 

patients, suggesting their possible involvement in HCC 

carcinogenesis or progression. 

 

Prognostic value of the selected genes in liver cancer 

 

We assessed the prognostic value of the four genes in 

liver cancer using Kaplan–Meier analysis. Figure 8 

shows the Kaplan–Meier curve and the results of log-

rank analyses, revealing that elevated expression of 

C2orf27A and IGF2R negatively impacted the 5-year 

survival rate [hazard ration (HR) =1.68 and 1.48, 95% 

confidence interval (CI): 1.16–2.43 and 1.03–2.11; p = 

0.0056 and p = 0.031, respectively] and 3-year survival 

rate (HR = 1.86 and 1.75, 95% CI: 1.26–2.75 and 1.19–

2.58; and p = 0.0017 and p = 0.041, respectively). 

Similarly, elevated expression of CFB and PON1 

showed positive effects on 5-year survival (HR = 0.55 

and 0.4, 95% CI: 0.38–0.79 and 0.28–0.58; p = 0.00087 

and p = 3.6e−07, respectively) (Figure 8A, 8B, 8E, 8F) 

and 3-year survival rates (HR = 0.47 and 0.36, 95% CI: 

0.32–0.7 and 0.24–0.53; p = 0.00012 and p = 9.4e−08, 

respectively) (Figure 8C, 8D, 8G, 8H). These results 

indicated that the expression of C2orf27A, IGF2R, CFB, 

and PON1 were significantly associated with liver 

cancer prognosis. 

 

Effect of selected genes on the cytotoxicity of sorafenib 

 

To determine whether selected genes were involved in 

tumorigenesis and development of HCC under sorafenib 

treatment, we first detected gene expression in liver cell 

line LO2 and HCC cell line Huh7. As shown in Figure 

9A, the expression of C2orf27A and IGF2R was 

significantly upregulated in Huh7 cells compared to 

LO2, and the lower expression of CFB and PON1 was 

observed in Huh7 cells. We then detected the effects of 

sorafenib on Huh7 cell proliferation and invasion after 

RNA interference. Four selected genes were knocked 

down by transfection with siRNA or lncRNA smart 

silencer, which were shown in Supplementary Figure 1. 

The treated Huh7 cells were exposed to sorafenib, and 

cell proliferation and invasion were detected 48 hours 

later. As a result, cell proliferation and invasion 

increased significantly after RNA interference of CFB 

and PON1, while significant mitigation was observed 

after knockdown of C2orf27A and IGF2R (Figure 9B, 

9C), suggesting their possible regulation on the 

cytotoxicity of sorafenib. 

 

TME analysis 

 

We then evaluated the cellular characterization of 

immune infiltrates in sorafenib-treated patients with 
HCC. Using an ssGSEA strategy, we estimated 28 

immune cell types in the TME, including major types 

related to adaptive and innate immunity (Figure 10A). 
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To investigate differences in immunophenotypes 

associated with clinical characteristics of the tumors, 

variation analysis of the normalized enrichment scores 

was used to identify SR-associated cell types. As shown 

in Figure 10A, most tumor-infiltrating lymphocytes 

(21/28) were associated with SR. 

Among the 67 sorafenib-treated patients, the non-

responder group displayed increased immune cell 

infiltration, including antitumor immune cells (ActCD4, 

ActCD8, ActDC, TcmCD4, TcmCD8, TemCD4, 

TemCD8, NK cells, NK T cells, CD56brightNK cells, and 

Th1 and Th17 cells) and immunosuppressive cells 

 

 
 

Figure 6. Relationship between the expression of candidate genes and clinicopathological parameters of HCC patients in 
TCGA (UALCAN). (A–D) Transcriptional expression of candidate genes in HCC tissues and adjacent normal liver tissues. (E–H) Transcriptional 

expression of candidate genes in different cancer stages of HCC patients. (I–L) Transcriptional expression of candidate genes in different 
tumor grades of HCC patients. HCC, Hepatocellular Carcinoma; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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involved in tumor survival (CD56dimNK cells, TAMs, 

MDSCs, imDCs, neutrophils, pDCs, Tregs, and Th2 

cells). Pearson's correlation analysis revealed a 

significantly positive association between these two 

types of immune cells within the TME (Figure 10C). 

These results suggested that antitumor inflammation 

might promote the differentiation and infiltration of 

immunosuppressive cells. 

 

Biomarkers predictive of the immunotherapeutic effects 

of ICIs have been extensively studied and discussed, 

with their predictive efficacy thought to depend on 

tumor antigenicity and antigen-presentation efficiency 

as measured by APS, IIS, TIS, CD8, IFNγ, IFNγ.GS, 

PDL1, TIDE [14], and APS7 [15]. To explore the 

potential of immunotherapy in sorafenib-treated 

patients, these variables were calculated and normalized 

with GSVA using GSE109211. 

 

IIS results were visualized using a heatmap (Figure 

10B), which suggested that most biomarkers predicted a 

higher potential for ICI immunotherapy in the non-

responder group. Additionally, to assess biomarker 

performance in predicting SR, a ROC curve was used to 

measure the classification effect at various thresholds. 

AUCs for these markers were calculated (Figure 10D), 

with the ROC curves for AUCs >0.5 displayed (Figure 

10E). TIDE, a computational framework developed to 

evaluate the potential of tumor immune escape 

according to gene-expression profiles in cancer samples, 

outperformed other biomarkers at predicting SR (AUC = 

0.869). 

 

 
 

Figure 7. Protein expression of candidate genes in HCC tissues and normal liver tissues (Human Protein Atlas). (A–C) 

Representative immunohistochemistry images of IGF2R, CFB, PON1 in HCC tissues, and normal liver tissues, respectively. 
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Correlation between selected genes and infiltrating 

immune cells 

 

TIMER was used to investigate correlations between 

selected genes and immune infiltration in HCC, which 

includes samples from TCGA (Figure 11). The 

expression of CFB was associated with macrophages, 

whereas expressions of C2orf27A, IGF2R, and PON1 

were associated with many immune cells, including 

neutrophils, macrophages, T cells, B cells, and DCs. 

These findings indicated that their functions are related 

to immune regulation in HCC. 

 

DISCUSSION 
 

In early HCC, surgical resection and local ablation are 

considered the main treatment modalities, whereas 

sorafenib is the first-line treatment for patients with 

advanced unresectable HCC [16]. By inhibiting tumor 

cell proliferation and angiogenesis, overall survival has 

been notably lengthened with sorafenib treatment relative 

to placebo in RCTs [4, 5]. However, it is observed that 

few patients respond to sorafenib, and its use is 

associated with severe adverse side effects and drug 

resistance. Therefore, biomarkers are urgently needed to 

determine which patients are more likely to benefit from 

sorafenib. Here, we performed a comprehensive gene 

expression analysis in both SR HCC patients and in vitro. 

 

Due to the genetic heterogeneity of HCC, the acquisition 

of therapeutic resistance to sorafenib is a serious clinical 

problem. Recently, microvascular invasion (MVI), high 

concentration of alpha-fetoprotein (AFP; >200 ng/mL), 

and a high neutrophil-to-lymphocyte ratio were reported 

as poor prognostic factors for sorafenib-treated HCC [4, 

5, 17]. Additionally, previous studies have shown that 

overexpression of epidermal growth factor receptor 

(EGFR) or its ligand in HCC cells might result in 

continued SR through activation of EGFR downstream 

signaling. Similarly, these downstream signaling 

molecules, including Ras/Raf/mitogen-activated protein 

kinase kinase/extracellular signal-regulated kinase, 

reportedly affect the sensitivity of HCC to sorafenib 

[18]. Tasnuva [19] reported a regulatory role of miR-7  

in the growth and migration of SR HCC cells by  

direct inhibition of expression of the tyrosine-protein 

kinase receptor TYRO3 and its downstream signaling 

network. Furthermore, a recent study reported several 

 

 
 

Figure 8. Prognostic value of selected genes in liver cancer patients (Kaplan-Meier Plotter). (A, B, E, F) Kaplan–Meier survival 

curves comparing the samples with high expression of the four selected genes with those with low expression in liver cancer conducted 
within 5 years by using Kaplan–Meier plotter. (C, D, G, H) Kaplan–Meier survival curves conducted comparing the samples with high 
expression of the four selected genes with those with low expression in liver cancer conducted within 3 years by using Kaplan–Meier plotter. 
HR, hazard ratio. 
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mechanisms potentially involved in SR, including 

interaction between the phosphoinositde-3 kinase/Akt 

and Janus kinase–STAT pathways, the vascular 

endothelial growth factor (VEGF)-A/VEGF receptor-2 

signaling network, autophagy, and the epithelial-to-

mesenchymal transition [20–24]. However, their 

predictive power and molecular mechanisms remain 

inconsistent and contradictory. In this study, using a 

combination of liver tissue and cell lines, our analysis 

eliminated individual patient differences and other 

factors, such as histories of alcohol and tobacco use, 

virus infection, family histories, and other treatments, 

which might have influenced the results. A total of 85 

DEGs were screened from the whole genome, and GO 

analysis revealed that the DEGs were enriched in 

enzyme inhibitor activity, which is considered to be the 

main role of sorafenib. Furthermore, sorafenib has 

recently been reported to downregulate membrane-

bound complement regulatory protein to potentiate the 

antitumor effects of rituximab and ofatumumab in 

chronic lymphocytic leukaemia [25]. KEGG analysis in 

this study revealed DEGs are primarily related to 

complement and coagulation cascades. These findings 

suggested that the complement pathway may be 

involved in SR-specific HCC. 

 

We constructed PPI and ceRNA networks to further 

screen hub genes (mRNA) and lncRNAs. By combining 

 

 
 

Figure 9. Effect of selected genes on the cytotoxicity of sorafenib. Experimental verification of the relationship between the selected 
genes and sorafenib resistance in vitro. (A) Transcriptional expression of four selected genes in Huh7 cells compared to LO2. With 
transfection with siRNA or lncRNA smart silencer, the treated Huh7 cells were exposed to sorafenib, and cell proliferation and invasion were 
detected 48 hours later. (B, C) The effects of sorafenib on Huh7 proliferation and invasion after RNA interference. **p<0.01, ****p<0.0001. 
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Lasso regression and univariate Cox regression analyses, 

four key genes related to SR were identified and 

validated against TCGA data, revealing one lncRNA and 

three mRNAs exhibiting significantly higher or lower 

expression in HCC tissues relative to normal tissues. 

Among the four genes, C2orf27A and IGF2R were found 

to be positively correlated and CFB and PON1 were 

negatively correlated with the stage and tumor grade of 

 

 
 

Figure 10. Correlation of sorafenib resistance and immune cell infiltration heterogeneity. Single-sample gene set enrichment 
analysis identifying the relative infiltration of immune cell populations for 67 HCC samples treated with sorafenib in GSE109211. The relative 
infiltration of each cell type is normalized into a z-score. Biomarkers can predict immunotherapy response were calculated and normalized 
with GSVA, including APS, IIS, TIS, CD8, IFNG, IFNG.GS, PDL1, TIDE, and APS7. (A, B) Heatmap of immune cell z-scores and immune infiltration 
scores. P values describe differences between the responder and non-responder. (C) Pearson's correlation between infiltration of cell types 
executing anti-tumor reactivity (ActCD4, ActCD8, ActDC, TcmCD4, TcmCD8, TemCD4, TemCD8, NKT, NK, CD56brightNK, Th1 and Th17 cells) and 
cell types delivering pro-tumor suppression (CD56dimNK, imDC, TAM, MDSC, Neutrophil, pDC, Treg, and Th2 cells). The shaded area 
represents 95% confidence interval. (D) AUC of immune infiltration scores. (E) ROC curves for the performance of immune infiltration scores 
in predicting sorafenib resistance in HCC patients. Only biomarkers with AUC greater than 0.5 were displayed. HCC, Hepatocellular 
Carcinoma; GSVA, Gene Set Variation Analysis; APS, antigen processing and presenting machinery (APM) score; IIS, immune infiltration score; 
TIS, T cell infiltration score; TIDE, Tumor Immune Dysfunction, and Exclusion; AUC, Area under the curve; ROC, Receiver Operating 
Characteristic. ns, no significance, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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liver cancer. Kaplan–Meier analysis subsequently 

showed that C2orf27A and IGF2R were negatively 

correlated with the survival time of liver cancer patients, 

whereas CFB and PON1 were associated with favorable 

survival times. Moreover, the role of these genes in SR 

was also verified in vitro. Knockdown of PON1 and 

CFB significantly attenuated the cytotoxicity of 

sorafenib in Huh7 cells, while RNA interference of 

IGF2R and C2orf27A showed the opposite effect. 

 

Among the four genes, C2orf27A has not been 

previously reported in HCC, whereas IGF2R is 

reportedly related to HCC progression, particularly in 

regard to transarterial chemoembolisation (TACE) 

treatment prior to surgery, with TACE-pretreated HCC 

patients showing significantly higher IGF2R mRNA 

expression in tumor tissues [26]. Additionally, the 

inactivation of M6P/IGF2R occurred in the early stage 

of hepatocarcinogenesis, which supports the role of M6P 
/ IGF2R as a tumor suppressor gene [27]. CFB is 

associated with HBV related HCC [28] and is considered 

as a potential predictor of response to PegIFNα therapy 

in patients with chronic hepatitis B [29]. PON1 is 

considered as a biomarker for the clinical diagnosis of 

early HCC and able to distinguish early HCC from liver 

cirrhosis patients with low AFP levels [30]. 

Furthermore, PON1 is potentially related to the MVI of 

liver cancer [31, 32]; therefore, given the correlation 

between MVI and sorafenib efficacy [33], PON1 might 

play a crucial role in the development of SR by 

influencing MVI, which agrees with the findings of the 

present study. 

 

 
 

Figure 11. Association of selected genes' expression with immune infiltration cells. The correlation between selected genes and 

immune infiltration in HCC was evaluated by using TIMER (https://cistrome.shinyapps.io/timer/) (A) C2orf27a. (B) IGF2R. (C) CFB. (D) PON1. 
p<0.05 denotes significance. Each dot represents a sample in the TCGA-LIHC dataset. 

https://cistrome.shinyapps.io/timer/
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We then investigated the relationship between SR and the 

TME. Immune cells in the TME can exert both pro- and 

antitumor effects, with previous studies describing 

complex interactions between cancer cells and the TME 

that are implicated in HCC progression [34]. Tumor-

associated neutrophils reportedly recruit macrophages 

and Tregs to promote the growth and development of 

HCC cells and their resistance to sorafenib [35]. In the 

present study, we found significant differences in the 

expression and composition of immune cells between 

responder and non-responder groups in sorafenib-treated 

HCC patients. Moreover, compared with the responder 

group, both antitumor cells and immune cells involved in 

tumor survival showed higher expression levels in the 

non-responder group, suggesting the potential efficacy of 

immunotherapy. Similar results were found for the 

predictive efficacy of biomarkers for ICI response, 

reinforcing the potential effectiveness of immunotherapy 

for treating sorafenib-resistant HCC. Interestingly, the 

expression of PD-L1 was lower in non-responders, which 

might contribute to poor efficacy of PD-L1 inhibitors. 

However, without validation, caution must be applied, as 

these findings might be attributed to the complexity of 

resistance to cancer immunotherapy. Combination of 

atezolizumab and bevacizumab has resulted in better 

overall survival and progression free survival than 

sorafenib in unresectable HCC [36], which highlighted 

the immunotherapy based on PD-L1. Furthermore, some 

predictive biomarkers of ICI response showed good 

predictive power for SR, especially TIDE, a biomarker 

developed to evaluate the potential of tumor immune 

escape (ROC = 0.869). This suggests that immune escape 

might play a crucial role in SR. 

 

Evaluation of the role of selected genes in regulating the 

immune system with TIMER revealed their association 

with infiltrating immune cells in HCC tissue samples but 

not with tumor purity. The results suggest that CFB is 

mainly expressed in macrophages, whereas C2orf27A, 

IGF2R, and PON1 are widely expressed in many 

immune cells, including neutrophils, macrophages, T 

cells, B cells, and DCs. However, only the partial 

correlation coefficients between C2orf27A and 

macrophages and between IGF2R and neutrophils were 

greater than 0.4. Besides, the correlation analysis 

between the expression of selected genes and immune 

cells based on GSE109211 also revealed a close 

relationship between these genes and the immune system 

(Supplementary Table 2). These findings indicate that 

these genes may partly participate in the regulation of 

immune system in the context of HCC. 

 

This study has some limitations. First, although 
expression of the four identified genes were designated 

as predictive biomarkers for SR and independent 

prognostic factors in HCC patients, the data used in this 

study were from online public databases based on a 

retrospective design [13]. Further prospective research 

with larger sample sizes is needed to validate these 

findings and explore possible clinical applications of 

these genes as a therapeutic strategy for HCC. Second, 

the information from GEO and TCGA might be biased. 

Although the data were validated in cell lines and 

clinical specimens, future investigations should expand 

in vivo validation. Finally, potential diagnostic and 

therapeutic effects have not been assessed for these 

genes, and additional research is needed to explore 

whether they are applicable as diagnostic markers or 

therapeutic targets. 

 

In summary, by combining limma, STRING, MCODE, 

Lasso regression, and other bioinformatics tools, we 

identified and characterized several DEGs potentially 

involved in SR HCC. We identified four genes 

(C2orf27A, IGF2R, CFB, and PON1) as potential 

predictive biomarkers for SR and independent 

prognostic factors in HCC. Moreover, we revealed 

correlations between the genes and clinical cancer stage 

and pathological tumor grade of liver cancer, and their 

regulatory effects on sorafenib cytotoxicity were 

verified in vitro. Furthermore, TIDE showed good 

predictive power for SR, and these results suggest that 

immunotherapy based on ICIs represents an exciting 

prospect for treating sorafenib-resistant HCC. These 

findings may facilitate the development of precision 

therapy for patients with liver cancer, although future 

effectors need to be elucidated to fully reveal their 

contribution to SR in HCC, and validate their usefulness 

as diagnostic markers or therapeutic targets. 

 

MATERIALS AND METHODS 
 

Gene-expression datasets 

 

Gene-expression datasets for HCC patients and a 

Huh7 cell line were obtained from the GEO repository 

(http://www.ncbi.nlm.nih.gov/geo), which is an online 

repository of high-throughput functional genomic data 

submitted by the scientific community. GSE109211 

[13] and GSE94550 were included in this study 

(GPL13938, Illumina HumanHT-12 WG-DASL V4.0 

expression BeadChip; and GPL17586, Affymetrix 

Human Transcriptome Array 2.0 [HTA-2_0]). The 

GSE109211 dataset contained liver cancer tissues 

from 140 patients with liver cancer in the STORM 

clinical trial (NCT00692770) from 2008 to 2010 and 

included 67 patients treated with sorafenib and 73 

receiving a placebo (Plac). GSE94550 contained 

Huh7 HCC cells, including untreated parental cells (n 

= 3), SR pool cells (n = 3), and SR clone A7 cells (n = 

3). A7 is a specific clone derived from the SR pool 

and an in vitro model of HCC SR using the Huh7 cell 

http://www.ncbi.nlm.nih.gov/geo
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line. Additionally, HCC RNA sequencing (RNA-seq) 

and clinical data from TCGA data were obtained from 

the University of California Santa Cruz Xena  

browser (https://xenabrowser.net/datapages/) [37]. All 

transcriptome data are freely available online, and this 

study was performed in compliance with GEO and 

TCGA data access policies. 

 

Cell culture and agents 

 

The human HCC cell lines LO2 and HuH-7 were 

purchased from Cell Bank of Shanghai Institutes for 

Biological Sciences, Chinese Academy of Sciences 

(Shanghai, China) and cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) in a humidified 

atmosphere of 95% air and 5% CO2 at 37° C. 

Sorafenib was obtained from MedChemExpress (New 

Jersey, USA). Cell Counting Kit-8 (CCK8) was 

purchased from Boster Biological Technology co.ltd 

(CA, USA). Transwell cell culture plate and matrigel 

matrix were from Corning (NY, USA). 

 

Identification of differentially expressed genes (DEGs) 

 

We downloaded the SOFT-formatted family file(s) of 

datasets from GEO and applied log2 conversion to 

normalize the gene-expression data. DEGs were screened 

in GSE109211 and GSE94550 using the R package 

“limma” [38], which is an R/Bioconductor software 

package used to analyze gene-expression data and 

especially linear models for microarray data. According 

to the GTF file (from gencode) and the annotation file, 

probes IDs were converted to the corresponding sIDs, and 

genes meeting the cut-off criteria (adjusted P < 0.05; |log2| 

fold change ≥ 1) were considered DEGs. Intersecting 

portions of the two datasets were detected by Venny 2.1 

(https://bioinfogp.cnb.csic.es/tools/venny/index.html). 

 

Enrichment analysis of DEGs 

 

Cluster Profiler [39] is an R package that implements 

methods for statistical analysis and allows visualization 

of biological implications of gene clusters. Metascape 

[40] is a web-based portal designed to provide free gene 

annotation and meta-analysis tools (https://metascape. 

org/gp/index.html). Gene Ontology (GO) enrichment 

[41] enables gene annotation and analysis of their 

respective biological roles. The Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [42] is a database resource 

that promotes an understanding of high-level functions 

and biological systems from large-scale molecular 

datasets generated by high-throughput experimental 
technologies. To elucidate the biological function of 

DEGs, “clusterprofiler” and Metascape were used to 

perform GO and KEGG enrichment analyses. 

Protein–protein interaction (PPI) network construction 

and DEG module analysis 

 

Search Tool for the Retrieval of Interacting Genes 

(STRING; http://string-db.org; v.11.0) [43] is a biological 

database and web resource of known and predicted PPIs. 

Cytoscape (v.3.7.2) [44] is a bioinformatics software 

platform used to visualize complex networks. MCODE 

(v.1.6) [13] is a Cytoscape application used to cluster a 

given network in order to identify core modules with 

dense connections. In this study, STRING and Cytoscape 

were combined to construct and visualize a PPI network, 

and clustered subnetworks of highly interconnected nodes 

from the PPI network were identified using MCODE. The 

screening criteria were as follows: MCODE score, >5; 

degree cut-off, 2; and node score cut-off, 0.2. 

 

Integrative analysis of the competing endogenous 

(ce)RNA network 

 

GPL13938 (GSE109211 platform) was designed to 

obtain whole-genome expression profiling of samples. 

Differentially expressed long noncoding RNAs 

(DElncRNAs) were identified and annotated using  

the annotation file in GTF format (gencode.v33. 

annotation.gtf) from the DEGs of GSE109211. Relevant 

lncRNA-targeted microRNAs (miRNAs) were obtained 

from the miRcode database (http://www.mircode.org/) 

[45]. Furthermore, putative target miRNAs of the 

DEmRNAs were predicted using three databases: 

miRDB (http://www.mirdb.org/) [46], miRanda 

(http://www.microrna.org/) [47], and TargetScan 

(http://www.targetscan.org) [48]. To improve analytical 

reliability, only target miRNAs existing in all four 

databases were included in the lncRNA–miRNA–mRNA 

network. The ceRNA network was visualized using 

Cytoscape. 

 

Establishment and validation of lasso regression 

 

HCC samples trained with sorafenib in GSE109211 were 

divided into responder and non-responder sets according 

to relapse-free survival (RFS). A risk score model of SR 

prediction was constructed using the Lasso method with 

the R package “glmnet” [49], and the penalty 

regularization parameter lambda (λ) was determined 

along with an n-fold value equal to 10. The minimal λ 

value was used to identify key genes. We then used the R 

package “pROC” [50] to evaluate the robustness of the 

risk score model in terms of area under the receiver 

operating characteristic (ROC) curve (AUC). 

 

Biomarker screening using cox risk regression analysis 

 

According to the RNA-seq and clinical data from 

TCGA-Liver Hepatocellular Carcinoma (LIHC), 

https://xenabrowser.net/datapages/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
http://string-db.org/
http://www.mircode.org/
http://www.mirdb.org/
http://www.microrna.org/
http://www.targetscan.org/
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univariate Cox regression was performed using the 

"survival" R package for further variable selection to 

improve the predictive accuracy and interpretability of 

biomarkers. 

 

UALCAN 

 

UALCAN (http://ualcan.path.uab.edu) [51] is an 

interactive data-mining platform used to analyze cancer 

transcriptomes in TCGA. We applied UALCAN to 

analyze the relative expression of candidate genes 

between HCC and normal samples, as well as 

associations between gene expression and related 

clinicopathological parameters, in TCGA. 

 

The human protein atlas 

 

The Human Protein Atlas (https://www.proteinatlas.org/) 

is an open-access interactive database used to explore 

detailed information concerning protein expression  

and localization according to semiquantitative 

immunohistochemical analyses of 17 different cancer 

types [52]. In this study, immunohistochemistry images 

of protein levels between normal liver tissues and  

HCC tissues were compared using the Tissue Atlas 

(https://www.proteinatlas.org/humanproteome/tissue)  

and Pathology Atlas (https://www.proteinatlas.org/ 

humanproteome/pathology). 

 

Kaplan–Meier analysis 

 

The Kaplan–Meier plotter (http://kmplot.com/analysis/) 

allows visualization of Kaplan–Meier survival curves 

based on data from GEO, the European Genome-

Phenome Archive, and TCGA [53, 54]. Tumor patients 

were divided into high-expression and low-expression 

groups based on median values of mRNA expression, 

and the prognostic value of the selected genes in liver 

cancer was evaluated. 

 

Real-time PCR 

 

Total RNA of cultured cells or liver tissue was 

extracted using TRIzol (Invitrogen, NY, USA) 

according to the manufacturer's instruction. Duplicate 

samples were subjected to a quantitative real-time 

polymerase chain reaction (QRT-PCR). Then 1μg of 

total RNA in a 20μl reaction volume was reverse 

transcribed into cDNA using ReverTra Ace® qPCR RT 

Kit (TOYOBO, Japan), and subjected to quantitative 

PCR using SYBR Green Realtime PCR Master Mix 

(TOYOBO, Japan) with β-actin as an internal control. 

All primers are shown in Supplementary Table 3. 
Thermal cycling consisted of 55° C for 30 min, 95° C 

for 15 min, 40 cycles at 94° C for 30 s, 60° C for 30 s, 

and 72° C for 1 min. 

RNA interference 

 

To determine the role of selected genes in sorafenib 

treatment, Huh7 cells were transfected with siRNA or 

lncRNA smart silencer according to the manufacturer’s 

protocol. Briefly, cells were grown to 60 to 70% 

confluence and incubated with siRNAs or lncRNA 

smart silencer at a final concentration of 50 nM using 

LipofectamineTM 3000 (Invitrogen, NY, USA) in 

serum-free medium for 24 h. SiRNA and lncRNA 

Smart Silencer were designed and synthesized by 

RiboBio co.ltd (Guangzhou, China), and the sequences 

are shown in Supplementary Table 4. 

 

Cell proliferation and cell invasion assay 

 

The effect of selected genes on cell proliferation was 

determined by Cell counting kit 8 assay. Cells were 

seeded at 5000 cells/well and cultured under various 

concentrations of sorafenib in 96-well plates. After 

48h, 10 μl of the CCK-8 solution was added and 

incubate for 1-4 hours in the incubator, and finally 

measure the absorbance at 450 nm using a microplate 

reader. 

 

Cell invasion assays were performed using a Matrigel-

coated transwell invasion chamber. Briefly, the cells 

were pretreated with RNA interference and exposed to 

sorafenib at 6 μmol/L for 48h. Next, the cells were 

resuspended in DMEM containing 0.1% bovine serum 

albumin and added to the upper chambers at a 

concentration of 0.5×105 cells per well in 24-well 

plates. DMEM containing 10% FBS was added to the 

lower chambers as a chemoattractant. After 24 h, the 

invaded cells on the membrane’s undersurface were 

stained with 0.1% crystal violet. 

 

TME analysis 

 

The abundance of 28 immune cells in the TME [24] was 

quantified by single-sample gene set enrichment analysis 

(ssGSEA) [55, 56]. Microarray data from GSE109211 

were modified and applied using the CIBERSORT with 

deconvolution algorithm [57]. The ssGSEA score was 

calculated and normalized between 0 and 1. Additionally, 

correlations between the infiltration of cell types involved 

in antitumor immunity and those involved in tumor 

survival were estimated by Pearson's correlation analysis. 

The antitumor group included the following cells: 

activated T cells (ActCD4 and ActCD8), activated 

dendritic cells (ActDCs), central memory T cells 

(TcmCD4 and TcmCD8), effector memory T cells 

(TemCD4 and TemCD8), natural killer (NK) T cells, NK 
cells (CD56bright/dimNK cells), and T helper 1 (Th1) and 

Th17 cells. The tumor-survival group comprised the 

following immune cells: CD56dimNK, immature DCs 

http://ualcan.path.uab.edu/
https://www.proteinatlas.org/
https://www.proteinatlas.org/humanproteome/tissue
https://www.proteinatlas.org/humanproteome/pathology
https://www.proteinatlas.org/humanproteome/pathology
http://kmplot.com/analysis/
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(imDCs), tumor-associated macrophages (TAMs), 

myeloid-derived suppressor cells (MDSCs), neutrophil, 

plasmacytoid DCs (pDCs), regulatory T cells (Tregs), and 

Th2 cells [56]. 

 

Calculation of immune-infiltration score 

 

Biomarkers predictive of the immunotherapeutic effects of 

ICIs have been extensively studied and discussed, 

including the antigen processing and presenting machinery 

scores (APS); T cell-infiltration score (TIS); immune 

infiltration score (IIS); CD8, interferon γ (IFNγ), the ratio 

of IFN signaling in immune cells (IFNγ.GS), and PD-L1; 

tumor immune dysfunction and exclusion (TIDE) [15]. 

Besides, we conducted another analysis about calculating 

APS based on 7 genes from Senbabaoglu et al. [58], which 

were involved in the processing and presentation of 

antigens on MHC. We named this score as ‘APS7’. APS, 

APS7, IIS, and TIS were quantified using the R package 

“GSVA” [59] and gene lists according to a previous report 

[58]. IIS was defined as the mean of the standardized 

values of immune cells, including macrophages, DCs, B 

cells, eosinophils, mast cells, neutrophils, NK cell subsets, 

and all T cell subsets. TIS was defined as the mean of the 

standardized values for the following T cell subsets: CD8+, 

T central and effector memory cells, Th1, Th2, Th17, and 

Treg cells. 

 

The TIDE score [14] was calculated online 

(http://tide.dfci.harvard.edu) and integrates the 

expression signatures of T cell dysfunction and 

exclusion in order to model tumor immune evasion. The 

calculation of scores for other biomarkers (IFNγ, CD8, 

PD-L1, and IFNG.GS) has been reported previously 

[14, 60, 61]. According to the list of genes defined in 

previous studies, the scores of biomarkers were 

quantified as the average expression level of the gene 

set. IFNγ-related biomarkers included C-X-C chemokine 

ligand (CXCL)10, CXCL9, IFNγ, signal transducer and 

activator of transcription 1 (STAT1), indoleamine 2,3-
dioxygenase 1, and human leukocyte antigen–DR 

isotype α. CD8-related biomarkers including the genes 

CD8A and CD8B. Immune scores were normalized to a 

uniform distribution (range: 0–1), and the AUC for each 

biomarker was calculated. 

 

Correlation analysis between selected genes and 

infiltrating immune cells 

 

To investigate correlations between selected genes and 

immune infiltration in HCC, we used TIMER 

(https://cistrome.shinyapps.io/timer/) [62], which 

includes 10,897 samples across diverse cancer types 
from TCGA, to evaluate levels of six types of tumor-

infiltrating immune cells (B cells, CD4 T cells, CD8 T 

cells, macrophages, neutrophils, and DCs). 

Statistical analysis 

 

Most of the statistical analyses were conducted using the 

bioinformatic tools mentioned above. As to experimental 

validation, data were analyzed and visualized by using 

GraphPad Prism 8 software. Independent-sample t-test 

or Mann–Whitney U test was done for independent 

variables. Differences were considered statistically 

significant if p <0.05 *; p <0.01 **; p <0.001***; 

p<0.0001****. Results are expressed as the mean ± 

standard error of mean. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. Four selected genes were knocked down by transfection with siRNA or lncRNA smart silencer - Four 
selected genes were knocked down by transfection with siRNA or lncRNA smart silencer. The gene expression of C2orf27A, 
IGF2R, CFB, and PON1 in Huh7 cells after RNA interference. 
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Supplementary Tables 
 

 

Supplementary Table 1. Cox regression analysis. 

 Univariate  Multivariate 

Hazard_ratio CI95 p_values  Hazard_ratio CI95 p_values 

Age 1.01 1-1.03 0.066     

Gender 0.82 0.58-1.17 0.284     

Race 1.14 0.95-1.37 0.166     

Family_History 1.16 0.81-1.68 0.418     

BMI 1 0.97-1.03 0.995     

Ethnicity 1.11 0.49-2.52 0.811     

Fibrosis_Stage 1.18 0.87-1.6 0.287     

Child_Pugh_Classification 1.52 0.84-2.77 0.17     

Tumor_Stage 1.64 1.34-2.01 0  0.8 0.34-1.87 0.611 

Pathologic_T 1.63 1.37-1.94 0  1.95 0.87-4.34 0.103 

Pathologic_N 1.22 1.01-1.46 0.037  1.07 0.81-1.4 0.637 

Pathologic_M 1.26 1.05-1.52 0.012  1.24 0.95-1.63 0.11 

Radiation_Therapy 0.84 0.21-3.42 0.808     

Vascular_Invasion 0.74 0.53-1.02 0.069     

BMS1P1 1.19 0.59-2.4 0.622     

C2orf27A 2.13 1.51-2.99 0  1.5 0.99-2.27 0.057 

CFB 0.85 0.75-0.97 0.017  1 0.85-1.18 0.979 

COL1A2 1.06 0.95-1.17 0.291     

CST3 1.2 0.97-1.48 0.091     

CYP4F30P 116840.6 0-4.11e13 0.245     

DEFB122 2384.77 0.03-2.03e8 0.179     

GPER1 0.96 0.81-1.13 0.6     

IGF2R 1.28 1.01-1.63 0.041  1.08 0.83-1.4 0.565 

OR2A20P 5.13 0.3-86.48 0.256     

PFN1P2 0.33 0.07-1.45 0.141     

PON1 0.85 0.79-0.92 0  0.88 0.8-0.97 0.01 

ZNF826P 1.35 0.99-1.83 0.057     

ZSCAN12P1 0.94 0.58-1.5 0.784     
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Supplementary Table 2. Correlation between selected genes and infiltrating immune cells in GSE109211. 

 CFB IGF2R PON1 C2orf27A 

r p r p r p r p 

Activated.CD4.T.cell -0.29 0.02 0.10 0.40 -0.16 0.19 0.19 0.12 

Activated.CD8.T.cell 0.51 0.00 0.33 0.01 0.09 0.45 0.40 0.00 

Activated.dendritic.cell 0.43 0.00 0.34 0.00 0.20 0.11 0.09 0.46 

CD56bright.natural.killer.cell 0.68 0.00 0.56 0.00 0.33 0.01 0.35 0.00 

Central.memory.CD4.T.cell 0.65 0.00 0.59 0.00 0.41 0.00 0.48 0.00 

Central.memory.CD8.T.cell 0.44 0.00 0.50 0.00 0.48 0.00 0.09 0.46 

Effector.memeory.CD4.T.cell -0.18 0.13 -0.22 0.07 -0.48 0.00 0.02 0.89 

Effector.memeory.CD8.T.cell 0.70 0.00 0.16 0.20 0.02 0.86 0.35 0.00 

Natural.killer.cell 0.70 0.00 0.14 0.27 0.04 0.75 0.35 0.00 

Natural.killer.T.cell -0.40 0.00 -0.11 0.36 -0.01 0.96 -0.23 0.06 

Type.1.T.helper.cell 0.56 0.00 0.26 0.03 0.21 0.08 0.44 0.00 

Type.17.T.helper.cell -0.52 0.00 -0.33 0.01 -0.30 0.01 -0.44 0.00 

CD56dim.natural.killer.cell 0.61 0.00 0.13 0.28 0.14 0.26 0.23 0.06 

Immature.dendritic.cell 0.24 0.05 0.50 0.00 0.48 0.00 0.30 0.01 

Macrophage -0.35 0.00 -0.30 0.01 -0.09 0.46 -0.06 0.62 

MDSC 0.53 0.00 0.56 0.00 0.30 0.01 0.28 0.02 

Neutrophil -0.50 0.00 -0.33 0.01 -0.16 0.19 -0.21 0.09 

Plasmacytoid.dendritic.cell 0.68 0.00 0.66 0.00 0.47 0.00 0.32 0.01 

Regulatory.T.cell 0.56 0.00 0.13 0.31 0.01 0.95 0.38 0.00 

Type.2.T.helper.cell -0.46 0.00 -0.17 0.17 -0.15 0.22 0.02 0.86 

Activated.B.cell -0.42 0.00 -0.67 0.00 -0.60 0.00 -0.10 0.41 

Eosinophil 0.16 0.18 0.34 0.00 0.34 0.01 0.12 0.33 

Gamma.delta.T.cell 0.65 0.00 0.57 0.00 0.46 0.00 0.38 0.00 

Immature..B.cell -0.27 0.03 -0.27 0.03 -0.38 0.00 -0.04 0.74 

Mast.cell -0.16 0.20 0.02 0.86 0.02 0.85 0.00 0.99 

Memory.B.cell 0.24 0.05 -0.00 0.97 -0.10 0.41 0.19 0.13 

Monocyte 0.75 0.00 0.57 0.00 0.43 0.00 0.38 0.00 

T.follicular.helper.cell -0.22 0.08 0.32 0.01 0.16 0.19 -0.21 0.09 
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Supplementary Table 3. qRT-PCR primers. 

Genes Primers Sequences (5’ to 3’) 

Homo β-actin Forward CACCAACTGGGACGACAT 

 Reverse ACAGCCTGGATAGCAACG 

Homo C2orf27a Forward TCACGCTGCTGTGGAATAGAA 

 Reverse ATCAGAGGCTGCTGGGGAA 

Homo IGF2R Forward CACCAGGCGTTTGATGTTGG 

 Reverse TTTGGGAATGGTGCCCTCTC 

Homo CFB Forward TCTCTGTGGCATGGTTTGGG 

 Reverse CCATACAGCTCTCGTGTCCC 

Homo PON1 Forward AGCGTGGTCGTATGTTGTCT 

 Reverse TGAGCCAGCAACTCAGCTAT 

 

Supplementary Table 4. Target sequences of siRNAs and lncRNA smart silencer. 

siRNAs Target sequences 

siR-IGF2R GCATCAAGATATCGACTCT 

siR-CFB GTGGCAAGTTATGGTGTGA 

siR-PON1 GTCGTATGTTGTCTACTAT 

SmartSiliencer-C2orf27A (mix)  

ASO-h-C2orf27A_001 CCAAAGGTTTATGGCTGCAA 

ASO-h-C2orf27A_001 GAGAGTAACTTTGTACCCAT 

ASO-h-C2orf27A_001 ACCACAGTTACTTTATCCCT 

si-h-C2orf27A_001 TCATCTGCGTTGCTCTAAA 

si-h-C2orf27A_002 CCTCCAGGTTCAACAGTAT 

si-h-C2orf27A_003 ACTGATTCCTTCCGAGACT 

 


