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INTRODUCTION 
 

Since the morbidity and mortality of endometrial 

cancer (EC) is constantly increasing per year [1, 2], 
EC has become the fourth most common malignancy 

in the female reproductive system. There are around 

170,000 diagnosed cases and 36,000 deaths of EC 

annually [3], which accounts for approximately 5.7% 

of new cases and 3% of deaths in all types of tumors 

[4]. The 5-year disease-specific survival of patients 

diagnosed in the early stages is 74.2-90.8%. For 

women in progressive stage III or stage IV, it is 57.3-
66.2% and 20.1-25.5% respectively [5], while for 

patients with recurrent or metastatic disease, it remains 

as low as 16% [6]. Although substantial efforts  

have been made to explore the mechanisms of 
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ABSTRACT 
 

The incidence of endometrial cancer (EC) is intensively increasing. However, due to the complexity and 
heterogeneity of EC, the molecular targeted therapy is still limited. The reliable and accurate biomarkers for 
tumor progression are urgently demanded. After normalizing the data from Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA), we utilized limma and WGCNA packages to identify differentially expressed 
genes (DEGs). The copy number variations of candidate genes were investigated by cBioPortal. Enrichment 
pathways analysis was performed by ClueGO and CluePedia. The methylation status was explored by UALCAN. 
ROC curve and survival analysis were conducted by SPSS and Kaplan–Meier. Infiltration immune cells in 
microenvironment were analyzed by TISIDB. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation 
Analysis (GSVA) were applied to explore potential biological pathways. Immunohistochemistry staining (IHC), cell 
proliferation, cell apoptosis, colony formation, migration, invasion and scratch-wound assays were performed to 
investigate the function of key genes in vitro. In this study, four expression profile datasets were integrated to 
identify candidate genes. Combined with WGCNA analysis, the top ten candidates were screened out, whose 
abnormal methylation patterns were extremely correlated with their expression level and they were associated 
with tumor grades and predicted poor survival. GSEA and GSVA demonstrated they were involved in DNA 
replication and cell cycle transition in EC. Gene silencing of TICRR and PPIF dramatically inhibited cell growth, 
migration and epithelial-mesenchymal transition (EMT) and enhanced progesterone sensitivity. Additionally, from 
DrugBank database, cyclosporine may be effective for PPIF targeted therapy. By integrative bioinformatics 
analysis and in vitro experiments, our study shed novel light on the molecular mechanisms of EC. TICRR and PPIF 
may promise to be potential therapeutic targets for endometrial cancer. 
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carcinogenesis [7–10], owing to the complexity and 

heterogeneity of EC, the etiology of EC still remains 

obscure and the progress in targeted or personalized 

therapy is limited. Therefore, the exploration of 

targeted molecules and explanation of tumor 

mechanisms are indispensable. 

 

With the advances in bioinformatics technology, 

microarray and high-throughput sequencing platform 

provided new perspectives for cancer study [11]. In  

order to avoid differential gene research bias of  

small sample sizes in individual studies, this current 

research performed a comprehensive and systematic 

bioinformatics analysis of EC. Besides, weighted gene 

co-expression network analysis (WGCNA) as a novel 

and effective biology method [12], which illustrates 

gene expression data through constructing gene 

networks based on similarities in expression pattern 

among samples, was adopted to identify the most 

connected genes that were associated with clinical 

features [13]. After overlapping the genes in differential 

expression and co-expression network, the common 

genes were found. The Cancer Genome Atlas (TCGA) 

was used to analyze somatic mutation status of hub 

genes, through which we could find the distributions of 

mutation frequencies, types and contexts in EC [14]. 

The interaction between tumor and immune defense 

system plays a critical role in cancer progression and 

pharmacotherapy efficacy. To investigate associations 

between hub genes and immune factors, such as  

mature lymphocytes, immunomodulators and chemical 

chemokines, the web portal of TISIDB was applied 

[15]. MEXPRESS and UALCAN analysis were 

performed to explore epigenetic regulation of gene 

especially the methylation status in promoter region and 

their correlation with gene expression [16]. Gene Set 

Enrichment Analysis (GSEA) and Gene Set Variation 

Analysis (GSVA) were utilized to demonstrate 

underlying biological functions of hub genes [17]. 

 

In this study, we implemented an integrated bio-

informatics analysis of EC using GSE17025, 

GSE63678 and GSE115810 and TCGA UCEC 

databases. In combination with WGCNA strategy, the 

most remarkable genes were identified. Then, the 

somatic mutation status, methylation patterns, gene 

expression profiles and survival analysis were 

performed by cBioPortal, UALCAN, Gene Expression 

Profiling Interactive Analysis (GEPIA), Human 

Pathology Atlas (HPA) and Kaplan-Meier method, 

respectively. Moreover, GSEA and GSVA analysis 

were applied to verify the most involved pathways of 

the real hub genes. Finally, two DEGs (TICRR and 
PPIF) were generated, which may become potential 

prognostic indicators and therapeutic targets for 

endometrial cancer. 

RESULTS 
 

Identification of robust DEGs between endometrial 

carcinoma and normal tissues 
 

Three gene expression datasets about EC from the GEO 

database, including GSE17025, GSE63678 and 

GSE115810, and TCGA UCEC RNA-sequencing data 

were used to identify DEGs in EC (Table 1). After data 

preprocessing and standardization, the limma and 

DESeq2 R packages were utilized to screen out DEGs 

[18]. On the basis of the threshold of P value < 0.05 and 

|log fold change (FC)| > 2, DEGs were obtained and 

differential results were shown in the volcano plots, 

respectively. The expression profiles of the top 100 

DEGs were acquired from the four datasets and 

visualized by cluster heatmaps, as shown in Figure 1A–

1D, respectively. 
 

Construction of weighted gene co-expression 

network and identification of the core modules  
 

To detect the key modules most relevant to EC clinical 

traits, WGCNA was performed on the four datasets, 

respectively. The data of EC were acquired from TCGA 

database. After data standardization and preprocessing, 

the 10 000 most significant genes based on expression 

values of EC were applied to set up the weight co-

expression network. After filtering out the aberrant 

samples, the soft threshold power value β was defined 

as four to build the adjacency matrix by the power 

function (scale free R2 = 0.89) (Figure 1E), The co-

expression modules were performed by hierarchical 

clustering and dynamic branch cutting (Figure 1F). The 

dendrogram and heatmap of samples (Figure 1G) were 

utilized to screen out groups of relevant eigengenes. 

From the heatmap of module–trait correlations (Figure 

2A), we explored that the brown and green-yellow 

modules were the most highly correlated with clinical 

features. Moreover, the scatterplots of gene significance 

(GS) vs module membership (MM) in the two selected 

modules were plotted respectively (Figure 2B). In 

addition, sample cluster of GSE17025 was performed to 

detect data quality in the microarray and to remove 

outlier samples. We set the soft threshold as three 

(Figure 1H) and twenty-two modules were identified 

(Figure 1I). Besides, we clustered eigengenes on the 

basis of their correlation and equivalent results were 

demonstrated by the heatmap (Figure 1J). The ME in 

the turquoise and red module illustrated a high 

correlation with tumor status, respectively (Figure 2C, 

2D) illustrated the correlation between MM and GS in 

the two modules, respectively. Meanwhile, the cluster 
analysis images for GSE115810 and GSE63678 were 

shown in Supplementary Figures 1, 2, the black module 

in GSE115810 and the pink module in GSE63678 
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Table 1. Details of the datasets. 

Dataset sample normal tumor platform reference 

GSE17025 endometrium 12 91 GPL570 Day et al.(2011) 

GSE63678 endometrium 5 7 GPL571 Pappa et al.(2015) 

GSE115810 endometrium 3 24 GPL96 Hermyt et al.(2019) 

TCGA UCEC endometrium 35 333 - - 

 

tended to be significantly correlated with tumor traits 

among other modules. 

 

Identification of hub genes 

 

Venn diagram was performed to identify common genes 

among the four aforementioned datasets. As 

demonstrated in Figure 3A, 45 common DEGs were 

detected (Supplementary Table 1). The selected 

modules that correlated with tumor traits through co-

expression network were also overlapped (Figure 3B 

and Supplementary Table 2). Subsequently, a total of 

sixteen key genes were screened out from both DEG 

network and co-expression network (Figure 3C and 

Supplementary Table 3). The genes were shown in 

Table 2. In order to explore whether the key genes 

showed somatic mutations in EC, we detected mutations 

in tumor-related genes and found PTEN (71.46%), 

PIK3CA (50.6%) and ARID1A (40.77%) were most 

frequently mutated genes (Figure 3D). Next, the 

biological function of the common genes and their co-

expression genes was analyzed using ClueGO and 

CluePedia, showing enrichment in mitotic nuclear 

division, GTPase regulator activity and NADH 

regeneration pathway (Figure 3E). Then we conducted 

GO and KEGG analyses (Figure 3F), which indicated 

that genes were notably involved in mitotic nuclear 

division, carbon metabolism and TNF signaling 

pathway (Table 2). We analyzed the results in 

Metascape database (Figure 3G, 3H), showing similar 

enrichment in cell division, receptor metabolic process 

and positive regulation of GTPase activity, which were 

consistent with our findings. 

 

Real hub genes validation in the TCGA dataset 

 

We adopted the top ten variant genes that had not been 

researched in EC for subsequent analysis. OncoPrint of 

CBioPortal was utilized to demonstrate the ten hub 

genes’ alteration pattern in TCGA EC patients and the 

alteration frequency of each common gene was 

illustrated in Figure 4A, which was less than 8%. Then 

we applied GEPIA and UALCAN databases to explore 
the difference in expression level among tumor and 

normal tissues (Figure 4B). Results suggested that all 

these ten hub genes were abnormally differentially 

expressed in the tissues of endometrial cancer. 

Furthermore, immunohistochemistry (IHC) staining 

extracted from Human Protein Atlas database (HPA) 

also demonstrated the differential protein expression 

level of core genes, as shown in Figure 4C, which were 

in accordance with the transcriptional level. Above 

results confirmed that the hub genes we identified were 

reliable. 

 

Methylation status, survival analysis and efficacy 

evaluation of hub genes 

 

We explored the methylation status of core genes to 

clarify potential mechanisms of their aberrant 

expression in EC tissues (Figure 5A). Results showed 

that they were all aberrantly methylated, which were 

extremely correlated with their expression level. Next, 

overall survival data was analyzed based on the low  

or high expression of each gene, which showed 

statistically significant difference (Figure 5B). 

Furthermore, ROC curve assessment was carried out to 

detect the capacity of real core genes to predict overall 

survival of patients by using SPSS and AUC values of 

ten genes were greater than 0.6 (Figure 5C), showing 

that they could be utilized as effective indicators to 

monitor prognosis. 

 

Verification the expression and function of TICRR 

and PPIF genes through in vitro experiments  

 

To evaluate the expression of differential genes at the 

cellular level, we performed qRT-PCR assays in both 

normal and endometrial cancer cells. Genes TICRR and 

PPIF were significantly overexpressed in cancer cells 

than in normal endometrial epithelial cells (EEC) 

compared with other genes, suggesting they may play a 

pivotal role in oncogenesis and were selected for the 

following research (Figure 6A). We then evaluated the 

expression patterns of TICRR and PPIF in a panel of 

endometrial cancer cell lines. Higher levels of TICRR 

and PPIF were observed in Ishikawa, HEC-1B and KLE 

cell lines compared to EEC cells (Figure 6B). These 

data indicated that TICRR and PPIF may be associated 
with endometrial cancer. Meanwhile, we knocked down 

the expression of TICRR and PPIF in the cancer  

cell lines by transfection of siTICRR and siPPIF 
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Figure 1. Identification of DEGs among GEO and TCGA-UCEC datasets and construction of co-expression modules by WGCNA 
package. (A–D) The volcano plots and heatmaps of DEGs in GSE17025, GSE63678, GSE115810 and TCGA-UCEC databases, respectively. In 

the heatmap, red indicates relative upregulation of gene expression; black indicates no significant change; green indicates downregulation of 
gene expression. (E) Analysis of the scale-free fit index and mean connectivity for various soft-thresholding powers for TCGA samples. (F) 
Dendrogram of differentially genes clustered based on a dissimilarity measure (1-TOM) for TCGA samples. (G) Dendrogram of consensus 
module eigengenes and heatmap of the adjacencies for TCGA. (H) Analysis of network topology for various soft-threshold powers for 
GSE17025 data. (I) Clustering dendrogram of genes in GSE17025 with dissimilarity based on topological overlap, together with assigned 
module colors. (J) Visualizing the gene network using a heatmap plot of GSE17025 data. 
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Figure 2. Correlation between module eigengenes and clinical traits. (A) Correlation between modules and traits of TCGA data. (B) 

Scatter plots of GS versus the MM in the brown and green-yellow modules of TCGA data. (C) Correlation between modules and traits of 
GSE17025 data. (D) Scatter plots of module eigengenes in turquoise and red modules of GSE17025. 
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Figure 3. Identification of common hub genes and functional enrichment analysis. (A) Venn diagram shows the intersection genes 

of GSE17025, GSE63678, GSE115810 and TCGA-UCEC. (B) Essential genes were found among the selected modules through co-expression 
network. (C) The intersection common genes of essential genes and DEGs. (D) Top 50 somatic mutated genes in EC. (E) The functional 
annotation analysis of hub genes was performed by ClueGO and CluePedia. (F) Biological Process (BP) terms, Cellular Component (CC) terms, 
Molecular Function (MF) terms and KEGG analysis for genes. (G) Boxplot of enriched terms across input gene lists by Metascape, colored by 
P-values. (H) Network of enriched terms by Metascape. 
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Table 2. List of sixteen hub genes identified by venn analysis. 

Gene symbol Description 

UBE2C ubiquitin conjugating enzyme E2 C 

SOWAHC sosondowah ankyrin repeat domain family member C 

CYR61 cellular communication network factor 1 

MYO15B myosin XVB 

ARHGAP10 Rho GTPase activating protein 10 

GNG11 G protein subunit gamma 11 

LYPLA2 lysophospholipase 2 

PLS1 plastin 1 

PPIF peptidylprolyl isomerase F 

BIRC5 baculoviral IAP repeat containing 5 

PRRC2A proline rich coiled-coil 2A 

TICRR TOPBP1 interacting checkpoint and replication regulator 

MUC1 mucin 1, cell surface associated 

VAMP8 vesicle associated membrane protein 8 

WT1 WT1 transcription factor 

CXCL12 C-X-C motif chemokine ligand 12 

 

respectively, siTICRR-1 and siPPIF-2 with high 

transfection efficiency were used for subsequent 

experiments (Figure 6C, 6D). Silencing of TICRR and 

PPIF led to enhance the expression of epithelial marker 

E-cadherin and decrease the mesenchymal marker N-

cadherin and metastasis associated genes MMP9 as well 

as proliferation-related marker CCND1, suggesting their 

involvement in the progression of endometrial cancer 

(Figure 6E). Medroxyprogesterone acetate (MPA) as a 

conservative therapy is commonly applied to the early 

stage of endometrial carcinoma [19]. The knockdown of 

TICRR resulted in a potent decrease of cell growth and 

clone formation and enhanced the inhibitory effect of 

MPA (Figure 6F) and the downregulated PPIF yielded 

the similar results (Figure 6G). Meanwhile, we found 

that TICRR and PPIF positive staining were present at a 

higher level in tissues with endometrial cancer than in 

tissues of paracancer endometrium (Figure 7A). Next, 

siRNA knockdown of TICRR and PPIF respectively 

increased the percentage of apoptotic cells in Ishikawa 

cells (Figure 7B). Further, silencing of TICRR and PPIF 

respectively in Hec-1B cells significantly inhibited cell 

migration and invasion compared to control cells and 

elevated the effectiveness of progesterone (Figure 7C, 

7D). The effect of TICRR on cell migratory capacity 

was also analyzed by wound-healing assay, revealing  

an apparent suppression of the migratory ability of  

Hec-1B cells transfected with TICRR siRNA in 

combination with MPA (Figure 7E). Moreover, the 

wound closure was reduced obviously in siPPIF-treated 

cells as well, making progesterone treatment more 

effective (Figure 7F). 

Association of hub genes expression with 

clinicopathologic parameters and immune infiltration 

 

Further, we verified the expression of core genes in 

different pathological status. As illustrated in Figure 

8A, mRNA expression of TICRR in EC samples were 

dramatically correlated with clinical stages and 

pathological grades. Similarly, upregulated expression 

of PPIF was notably correlated with the advanced 

pathological parameters in TCGA cohort (Figure 8C). 

Infiltrating immune cells were main components of 

tumor microenvironment and may play a vital role in 

tumor progression. Through the method of 

Microenvironment Cell Populations-counter [20], we 

explored the association between TICRR and immune 

cell populations. Results showed that TICRR had a 

correlation with activated CD4 T cell (Figure 8B), while 

there was weak correlation between PPIF and CD56dim 

natural killer cell in UCEC (Figure 8D). In addition, 

survival information and ROC curves of the two genes 

were also obtained using TCGA data, suggesting that 

high TICRR and PPIF expression tended towards poor 

prognosis of EC patients (Figure 8E, 8F), which were 

consistent with our former findings. 

 

GSEA and GSVA analysis of core genes 

 

To thoroughly investigate the potential biological 

functions of TICRR and PPIF in EC, GSEA and GSVA 
were applied to perform pathway analysis. Results  

of GSEA showed that the most involved pathways  

of TICRR were vesicle mediated transport, gene 
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Figure 4. Genetic alterations and protein expression of hub genes in TCGA. (A) A visual summary on a query of genetic alteration of 

10 hub genes in TCGA dataset. (B) Transcriptional level of each gene was identified in both GEPIA and UALCAN database. *p < 0.05 compared 
with normal endometrial tissues. (C) Validation of hub genes by The Human Protein Atlas database. 
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Figure 5. Methylation status and survival analysis of the hub genes. (A) Gene methylation status of ten hub genes were validated in 

TCGA database. *p < 0.05 compared with normal endometrial tissues. (B) Univariate survival analysis of the hub genes using the Kaplan-
Meier curve. (C) Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) statistics was applied to evaluate the 
capacity of real hub genes to predict overall survival of patients. 
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Figure 6. Validation of hub genes by cell experiments in vitro. (A) Identification of differentially expressed genes by qPCR assay in 

both normal endometrial epithelial cells and endometrial cancer cell lines. (B) Western blot assay showing the expression of TICRR and PPIF 
in EC cell lines and normal endometrial epithelial cells. (C) The effect of different siRNA on TICRR and PPIF gene silence by western blotting 
respectively. (D) TICRR and PPIF expression were examined by RT-PCR after transfected with siRNA for 24h. (E) Relevant molecular targets 
were verified by qRCR after transfection of siTICRR and siPPIF for 24hrs respectively. (F) Cell growth and clone formation of siTICRR 
transfected cells with or without MPA. (G) Cell growth and clone formation of siPPIF transfected cells with or without MPA. Data were shown 
as mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 7. IHC staining and functional verification of TICRR and PPIF genes. (A), The expression of TICRR and PPIF in endometrial 

cancer and paracancer samples were assessed using IHC staining and the results of statistical analysis. (B) Analysis of apoptosis by Flow 
cytometry after transfection with siTICRR and siPPIF respectively. (C) Hec-1B-siTICRR cells were subjected to migration and invasion assays in 
the presence or absence of MPA. (D) Migration and invasion ability of siPPIF transfected cells in the presence or absence of MPA. (E) Wound-
healing assays for Hec-1B-siTICRR cells. (F) Wound-healing assays for Hec-1B-siPPIF cells. Data were shown as mean ± SD; *p < 0.05; **p < 
0.01; ***p < 0.001. 
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Figure 8. Further exploration of the expression of TICRR and PPIF. (A), Transcriptional expression of TICRR was significantly 

correlated with clinical stages and pathological grades of EC. ***p<0.001 compared with normal tissues. (B) Analysis of the correlation 
between the expression of TICRR and infiltrating immune cells (C), Correlation between PPIF and clinical stages and grades, respectively. 
***p<0.001 compared with normal tissues. (D) Correlation between PPIF and immune cell populations. (E) Prognostic value of TICRR 
calculated by Kaplan-Meier analysis. (F) Overall survival analyzed using the Kaplan–Meier method with log-rank testing according to PPIF 
expression. 
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expression transcription, RHO GTPases signaling, cell 

cycle checkpoints and DNA repair pathway (Figure 

9A). The top 50 significant genes were acquired by 

GSEA and shown in a heat map (Figure 9B). 

Meanwhile, GSEA enrichment analysis of PPIF 

indicated that cell division, ATPase activity, cadherin 

binding, kinase binding and ubiquitin ligase complex 

were the most significant pathways (Figure 9C) and the 

heat map of transcriptional expression profiles of 50 

significant genes was shown in Figure 9D. Furthermore, 

GSVA analysis of TICRR confirmed that E2F mediated 

regulation of DNA replication, RHO GTPases activity 

and mitotic G1/S phrase pathway were remarkably 

statistically significant in the high-expression groups of 

TICRR (Figure 9E) and MAPK3/ERK1 activation and 

regulation of PLK1 at G2/M transition pathway were 

activated in high-expression groups of PPIF (Figure 

9F), suggesting their involvement in the cell cycle 

transition and proliferative processes in progression of 

endometrial cancer. In addition, DrugBank database 

was used to explore drugs targeting hub genes 

(Supplementary Figure 3). Results showed that 

cyclosporine and triglyme were small molecule drugs 

targeting PPIF, which provided support for drug 

selection of PPIF targeted therapy. 

 

DISCUSSION 
 

Endometrial carcinoma is a common malignancy caused 

by abnormal glandular hyperplasia and companied by 

aberrant genetic and protein expression [21]. The global 

death rate of EC has continued to increase due to the 

lack of precise molecular targets. Though the high-

throughput platforms provided promising targets in 

medical oncology, most previous studies only targeted 

individual database leading to poor clinical application 

and differential research bias that lacked biological 

effects. Our present study integrated RNA expression 

data from multiple datasets in combination with 

weighted gene co-expression network analysis to screen 

out biomarkers, which would provide more reliable and 

accurate clinical biomarkers for prognostic prediction 

and molecular therapy of EC. 
 

In this study, unlike a single cohort study, four datasets 

including GSE17025, GSE63678 and GSE115810 and 

TCGA UCEC were analyzed systematically for the first 

time. Liu et al. [22] have just analyzed the dataset 

GSE17025 and demonstrated that eleven genes were 

associated with progression and prognosis of 

endometrial cancer (EC). Although our research is 

consistent in methodology, we have included as many 

databases as possible for comprehensive research. 
Moreover, we screened out the two highly upregulated 

genes and conducted a series of in vitro experiments for 

functional verification in endometrial cancer. Huo et al. 

[23] explored the microarray-based dataset GSE72708 

by WGCNA and identified six hub genes related to the 

prognosis of endometrial cancer especially by AKT1 

regulation. They just focused on investigating the 

potential mechanisms of AKT1 in EC, which was 

complementary to our research results. 

 

After screening DEGs in all datasets, 45 DEGs were 

obtained. Meanwhile, we applied WGCNA to explore 

the key modules and core genes correlated with clinical 

traits of EC by R packages and selected modules that 

were most definitely associated with the EC disease 

status. Then after overlapping with DEGs, the most 

central and connected sixteen hub genes were identified. 

Next we investigated somatic mutations and copy-

number alterations of the top ten genes based on TCGA 

data, showing that mutation frequency of hub genes 

were lower than 8%. Furthermore, hub gene-related 

pathways were analyzed by ClueGO and CluePedia 

[24], which showed enrichment in mitotic nuclear 

division, GTPase regulator activity and NADH 

regeneration pathway, consistent with the results of 

DAVID and Metascape.  

 

Subsequently, we verified the protein expression of hub 

genes by GEPIA, UALCAN and HPA databases [25], 

and then explored their methylation status, which were 

related with the expression of the genes. Kaplan Meier-

plotter was utilized to demonstrate survival analysis and 

ROC curves were used to assess the sensitivity and 

specificity of the survival prediction based on gene 

expression, indicating that they could serve as bio-

markers to predict patients’ survival.  

 

Among these core genes, we chose two rarely reported 

ones which were also dramatically upregulated in EC 

cells, namely TICRR and PPIF for further studies. 

Through a series of in vitro experiments, we found that 

silencing TICRR or PPIF resulted in a significant 

suppression of cell proliferation and migration and 

elevated the effect of progesterone, suggesting their 

critical role in the progression of endometrial carcinoma. 

 

To further identify their correlations with infiltrating 

immune cells, we explored in TISIDB dataset and found 

that TICRR was associated with activated CD4 T cell 

and PPIF was correlated with CD56dim natural killer 

cell, implying that immunocytes may play an essential 

role in tumor microenvironment. Once the underlying 

immune-related mechanisms were clarified by 

experimental method, TICRR and PPIF may be useful 

for novel immunotherapy. Based on previous studies, 

TICRR, a crucial checkpoint and replication modulator 
[26], contributed to the occurrence of tumor through 

promoting DNA replication and cyclin-dependent kinase 

regulated the length of S phase by TICRR/TRESLIN 
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Figure 9. Significant TICRR and PPIF-related genes and pathways in EC obtained by GSEA and GSVA. (A) The most involved 

pathways in high-expression group of TICRR obtained by GSEA analysis. (B) Transcriptional expression profiles of the significant genes were 
shown in a heat map. (C) The most common functional gene sets in high-expression group of PPIF by GSEA. (D) Transcriptional expression 
profiles of the significant genes related with PPIF were shown in a heat map. (E, F) GSVA-derived clustering heatmaps of differential pathways 
for TICRR and PPIF, respectively. 
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phosphorylation in tumor [27], which were consistent 

with our GSEA and GSVA analysis but had not been 

validated in related study of endometrial cancer. 

Additionally, PPIF was reported to be involved  

in mitochondrial permeability transition regulated 

necrosis and necroptosis [28, 29], while the correlation 

between PPIF and mitochondrial ROS production in 

the development of endometrial carcinoma had not 

been researched. Besides, we searched DrugBank 

database to find drugs that targeted oncogenes, 

showing that cyclosporine and triglyme may be of 

great value to suppress tumor growth by inhibiting the 

expression of PPIF, which had not been verified in 

both experimental and clinical study of endometrial 

carcinoma.  

 

In conclusion, by combining four databases, WGCNA 

and multiple bioinformatics methods and in vitro 

experiments, we explored significant gene modules and 

identified several robust DEGs in EC. Two hub genes 

(TICRR and PPIF) were robustly overexpressed in EC 

tissues and the expression profile were closely associated 

with promoter hypomethylation. GSEA and GSVA 

further demonstrated that the core genes were highly 

involved in the development of EC. Further research 

needs to be implemented to thoroughly elucidate their 

underlying contribution to the pathogenesis of 

endometrial cancer and to verify their efficiency as 

potential prognostic markers and therapeutic targets in 

endometrial cancer. 

 

MATERIALS AND METHODS 
 

Standardization and identification of DEGs 

 

Normalized data of GSE17025, GSE63678 and 

GSE115810 were obtained from Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and 

annotated according to the Affymetrix Human Genome 

U133A 2.0 Array platform. Pre-processing procedures 

included RMA background correction, and the “affy” 

R language package was adopted to complete log2 

transformation, quantile normalization and median 

polish algorithm summarization. Based on the probe 

annotation information, we mapped the probes to gene 

symbols. Probes matched with multiple genes were 

removed and when multiple probes corresponded to 

one specific gene, the average expression value was 

considered its final expression. Then, the gene 

expression profiles were utilized quantile normalization. 

The TCGA UCEC data was downloaded from  

TCGA database (https://portal.gdc.cancer.gov/.), 

including 333 endometrial carcinomas and 35 normal 

tissues. After preprocessing and standardization of 

data, Limma and DESeq2 R packages were utilized  

to explore differentially expressed genes (DEGs)  

[18, 30]. The value of |log2FC| (fold change) >2.00 

and P value <0.05 were considered as the cutoff 

criteria. 

 
Weighted gene co-expression network construction 

and identification of modules 

 

We adopted the top 50% most variant genes in each 

dataset to construct the co-expression network using 

WGCNA package [31], which was applied to explore 

clinical traits-related modules and core genes among 

them. To ensure the reliability of network 

construction, outlier samples which were defined as 

connectivity less than -2.5 were removed [32]. Based 

on the standard scale-free networks, the appropriate 

soft threshold power was selected and adjacencies 

were calculated by a power function (scale free R2 = 

0.85). Then we transformed the adjacency into 

topological overlap matrix (TOM), and dissimilarity 

TOM ((1-TOM)) was obtained. Genes with high 

absolute correlation were divided into gene modules 

with the dynamic tree cut method by the hierarchical 

clustering genes using 1-TOM as the distance measure 

and a deepSplit value of two and a minimum size 

cutoff of 30 for the generated dendrogram. Highly 

similar modules were merged with a height cut-off of 

0.25. Then we constructed module–trait relationships. 

The module eigengenes (MEs), the main component of 

the gene expression profile, represented the entire 

characteristics of module genes. The correlations 

between ME and clinical traits were calculated using 

the Pearson’s correlation analysis [33]. For the 

intramodular analysis, gene significance (GS) was the 

absolute value to reflect the relationship between 

certain expression profile and each trait and the 

module membership (MM) was utilized to describe the 

correlation between each ME and gene expression 

profile. Next, the module membership (MM) and the 

absolute value of gene significance (GS) were also 

measured to screen out hub genes. Those with gene 

significance (GS) > 0.3 and module membership 

(MM) > 0.8 were identified as hub genes [34]. 

 

Function enrichment analyses of DEGs 

 

To obtain more comprehensive biological information 

of DEGs, we utilized ClueGO and CluePedia, the plug-

in of Cytoscape [35, 36], which can visualize the 

biological features for genes in a functionally grouped 

network. Meanwhile, The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) [37] 

and Metascape (http://metascape.org/) which offers a 

biologist-oriented resource for the analysis of systems-
level databases [38] were used to verify enriched 

biological themes pathways. P < 0.05 was defined as the 

threshold criterion. 

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://metascape.org/
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Methylation and gene expression analyses of 

candidate genes  

 

The somatic mutations and copy number variation of 

hub genes were explored in TCGA database by 

cBioPortal [39], which enables us to interactively 

investigate genetic alterations across samples and genes. 

Then Gene Expression Profiling Analysis (GEPIA, 

http://gepia.cancer-pku.cn/.) was used to demonstrate 

the gene expression profiles from TCGA database. 

MEXPRESS and UALCAN analysis was performed to 

detect DNA methylation status [16]. The immuno-

histochemistry (IHC) data of common genes was 

searched in Human protein atlas (HPA) project which 

contains detailed information of samples [40].  

 

Survival analysis of hub genes 

 

We performed survival analysis of genes by log-rank 

tests and Kaplan–Meier plotter (http://kmplot.com/ 

analysis/) to explore differences in survival between 

different groups [41]. Besides, in order to evaluate hub 

genes’ predictive values, we drew receiver operating 

characteristic (ROC) curves and measured area under 

the ROC curve (AUC) and 95% confidence intervals 

(CI) with SPSS software [42]. 

 

Correlation between gene expression and tumor-

infiltrating immune cells 

 

To explore the association between the expression of 

identified hub genes and infiltrating immune cells, such 

as lymphocytes, immunomodulators and chemokines, we 

utilized the online tool TISIDB (http://cis.hku.hk/TISIDB/ 

index.php) [43], which integrates multiple heterogeneous 

data types for each gene based on TCGA database. 

 

Data processing of gene set enrichment analysis 

(GSEA) and gene set variation analysis (GSVA) 

 

We separated endometrial cancer cases from TCGA 

UCEC data into high-risk and low-risk groups by using 

the optimal cut-off values of selected hub gene. To 

identify potential biological pathways of the hub genes, 

GSEA software 4.0.3 (https://software.broadinstitute. 

org/gsea/index.jsp) was implemented in this study [44]. 

Similarly, the “GSVA” package in R language software 

3.6.3 was utilized to explore the pathways most 

associated with core genes [45]. The gene sets 

“c2.cp.v7.2.symbols.gmt” and “c5.go.v7.2.symbols.gmt” 

that were downloaded from the Molecular Signature 

Database (MSigDB, http://software.broadinstitute.org/ 

gsea/msigdb/index.jsp) were regarded as the reference 
gene set. Terms with FDR less than 0.25 and P value 

less than 0.01 were regarded as statistically significant 

pathways. 

Cell lines and transient transfection 

 

The human endometrial epithelial cells (EEC)  

were purchased from American Type Culture 

Collection (ATCC, VA, USA) and were cultured in 

Epithelial Cell Medium (MingZhoubioCO Ltd). The 

human endometrial cancer cell lines (Ishikawa  

and HEC-1-B) were conserved in our team and  

were cultured in DMEM/F12 medium with 10% fetal 

bovine serum (FBS, Gibco). Cells were transfected 

using Lipofectamine 3000 (Invitrogen, NY, USA) 

according to the manufacturer’s protocol. The siRNAs 

for TICRR and PPIF were designed by GenePharma 

(Shanghai, China) and the sequences were listed in 

Table 3. 

 

Real-time PCR analysis 

 

Cells were seeded into 6-well plates. After the 

experimental treatment, total RNA was extracted  

with Trizol reagent and was reverse transcribed into 

cDNA. Then Real time PCR was performed using 

SYBR Premix (Takara, China). Primers were listed in 

Table 4. 

 

Western blotting (WB) assay 

 

Total protein was extracted using radio-

immunoprecipitation assay buffer (Beyotime, China) 

with inhibitor cocktail, and the concentrations were 

quantified by bicinchoninic acid assay kit (Yeasen, 

China). Western blotting was done according to 

standard protocols. Antibodies against TICRR (1:1000, 

NBP2-41283), PPIF (1:1000, 18466-1-AP), β-tubulin 

(1:5000, 30303ES10), GAPDH (1:5000, 30203ES10) 

were used as primary antibodies. The immunoblot 

bands intensity were quantified with ImageJ software 

(NIH, MD, USA). 
 

Immunohistochemical (IHC) staining 
 

Paraffin sections of twelve pairs of endometrial 

adenocarcinoma (EC) and the paracancer tissue from 

the same patient were obtained from the tissue bank at 

the International Peace Maternity and Child Health 

Hospital. This study was in accordance with the tenets 

of the Helsinki Declaration. Immunohistochemical 

staining was performed as previously described [7]. 

Primary antibodies used in IHC assay included  

TICRR (NBP2-41283, Novus), PPIF (18466-1-AP, 

Proteintech) and a rabbit immunoglobulin G was 

utilized as a negative control. All sections were dual 

scored by two experienced pathologists who were 

blinded to sample information based on the 

combination of the intensity score and the percentage 

score. 

http://gepia.cancer-pku.cn/
http://kmplot.com/analysis/
http://kmplot.com/analysis/
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
https://software.broadinstitute.org/gsea/index.jsp
https://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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Table 3. The sequences for siRNAs. 

Gene   Sequences (5’-3’) 

TICRR siTICRR-1 Sense: 5’-CCAACUGAUGCCACUUUAATT-3’ 

  Antisense: 5’-UUAAAGUGGCAUCAGUUGGTT-3’ 

 siTICRR-2 Sense: 5’-CCGAGACUCCAGUGCAUAATT-3’ 

  Antisense: 5’-UUAUGCACUGGAGUCUCGGTT-3’ 

PPIF siPPIF-1 Sense: 5’-GGGUGAUCCCUUCCUUCAUTT-3’ 

  Antisense: 5’-AUGAAGGAAGGGAUCACCCTT-3’ 

 siPPIF-2 Sense: 5’-GCUAAUGCUGGUCCUAACATT-3’ 

  Antisense: 5’-UGUUAGGACCAGCAUUAGCTT-3’ 

 

Table 4. Sequences of primers used for amplification of target genes. 

Gene primer nucleotide sequence 

UBE2C Forward: 5’-GCAGTCGTGTTCTCCGAGTT-3’ 

 Reverse: 5’-GCTCCTGCTGTAGCCTTTTG-3’ 

LYPLA2 Forward: 5’-AAGAAGGCAGCAGAGAACATC-3’ 

 Reverse: 5’-CTCCCAGGACGATTCGATTG-3’ 

PPIF Forward: 5’- TGGTGACACAGGCCACAGAC-3’ 

 Reverse: 5’- CCGGAGCACAGGAGCTTACA-3’ 

BIRC5 Forward: 5’-GACGACCCCATGCAAAGGAA-3’ 

 Reverse: 5’- GTGGCACCAGGGAATAAACC-3’ 

ABT1 Forward: 5’-ACGGGTAGTGCCAGGTATTG-3’ 

 Reverse: 5’-CGGTCCTCAGCCTGAAAGAA-3’ 

PRRC2A Forward: 5’-GCCACAGGGATTCCCAATCA-3’ 

 Reverse: 5’-TTGGGGGAGTTGCCCTTTTT-3’ 

TICRR Forward: 5’- CACGGGAGACGAAGAGGT-3’ 

 Reverse: 5’- CTGGAACAGCAGCGGAGA-3’ 

ASCC1 Forward: 5’-CTCACCACGACGAGGACCG-3’ 

 Reverse: 5’-TCCAATTATGCCCGTGAGGG-3’ 

WT1 Forward: 5’-CCAAATGACATCCCAGCTTG-3’ 

 Reverse: 5’-GTGTGGTTATCGCTCTCGTAC-3’ 

SOWAHC Forward: 5’-CTGGTCAAGCGGGACTTCAT-3’ 

 Reverse: 5’-CTCCGACTCAGGTACTGGGA-3’ 

E-cadherin Forward: 5′-CGAGAGCTACACGTTCACGG-3′ 

 Reverse: 5′-GGGTGTCGAGGGAAAAATAGG-3′ 

N-cadherin Forward: 5′-TGCGGTACAGTGTAACTGGG-3′ 

 Reverse: 5′-GAAACCGGGCTATCTGCTCG-3′ 

Vimentin Forward: 5′-TGCCGTTGAAGCTGCTAACTA-3′ 

 Reverse: 5′-CCAGAGGGAGTGAATCCAGATTA-3′ 

Snail Forward: 5′-ACTGCAACAAGGAATACCTCAG-3′ 

 Reverse: 5′-GCACTGGTACTTCTTGACATCTG-3′ 

Twist Forward: 5′-ATTCAAAGAAACAGGGCGTGG-3′ 

 Reverse: 5′-CCTTTCAGTGGCTGATTGGC-3′ 

MMP9 Forward: 5′-TTGACAGCGACAAGAAGTGG-3′ 

 Reverse: 5′-GCCATTCACGTCGTCCTTAT-3′ 

MMP2 Forward: 5′-TCTCCTGACATTGACCTTGGC-3′ 
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 Reverse: 5′-CAAGGTGCTGGCTGAGTAGATC-3′ 

CCND1 Forward:5’-AAACAGATCATCCGCAAACAC-3’ 

 Reverse:5’-GTTGGGGCTCCTCAGGTTC-3’ 

MYC Forward:5’-CCTGGTGCTCCATGAGGAGA-3’ 

 Reverse:5’-TCCAGCAGAAGGTGATCCAGAC-3’ 

GAPDH Forward: 5’-ACCCAGAAGACTGTGGATGG-3’ 

 Reverse: 5’-TCAGCTCAGGGATGACCTTG-3’ 

 

Flow cytometric analysis 

 

The percentage of apoptosis cells were detected by 

flow cytometry using the Annexin V-FITC staining  

kit (BD Pharmingen, USA). Briefly, after transfected 

with siRNA for 24 h, cells were digested, collected 

and washed three times with PBS, and then 

resuspended in binding reagent. Annexin v-FITC and 

PI were then added according to the manufacturer's 

instructions. A FACS can flow cytometer and FlowJo 

software (Tree Star Inc., OR, USA) were utilized to 

analyze the data. 

 

Cell proliferation and plate clonality assays 

 

The proliferation assay was assessed using Cell 

Counting Kit-8 (CCK-8). Briefly, cells were seeded into 

96-well plates (2 × 103 cells/well). After transfection 

and drug treatment, the absorbance was measured at 

different points of time by a microplate reader (Bio-

Rad, CA, USA). For colony formation assays, 500 cells 

were seeded in 6-well plates and cultured for two 

weeks. After fixation and staining, colony quantity was 

counted and photographed under the optical microscope. 

 

Cell migration and invasion assays  

 

For cell migration assay, transfected Hec-1B cells  

(5× 104) were suspended in 200 μL of serum-free 

medium and seeded onto the upper chambers of the 

24-well plates with 8-μm-pore filters (Corning, NY, 

USA). 20% fetal bovine serum was added to the lower 

chamber medium. For cell invasion assay, the 

membranes of the top chambers were coated with 

Matrigel (BD, USA). After using drugs for 18-24h, the 

crossed cells were fixed, stained and counted at 

100×magnifcation. 

 

Cell wound-healing assay 

 

When cells reached 90% confluence in 6-well plates, a 

wound was scratched by utilizing with a 10-μL 

micropipette tip. After washing with PBS for three 
times, the cells were incubated in serum-free media for 

48h. The images were photographed under the inverted 

microscope. 

Statistical analysis 

 

All experiments were performed at least three times. R 

language software 3.6.3 was used in this study and the 

data presentation was conducted using Graphpad 

Prism 7. Statistical analyses between groups were 

assessed using the Student's t-test. Data are shown as 

mean ± SD. P-values < 0.05 were defined as 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Co-expression network analysis for GSE115810. 
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Supplementary Figure 2. Co-expression network analysis for GSE63678. 
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Supplementary Figure 3. Drugs targeting PPIF collected from DrugBank database. DB00091: Cyclosporine, DB00172: L-Proline, 

DB02078: Triglyme, DB08168: 7-AMINO-4-METHYL-CHROMEN-2-ONE. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Detailed lists of the intersection DEGs of GSE17025, GSE63678, GSE115810 and TCGA-UCEC. 

 

Supplementary Table 2. Detailed lists of the intersection genes of the selected modules.  

 

Supplementary Table 3. Detailed lists of the 16 common genes. 

DEGs WGCNA  DEGs|WGCNA  

HSPA4 HMGB1P1 UBE2C 

ABLIM1 ABCF1 SOWAHC 

PRKRIRP6 ABCF2 CYR61 

DDHD1 ABCG1 MYO15B 

SLC18A1 ACAA2 ARHGAP10 

STYX ACAT2 GNG11 

ANP32B ACBD7 LYPLA2 

BCAS2P2 ACE PLS1 

C17orf98 ACOT7 PPIF 

UGT1A6 ACP1 BIRC5 

ROPN1L ACVR2B PRRC2A 

SMIM5 ADD2 TICRR 

C20orf202 ADIPOR2 MUC1 

RN7SL801P ADSL VAMP8 

RN7SL567P AFG3L2 WT1 

ATAD2B TROAP CXCL12 

PEAR1 LINC00667  

RNA5SP18 NDN  

HMGN1P3  

BET1   

C14orf159  

CLEC10A   

STAMBPL1  

SDHCP3   

PCED1A   

PNMA1   

CSNK1A1P1  

RN7SL446P  

SLC25A36   

BNIP3P30   

YIPF7   

SORT1   

MYO9A   

ARMC8P1   

CMTR1   



 

www.aging-us.com 4589 AGING 

CEACAM8  

ADAMTS16  

ASCC1   

ABT1   

 


