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INTRODUCTION 
 

Melanoma is one of the most malignant types of skin 

cancer with high rates of incidence worldwide [1]. 

Metastatic melanoma is highly resistant to 

chemotherapy and the survival rate of patients with 

advanced metastatic melanoma is only 15% [2, 3]. 

Therefore, there is an urgent need to identify new 

therapeutic targets for melanoma. 

 

Long non-coding RNAs (lncRNAs) are a class of non-

protein coding transcripts that are >200 nucleotides in 

length and play critical roles in several physiological 

processes including metabolism as well as and the 

development and functioning of the cardiovascular and 
nervous systems [4]. Moreover, lncRNAs regulate the 

growth and progression of multiple malignant tumors 

[5–7]. LncRNAs such as AFAP1-AS1, MIR4435-2HG, 

and LUADT1 have been implicated in the regulation of 

melanoma growth and progression [8–10]. LncRNA 

MIR205HG plays a critical role in lung squamous cell 

carcinoma, prostate cancer, and cervical cancer [11–13] 

Liu et al showed that MIR205HG expression correlated 

with the prognosis of melanoma patients [14]. However, 

the biological function of MIR205HG in melanoma has 

not been fully investigated. 

 

A class of small non-coding RNAs called microRNAs 

(miRNAs) regulate tumor growth and progression by 

directly targeting specific mRNAs and downregulating 

the expression of critical tumor suppressor and 

oncogenic proteins [15, 16]. Metastatic melanoma is 

regulated by several miRNAs [17, 18]. MiR-299-3p is a 

tumor suppressor miRNA that inhibits progression of 

prostate cancer by modulating androgen receptor and 

VEGFA signaling pathways [19]. MiR-299-3p also 
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ABSTRACT 
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knockdown significantly decreased the viability of melanoma cells. Dual luciferase reporter and RNA pull-down 
assays confirmed that MIR205HG directly binds to microRNA (miR)-299-3p. Targetscan analysis and dual 
luciferase reporter assays showed that miR-299-3p directly binds to the 3’UTR of VEGFA mRNA. Wound healing 
and transwell invasion assays showed that MIR205HG knockdown decreased in vitro migration and 
invasiveness of melanoma cells, and these effects were reversed by treatment with miR-299-3p inhibitor. 
MIR205HG-silenced melanoma cells showed increased miR-299-3p expression and lower levels of both VEGFA 
mRNA and protein. Tumor volumes were significantly smaller in nude mice xenografted with MIR205HG 
knockdown melanoma cells than the controls. These results demonstrate that MIR205HG supports melanoma 
growth via the miR-299-3p/VEGFA axis. This makes MIR205HG a potential therapeutic target for the treatment 
of melanoma. 
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inhibits progression and metastasis of pancreatic cancer 

by inhibiting the Notch1 signaling pathway via TUG1 

[20]. However, the role of miR-299-3p in melanoma is 

unclear. Vascular endothelial growth factor A (VEGFA) 

plays an important role in the growth, progression, and 

angiogenesis in several cancers including melanomas 

[21–23]. Wang et al demonstrated that miR-299-3p 

suppressed the proliferation and invasion of human 

colon carcinoma cells by targeting VEGFA transcripts 

and inhibiting VEGFA protein expression [24]. 

However, the relationship between miR-299-3p and 

VEGFA has not been established in melanoma. In this 

study, we investigated the role of MIR205HG/miR-299-

3p/VEGFA axis in melanoma growth and progression. 

 

RESULTS 
 

Knockdown of MIR205HG significantly reduces 

proliferation of melanoma cells 

 

Quantitative real-time PCR (qRT-PCR) analysis 

showed that MIR205HG levels were significantly 

upregulated in melanoma cancer cells (A375, MNT-1 

and SK-MEL-28 cells) compared to the normal human 

melanocytes (Figure 1A). Next, qRT-PCR analysis 

showed that MIR205HG levels were significantly 

reduced in the MIR205HG-shRNA1 and MIR205HG-

shRNA2-transfected A375 and MNT-1 cells compared 

to their corresponding controls (Figure 1B, 1C). 

MIR205HG knockdown was higher in the melanoma 

cells with MIR205HG-shRNA2 compared to 

MIR205HG-shRNA1. Hence, we selected MIR205HG 

shRNA2 for further experiments. CCK-8 assay results 

showed that knockdown of MIR205HG in A375 and 

MNT-1 cells significantly reduced cell viability 

compared to the corresponding controls (Figure 1D, 

1E). Furthermore, TCGA database analysis showed that 

high expression of MIR205HG was closely associated 

with lower survival rate of patients with melanoma 

(Figure 1F). Besides, QRT-PCR analysis showed that 

MIR205HG was significantly upregulated in melanoma 

tissues compared to the adjacent normal skin tissues 

(n=30; Figure 1G). Taken together, these results 

demonstrate that knockdown of MIR205HG 

significantly suppressed proliferation of melanoma 

cells. 

 

 

 

Figure 1. Knockdown of MIR205HG significantly decreased the viability of melanoma cells. (A) QRT-PCR analysis shows the 

expression of MIR205HG in melanocytes, A375, MNT-1, and SK-MEL-28 cells. (B, C) QRT-PCR analysis shows the expression of MIR205HG in 
(B) MNT-1 and (C) A375 cells transfected with MIR205HG shRNA1, shRNA2 or sh-NC for 24 h. (D, E) CCK-8 assay analysis results show the 
viability of blank, vector-control, and MIR205HG shRNA2-transfected MNT-1 and A375 cells for 0, 24, 48 or 72 h. (F) TCGA database analysis 
shows the correlation between MIR205HG expression and survival rates of melanoma patients. The analysis included the data from 531 
patients with melanoma. Among the patients with melanoma, 209 patients had high expression of MIR205HG, while the others had low level 
of MIR205HG. (G) QRT-PCR analysis shows the expression of MIR205HG in paired melanoma and adjacent normal skin tissues (n=30). Note: 
All experiments were performed at least thrice independently. *P<0.05 and **P<0.01 vs. control. 
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MIR205HG directly binds to miR-299-3p in 

melanoma cells 

 

We explored the miRDB (http://www.mirdb.org/) and 

starBase (https://web.archive.org/web/201102221117 

21/http://starbase.sysu.edu.cn/) database, and then 

identified miR-299-3p as the most potential target 

miRNA of MIR205HG (Figure 2A). In addition, 

miR-299-3p has been reported to play a key role in 

progression of malignant tumor [20]. Therefore, 

miR-299-3p was selected from starBase and miRDB. 

Furthermore, dual luciferase reporter assay results 

confirmed that miR-299-3p was the downstream 

target

 

 
 

Figure 2. MIR205HG directly binds to miR-299-3p. (A) The predicted target binding site for miR-299-3p in the 3'UTR of lncRNA 

MIR205HG based on the miRDB and starBase database analysis. (B) Dual luciferase reporter assay results show the luciferase activity in A375 
cells co-transfected with plasmid containing wild-type (WT) or mutant (MT) MIR205HG 3′-UTR and miR-299-3p. (C) QRT-PCR analysis shows 
miR-299-3p in A375 cells transfected with miR-299-3p mimics or inhibitor for 24 h and the corresponding control A375 cells. (D) RNA 
pulldown assay results show the miR-299-3p levels associated with the biotinylated MIR205HG and control probes. Note: All experiments 
were performed thrice. **P<0.01 vs. control. 

http://www.mirdb.org/
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miRNA of MIR205HG (Figure 2B). QRT-PCR analysis 

showed that miR-299-3p levels were significantly 

higher in A375 cells transfected with miR-299-3p 

mimics and significantly reduced in those transfected 

with the miR-299-3p inhibitor (Figure 2C). RNA pull-

down assay showed significant enrichment of miR-299-

3p with the biotinylated MIR205HG probe compared to 

the corresponding control (Figure 2D). Overall, these 

results confirmed that miR-299-3p was directly bound 

by MIR205HG. 

 

Silencing of MIR205HG induces apoptosis of 

melanoma cells 

 

Flow cytometry analysis showed that knockdown of 

MIR205HG significantly increased apoptosis in the 

A375 and MNT-1 cells compared to the corresponding 

controls (Figure 3A–3D). However, treatment with the 

miR-299-3p inhibitor reduced apoptotic rates in the 

MIR205HG-knockdown A375 and MNT-1 cells (Figure 

3A–3D). This suggested that MIR205HG silencing 

increased apoptosis of melanoma cells via miR-299-3p. 

We chose MIR205HG-shRNA2-transfected A375 cells 

for further experiments because they were more 

sensitive than the MIR205HG-shRNA2-transfected 

MNT-1 cells. 

 

MIR205HG silencing inhibits migration and 

invasion of melanoma cells via miR-299-3p 

 

Next, we analyzed the effects of MIR205HG 

knockdown on the invasiveness and migration of A375

 

 

Figure 3. Silencing of MIR205HG promotes apoptosis in melanoma cells. Representative FACS plots show Annexin-V FITC (X-axis) 

and propidium iodide (PI; Y-axis) stained (A, B) control and MIR205HG shRNA2-transfected A375 cells and (C, D) control and MIR205HG 
shRNA2-transfected MNT-1 cells. The apoptotic rate was calculated based on the percentage of Annexin-V+ PI+ and Annexin-V+ PI- cells in 
each group. All experiments were performed thrice. **P<0.01 compared to the control; ##P<0.01 vs. MIR205HG shRNA2-transfected cells. 
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melanoma cells using the transwell and wound healing 

assays, respectively. MIR205HG knockdown 

significantly reduced the invasiveness of A375 cells, 

but these effects were partially rescued by treatment 

with the miR-299-3p inhibitor (Figure 4A, 4B). 

Furthermore, MIR205HG knockdown significantly 

reduced the migration of A375 cells, but, these effects 

were significantly reversed by treatment with the miR-

299-3p inhibitor (Figure 4C, 4D). Taken together, 

these data demonstrate that MIR205HG silencing 

inhibits migration and invasion of melanoma cells via 

miR-299-3p. 

 

 

Figure 4. MIR205HG knockdown inhibits migration and invasion of melanoma cells. (A, B) Transwell assay results show the 

invasiveness of A375 cells transfected with MIR205HG shRNA2 or MIR205HG shRNA2 + miR-299-3p inhibitor. (C, D) Wound healing assay 
results show the migration ability of A375 cells transfected with MIR205HG shRNA2 or MIR205HG shRNA2 + miR-299-3p inhibitor. All 
experiments were performed thrice. **P<0.01 vs. control; ##P<0.01 vs. MIR205HG shRNA2. 
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MiR-299-3p directly binds to 3’UTR of VEGFA in 

melanoma cells 

 

We analyzed the targetscan (http://www.targetscan 

.org/vert_71/) and miRDB (http://www.mirdb.org/) 

database, and then identified 3’-UTR of VEGFA as a 

potential target of miR-299-3p (Figure 5A). Since 

VEGFA is involved in tumorigenesis of melanoma [21, 

22], it was selected for further analysis. Furthermore, 

we confirmed that VEGFA was a direct target of miR-

299-3p using the dual luciferase report assay (Figure 

5B). In addition, miR-299-3p mimics significantly 

inhibited the expression of VEGFA in melanoma cells 

in a dose-dependent manner (Figure 5C). QRT-PCR 

analysis showed that the expression of VEGFA mRNA 

was significantly downregulated in MIR205HG

 

 

Figure 5. VEGFA is the direct target of miR-299-3p. (A) The predicted binding site for miR-299-3p in the 3'UTR of the VEGFA transcript 

between nucleotides 359-366. (B) Dual luciferase reporter assay results show the luciferase activity in A375 cells co-transfected with the 
plasmid containing wild-type (WT) or mutant (MT) VEGFA 3′-UTR and miR-299-3p. (C) QRT-PCR analysis shows the expression levels of VEGFA 
mRNA in control, 5 nM miR-299-3p mimics-transfected, 10 nM miR-299-3p mimics-transfected and 20 nM miR-299-3p mimics-transfected 
A375 cells. (D) QRT-PCR analysis shows the expression levels of VEGFA mRNA in control, MIR205HG shRNA2-transfected, MIR205HG shRNA2 
plus miR-299-3p inhibitor transfected A375 cells. (E, F) Representative western blots show the levels of VEGFA, cleaved caspase3, E-cadherin, 
α-SMA, and Vimentin proteins in control, MIR205HG shRNA2-transfected, MIR205HG shRNA2 plus miR-299-3p inhibitor transfected A375 
cells. The relative expression of these proteins was estimated using β-actin as the loading control. Note: All experiments were performed 
thrice. **P<0.01 vs. control; ##P<0.01 vs. MIR205HG knockdown A375 cells. 

http://www.targetscan/
http://www.targetscan/
http://www.mirdb.org/
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shRNA2-transfected A375 cells compared to the 

corresponding controls, but VEGFA mRNA expression 

was restored partially by treatment with the miR-299-3p 

inhibitor (Figure 5D). Western blot analysis showed that 

cleaved caspase-3 and E-cadherin levels were 

significantly upregulated in MIR205HG-silenced A375 

cells compared to the corresponding controls, but were 

significantly reduced in the MIR205HG-silenced A375 

cells treated with the miR-299-3p inhibitor (Figure 5E, 

5F). In contrast, MIR205HG shRNA2-transfected A375 

cells showed reduced levels of VEGFA, α-SMA and 

Vimentin proteins, but these effects were reversed by 

treatment with the miR-299-3p inhibitor (Figure 5E, 5F). 

These results demonstrate that MIR205HG regulates 

melanoma progression via the miR-299-3p/VEGFA axis. 

 

Downregulation of MIR205HG or miR-299-3p agomir 

significantly suppressed the growth of melanoma in vivo 

 

Finally, we analyzed the role of MIR205HG in 

melanoma by generating the xenograft melanoma model 

mice. We observed that tumor volumes (Figure 6A), 

tumor sizes (Figure 6B), and tumor weights (Figure 6C) 

were significantly reduced in nude mice xenografted 

with MIR205HG-silenced A375 cells compared to the 

controls. Moreover, VEGFA protein levels were 

significantly downregulated (Figure 6D, 6E) and 

cleaved caspase-3 levels were significantly increased 

(Figure 6D, 6E) in tumor tissues derived from 

MIR205HG-silenced A375 cells compared to the 

controls. Additionally, the data of IHC staining 

indicated that knockdown of MIR205HG notably 

inhibited the expression of VEGFA but increased the 

level of active caspase 3 in tumor tissues of mice 

(Figure 6F). On the other hand, miR-299-3p agomir 

significantly decreased the tumor size and weight in 

mice, while downregulation of miR-299-3p notably 

promoted the tumor growth of melanoma in mice 

(Supplementary Figure 1A–1C). Taken together, these 

results demonstrate that MIR205HG silencing or miR-

299-3p agomir significantly inhibits the in vivo growth 

of melanoma. 

 

 

Figure 6. In vivo growth of melanoma is inhibited by MIR205HG silencing. (A) Tumor volumes in nude mice subcutaneously injected 
with control and MIR205HG shRNA2-transfected A375 cells. Tumor volumes were measured weekly. (B) Representative images show the 
xenograft tumors in nude mice at 4 weeks after subcutaneously injecting control or MIR205HG shRNA2-transfected A375 cells. (C) Tumor weights 
in nude mice subcutaneously injected with control and MIR205HG shRNA2-transfected A375 cells (n=4 per group). (D, E) Western blot analysis 
shows the expression levels of VEGFA and cleaved caspase3 in xenograft tumor tissues harvested from nude mice subcutaneously injected with 
control and MIR205HG shRNA2-transfected A375 cells. The relative protein expression levels were quantified by normalizing to endogenous β-
actin as the loading control. All experiments were performed thrice. (F) The expressions of active caspase 3 and VEGFA in tumor tissues of mice 
were detected by IHC staining. Black arrows indicate the positive cells after IHC staining. **P<0.01 vs. control. 
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DISCUSSION 
 

Previous reports have shown that lncRNAs play an 

important role in melanoma [25, 26]. In the present 

study, we demonstrated that MIR205HG levels were 

significantly upregulated in the human melanoma cells. 

Liu et al showed that MIR205HG expression levels 

were closely associated with the prognosis of melanoma 

[14]. Our data is consistent with this finding and 

suggests that MIR205HG is a potential prognostic 

biomarker in melanoma. A previous study reported that 

MIR205HG inhibits progression of cervical cancer by 

interacting with SRSF1 and modulating KRT17 

expression [13]. This demonstrates contrasting roles for 

MIR205HG in different tumor types. Meng et al 

demonstrated that MIR205HG modulated the 

progression of atherogenesis by sponging miR-205-5p 

[30].  

 

Next, we explored the mechanism by which 

MIR205HG regulated in vitro and in vivo melanoma 

growth and progression. We identified miR-299-3p as 

the downstream target miRNA of MIR205HG. 

MiRNAs are highly conserved small non-coding RNAs 

that regulate multiple biological functions by 

suppressing the expression of their target proteins at the 

post-transcriptional level by binding to the 3’UTRs of 

the mRNAs [15, 27]. Previous studies demonstrate that 

miR-299-3p plays a tumor-suppressor function in 

multiple malignancies [20, 28, 29]. Our study also 

demonstrates that miR-299-3p inhibits melanoma 

growth and progression.  

 

Several studies have shown that miRNAs exert their 

function by downregulating the expression of their 

target genes by directly binding to specific miRNA-

recognition sequences in the 3’UTR region of the 

specific target mRNAs [31, 32]. We demonstrated that 

VEGFA was a direct target of miR-299-3p in the 

melanoma cells. VEGFA plays a key role in tumor 

progression by promoting angiogenesis in the tumor 

tissues [33–36]. Our study showed that MIR205HG 

enhanced melanoma growth and progression by 

targeting the miR-299-3p/VEGFA axis. MicroRNA-

299-3p inhibits the proliferation and invasion of colon 

cancer cells by targeting VEGFA [24]. VEGFA plays a 

key role in angiogenesis and invasion of several 

different cancer cell types [37, 38].  

 

We also demonstrated that MIR205HG silencing 

inhibited the in vitro migration and invasion of 

melanoma cells. Previous studies have shown that 

epithelial-mesenchymal transition (EMT) process plays 

a critical role in the metastasis of various cancers [39, 

40]. During tumor progression, E-cadherin levels are 

downregulated [40] and the levels of vimentin and α-

SMA are upregulated [41, 42]. Furthermore, high 

VEGFA expression positively correlates with the EMT 

process [43, 44]. Taken together, our data demonstrates 

that MIR205HG knockdown inhibits melanoma growth 

and progression by suppressing VEGFA expression and 

EMT via miR-299-3p. 

 

Our study has several limitations. Firstly, our study 

demonstrated that miR-299-3p was sponged by 

MIR205HG, but did not determine other MIR205HG-

related miRNAs. Moreover, we only focused  

on the role of the VEGFA/EMT axis and did not 

investigate the involvement of other pathways 

involved in melanoma progression. Therefore, further 

investigations are required to unravel the mechanistic 

details underlying the oncogenic role of MIR205HG 

in melanoma.  

 

In summary, our study demonstrates that silencing 

MIR205HG suppresses melanoma growth and 

progression by inhibiting the VEGFA expression and 

EMT via miR-299-3p. Thus, MIR205HG is a potential 

therapeutic target for melanoma. 

 

MATERIALS AND METHODS 
 

Melanoma cell lines and cell culture 

 

We purchased human melanocytes, melanoma cell lines 

(MNT-1, A375, and SK-MEL-28), and 293T cell lines 

from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). They were cultured in RPMI-

1640 medium (ThermoFisher, Shanghai, China) with 

10% fetal bovine serum (FBS) in a humidified incubator 

maintained at 37° C and 5% CO2. 

 

Cell transfections 

 

We obtained lentiviral vector (pLVX-IRES-Puro) 

cloned with the negative control (NC) or short-hairpin 

RNAs against lncRNA MIR205HG (MIR205HG 

shRNA1 or MIR205HG shRNA2) from the Hanbio 

Biotechnology Co., Ltd (Shanghai, China). The 

negative control (NC) and MIR205HG shRNA1 or 

MIR205HG shRNA2 lentiviral vectors were transfected 

into 293T cells and the cells were incubated at 37° C for 

48 h. Subsequently, we removed cell debris and cells by 

centrifugation at 956×g for 15 min and passed the 

supernatants through a 45 μm filter (Costar, Cambridge, 

MA, USA) to purify the lentiviral particles. We then 

centrifuged melanoma cells (5×106/well) with the 

purified lentiviruses at 956×g for 15 min and then 

incubated the cells for 48 h in RPMI-1640 medium 

containing puromycin (Sigma, MA, USA) for selection. 

The efficiency of MIR205HG knockdown was verified 

by qRT-PCR.  
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We purchased miR-299-3p mimics, miR-299-3p 

inhibitor or negative control RNA (NC) from 

GenePharma (Shanghai, China) and transfected them 

into melanoma cells using Lipofectamine 2000 as 

previously described [45]. The efficiency of transfection 

was verified by qRT-PCR. 

 

Melanoma patient tissues  

 

We collected 30 pairs of melanoma and adjacent 

normal tissues between December 2018 and 

December 2019 from melanoma patients at the 

Xinxiang Central Hospital. We also obtained clinical 

and pathological data of these patients as well as their 

written informed consent. The tissue samples were 

stored at -80° C. The present study was approved by 

the Ethics Committee of the Xinxiang Central 

Hospital. The information of patients has been 

supplemented in Table 1. 

 

Quantitative real time polymerase chain reaction 

(qRT-PCR) 

 

Total RNA was extracted from the melanoma cell lines 

using TRIzol reagent (TaKaRa, Tokyo, Japan) according to 

the manufacturer's protocol. First-strand cDNA synthesis 

was performed using the PrimeScript RT reagent Kit 

(Takara) according to the manufacturer's protocol. Then, 

quantitative PCR (qPCR) was performed in an ABI7500 

real-time PCR system using SYBR green(Takara). The 

qRT-PCR protocol was 94° C for 2 mins followed by 35 

cycles of 94° C for 30 s and 55° C for 45 s.  

 

All the qRT-PCR primers were obtained from 

GenePharma (Shanghai, China). These include  

 

MIR205HG (forward): 5’-GACCGTTGTTAGCACGC 

CTT-3’;  

MIR205HG (reverse): 5’-CACGTATCGGTCCGTGT 

TGG-3’;  

miR-299-3p (forward): 5’-TTCCATACTGCAACGCC 

ATACC-3’;  

miR-299-3p (reverse): 5’-GCAATCCGCCCTTAGTC 

CAA-3’;  

VEGFA (forward): 5’-GAACTTTCTGCTGTCTTGG 

GTG-3’; 

VEGFA (reverse): 5’-GGCAGTAGCTGCGCTGA 

TAG-3’;  

U6 (forward): 5’-CGTCTTCCCAGGACCGTA-3’;  

U6 (reverse): 5’-CGAATCCTGACATTAAGTCG-3’;  

β-actin (forward): 5’-CCTGCGAAACACCTTGATCG-

3’, and  

β-actin (reverse): 5’-TCGTCATGTTCCCCACTTCG-3’.  
 

U6 was used as reference to quantify miR-299-3p 

levels. β-actin was used to quantify MIR205HG levels. 

The relative levels of miR-299-3p and MIR205HG 

expression were evaluated using the 2-ΔΔCT method. 

 

The cancer genome atlas (TCGA) 

 

The correlation between MIR205HG expression and 

survival rate of patients with melanoma was analyzed 

by TCGA. The analysis included the data from 531 

patients with melanoma. Among the patients with 

melanoma, 209 patients had high expression of 

MIR205HG, while the others had low level of 

MIR205HG. Meanwhile, the data of TCGA was 

analyzed from Gene Expression Profiling Interactive 

Analysis (GEPIA) as previously described [46]. 

 

CCK-8 assay 

 

Cell counting kit-8 (CCK8, Beyotime, Shanghai, China) 

assay was used to analyze cell viability. We seeded 

5×103 MNT-1 or A375 cells per well in the blank, 

negative control (NC) or MIR205HG knockdown 

(MIR205HG shRNA2) groups in 96-well plates for 0, 

24, 48 and 72 h, respectively. Subsequently, we added 

10 μl CCK-8 reagent and incubated cells further for 2 h 

at 37° C. Then, we measured absorbance at 450 nm 

using a microplate reader (Thermo Fisher Scientific, 

Waltham, MA, USA). 

 

RNA pull-down 

 

We used the Biotin RNA Labeling Mix (Roche, Basel, 

Switzerland) according to the manufacturer’s 

instructions to generate the biotinylated control and 

MIR205HG probes. We then transfected biotinylated-

MIR205HG or control probes into the A375 cells. The 

RNA structure buffer (Thermo Fisher Scientific, MA, 

USA) was used to induce secondary structure formation 

in the biotin-labeled MIR205HG or control RNAs. The 

streptavidin beads (Thermo Fisher Scientific, Waltham, 

MA, USA) were washed three times with the 500 μL of 

RNA immunoprecipitation wash buffer (Thermo) and 

then incubated with the biotinylated RNAs at 4° C 

overnight. The overnight-incubated mixture was 

separated by a magnetic field to obtain streptavidin 

bead-RNA complexes. Then, the A375 cell lysates were 

incubated with the streptavidin bead-RNA complexes 

on a rotator at room temperature for 1 h followed by 

separation with a magnetic field to obtain streptavidin 

bead-RNA-protein complexes, which were then 

analyzed by qRT-PCR and western blotting. 

 

Western blotting 

 
Total protein lysates from the melanoma cells were 

prepared by incubation with the RIPA buffer (Cell 

Signaling Technology, Danvers, MA, USA) on ice  
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Table 1. The clinical information for patients with melanoma. 

*P<0.05, **P<0.01. 

 

according to the manufacturer’s instructions. Then, 

equal amounts of total protein lysates were separated on 

a 10% SDS-PAGE. The separated proteins were 

transferred onto the polyvinylidene difluoride (PVDF) 

membranes. The membranes were then blocked with 

5% BSA (Gibco, Grand Island, NY, USA) in Tris-

buffered saline (TBS) containing 0.5% Tween-20 

(TBST) for 60 min. The blots were then incubated 

overnight at 4° C with primary antibodies against 

VEGFA (1:1000, Abcam, CA, USA), cleaved caspase-3 

(1:1000, Abcam), α-SMA (Abcam, 1:1000), E-cadherin 

(Abcam, 1:1000), vimentin (Abcam, 1:1000), and β-

actin (Abcam, 1:1000). Then, after washing three times 

with 1X TBST buffer for 5 min, the membranes were 

incubated with horseradish peroxidase (HRP)-

conjugated goat anti-rabbit IgG polyclonal secondary 

antibody (1:5000; Beyotime Biotechnology, Shanghai, 

China) at room temperature for 1 h. The blots were 

developed with the ECL+Plus chemoluminescence 

western blot system kit (Amersham, Cytiva, Shanghai, 

China). The density of the protein bands was measured 

using the ImageJ software.  

 

Cell apoptosis  

 

We centrifuged 1×106 MNT-1 or A375 cells per well in 

a 6-well plate at 1000 rpm for 5 min. Then, after 

removing the supernatant, we incubated the cells with 5 

μl Annexin V-FITC (20 μg/ml) and 5 μl propidium (PI; 

50 μg/ml) in 100 μl Annexin-V binding buffer for 15 

min in the dark. The stained cells were then analyzed in 

a BD flow-cytometer (BD, Franklin Lake, NJ, USA) 
and the proportions of apoptotic cells (Annexin-V+ PI- 

plus Annexin-V+ PI+) were estimated using the 

Fluorescence activated Cell Sorting (FACS, BD, 

Franklin Lake, NJ, USA) and Flowjo software (BD, 

Franklin Lake, NJ, USA).  

 

Dual luciferase reporter assay 

 

The wild-type and mutant constructs of MIR205HG 

were cloned into the pmirGLO Dual-Luciferase miRNA 

Target Expression Vector (Promega, USA). Then, 

melanoma cells were co-transfected with wild-type or 

mutant VEGFA 3’UTR and miR-NC or miR-299-3p 

mimics using Lipofectamine 3000. The transfection 

efficacy was analyzed using pmirGLO reporter as an 

internal control. The luciferase activities were analyzed 

at 48 h using the Dual-Luciferase Reporter Assay 

System (Promega, USA) according to the 

manufacturer’s instructions. The parts, sequences and 

transcripts of MIR205HG were presented at 

https://www.ncbi.nlm.nih.gov/nuccore/NR_145433.1. 

The information originated from National Center for 

Biotechnology Information (NCBI). 

 

Transwell invasion assay 

 

For the in vitro invasion assay, the upper chambers of 

the Transwell plates (Corning, New York, NY, USA) 

were coated with 100 μl of Matrigel (BD Biosciences, 

Franklin Lake, NJ, USA). Then, we seeded the 

melanoma cells (1×105 cells) in FBS-free RPMI-1640 

medium into the upper chamber, and added RPMI-1640 

supplemented with 10% FBS into the lower chamber. 

The cells were incubated at 37° C for 24 h in a 

humidified incubator maintained at 5% CO2. Then, the 
cells attached to the underside of the membrane were 

fixed with 4% paraformaldehyde and stained with 0.5% 

crystal violet solution. Finally, we captured images and 

 Number MIR205HG High expression 

(n=12) 

MIR205HG Low expression 

(n=8) 

P value 

Age    0.6903 

≥60 14 8 6  

<60 6 4 2  

Gender     

Male 9 5 4 0.7136 

Female 11 7 4  

Tumor size     

≥3 cm 12 10 2 0.0091** 

<3 cm 8 2 6  

Metastasis     

Yes 11 9 2 0.0277* 

No 9 3 6  

https://www.ncbi.nlm.nih.gov/nuccore/NR_145433.1
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counted the numbers of invading cells under a light 

microscope. 

 

Wound healing assay 

 

We seeded 5×103 A375 cells into each well of a 24-well 

cell culture cluster plate. After the cells reached 80-90% 

confluence, we scraped the cell monolayer with a small 

pipette head. Then, after washing thrice with PBS, we 

added serum-free medium and cultured the cells further. 

We recorded the scratch widths at 0 and 48 h using an 

optical microscope. The experiment was repeated 3 times. 

 

Animal study 

 

The in vivo animal experiments were performed in 

accordance with the National Institutes of Health 

(NIH) guide for the care and use of laboratory animals 

and the protocol was approved by the Ethics 

Committees of Xinxiang Central Hospital. We 

purchased eight 6-week old BALB/nude mice from 

Vital River (Beijing, China). The control, MIR205HG 

shRNA2, miR-299-3p agomir or miR-299-3p 

antagomir-transfected A375 cells (1×106) were 

subcutaneously injected into the right flanks of the 

nude mice (4 mice per group) as previously described 

[47]. Tumor growth was measured weekly in all mice 

for four weeks. Tumor volume was calculated as 

length× (width)2/2 as previously described [8]. The 

animals were sacrificed at 4 weeks after xenografting 

the melanoma cells. The tumor tissues were harvested 

and weighed, and the expression of VEGFA and 

active caspase 3 in tumor tissues of mice were 

detected by immunohistochemistry (IHC) staining as 

previously reported [48]. 

 

Statistical analysis  

 

All experiments were performed at least thrice 

independently. The data are represented as 

means ± standard deviation (SD). The data between 

two groups were compared using the unpaired 

Student’s t-test, whereas, data between multiple 

groups were compared using one-way analysis of 

variance (ANOVA) followed by Tukey test 

(GraphPad Prism7). P<0.05 was considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. MiR-299-3p agomir significantly inhibited the growth of melanoma in vivo. (A) Tumor volumes in nude 

mice subcutaneously injected with control, miR-299-3p agomir and miR-299-3p antagomir-transfected A375 cells. Tumor volumes were 
measured weekly. (B) Representative images show the xenograft tumors in nude mice at 4 weeks after subcutaneously injecting control, miR-
299-3p agomir and miR-299-3p antagomir-transfected A375 cells. (C) Tumor weights in nude mice subcutaneously injected with control, miR-
299-3p agomir and miR-299-3p antagomir-transfected A375 cells (n=4 per group). *P<0.05, **P<0.01 vs. control.  
 

 


