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INTRODUCTION 
 

Cardiopulmonary bypass (CPB) with deep hypothermia 

circulatory arrest (DHCA) is a technique that supports 

vital organs and is often used during the repair of 

complex neonatal congenital heart, adult congenital 

heart, and aortic arch diseases. DHCA provides a 

relatively bloodless field to facilitate the repair of 

complex congenital or acquired pathologies during 

cardiac surgery. However, it contributes to profound 

perturbations in inflammatory and oxidative stress 

effects, which are collectively implicated in the 
pathogenesis of perioperative cerebral injury [1–3]. 

Therefore, it is necessary to understand the 

pathophysiology of DHCA to reduce its neurological 

complications. 

The NF-κB pathway is a critical regulator of 

neuroinflammation-associated disease pathogenesis [4]. 

Our previous study demonstrated that the synthesis of 

pro-inflammatory cytokines such as IL-6, IL-1β, and 

TNF-α after DHCA was mediated through NF-κB-

dependent signaling [5]. Accumulating evidence has 

shown that oxidative stress plays a pivotal role in cerebral 

ischemia and reperfusion (I/R) injury [6, 7]. Nuclear 

factor E2–related factor 2 (Nrf2) is one of the key 

modulators of defense against oxidative stress. Nrf2 

binds to antioxidant response element (ARE) sequences, 

upregulating the antioxidant enzyme haemoxygenase-1 

(HO-1) [8, 9]. This suggests that the Nrf2 pathway may 

play an important role in protecting the brain from I/R 

injury. Therefore, it may be feasible to alleviate DHCA-

induced brain injury by regulating the NF-κB and Nrf2 
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ABSTRACT 
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plus-maze, Y-maze, and Morris water maze tests. Levels of inflammatory cytokines, oxidative stress indices, and 
brain neurotrophins were measured by ELISA. Microglial activation and cell death was measured by 
immunofluorescence staining and TUNEL assay, respectively. Finally, activation of the Nrf2 pathway and NF-κB 
were detected by western blot. The elevated plus-maze, Y-maze, and Morris water maze tests all showed that 
TPL mitigated anxiety-like behavior, working memory, spatial learning, and memory in DHCA rats. TPL inhibited 
inflammatory responses and oxidative stress, as well as increased brain neurotrophin levels in DHCA rats. 
Moreover, TPL attenuated microglia activation and cell death in DHCA rats. Finally, TPL activated the Nrf2 
pathway and inhibited NF-κB activity in DHCA rats. These results demonstrated that TPL improved 
neurobehavioral functions, neuroinflammation, and oxidative stress in DHCA rats, which may be associated 
with the Nrf2 and NF-κB pathways. 
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pathways to inhibit inflammation and oxidative stress, 

respectively. 

 

Over the past decade, the neuroprotective effects of 

phytochemicals have been extensively studied. 

Triptolide (TPL) is an active compound derived from 

Tripterygium wilfordii [10]. Studies have shown that 

TPL is a candidate neuroprotective agent that can 

improve neurodegenerative diseases by reducing the 

production of inflammatory cytokines and alleviating 

oxidative stress. TPL has been shown to reduce 

oxidative stress and improve cognitive impairment in a 

rat model of vascular dementia [11, 12]. It was also 

reported that TPL exerts anti-inflammatory and 

antioxidative effects in a transgenic mouse model of I/R 

injury through anti-inflammatory and antioxidant 

functions [13–15]. However, the beneficial effects of 

TPL on DHCA-induced cerebral injury have not been 

studied. This study investigated the neuroprotective 

effects of TPL on a rat DHCA model. We hypothesized 

that TPL could inhibit inflammation and oxidative stress 

by regulating the NF-κB and Nrf2 pathways, thereby 

reducing cerebral damage caused by DHCA. Our study 

provides novel insights into the in vivo mitigation of 

neurological damage following DHCA by TPL. 

 

RESULTS 
 

TPL improved the neurobehavioral functions of 

DHCA model rats 

 

In the EPM test, the percentage of open-arm entries and 

the open-arm time of rats subjected to DHCA were 

decreased compared with the intact control and sham 

groups (P<0.001). However, 100 μg/kg, 200 μg/kg, and 

300 μg/kg TPL treatment increased the percentage of 

open-arm entries compared with the DHCA group 

(P<0.01–0.001). Furthermore, 200 μg/kg and 300 μg/kg 

TPL increased the percentage of open-arm time 

compared with the DHCA group (P<0.001) (Figure 1A). 

 

Results of the Y-maze test showed that DHCA decreased 

the percentage of correct alternations compared with the 

intact control and sham groups (P<0.001). TPL 

treatments of 200 μg/kg and 300 μg/kg significantly 

increased the percentage of correct alternations compared 

with the DHCA group (P<0.001) (Figure 1B). 

 

In the MWM test, there was no difference in escape 

latency, speed, or travel distance among the groups in 

the cued phase (Figure 1C). The navigation test showed 

that the escape latency of each group decreased with 

increasing number of training days. Compared with the 

DHCA group, the escape latencies of the different TPL 

treatments were significantly shortened (P<0.05–0.001). 

On day 7, the space exploration test indicated that the 

time spent in the target quadrant of rats subjected to 

DHCA was reduced compared with the intact control 

and sham groups (P<0.001). In contrast, rats treated 

with TPL at doses of 200 μg/kg and 300 μg/kg spent 

more time in the goal quadrant (P<0.01–0.001). The 

swimming speeds of each group were not significantly 

different (Figure 1D). 

 

TPL inhibited DHCA-induced inflammatory 

responses in model rats 

 

After DHCA, the inflammatory cytokines TNF-α, IL-1β, 

and IL-6 were increased in the brain (P<0.001), and 

different doses of TPL treatment decreased their levels 

compared with the DHCA group (P<0.05–0.001) (Figure 

2A–2C). Consistent with results from the brain, TPL 

treatment also mitigated the increased levels of TNF-α, 

IL-1β, and IL-6 in plasma after DHCA (P<0.01–0.001) 

(Figure 2D–2F). 

 

TPL inhibited DHCA-induced oxidative stress in 

model rats 

 

We next examined the effect of TPL on the oxidative 

stress induced by DHCA. Compared with the intact 

control and sham groups, the production of 

malondialdehyde (MDA) and reactive oxygen species 

(ROS) were increased and superoxide dismutase (SOD) 

and Glutathione (GSH) activity were reduced in brain 

tissues of rats subjected to DHCA (P<0.001). TPL 

inhibited the production of MDA and ROS, and elevated 

SOD and GSH activity (P<0.05–0.001) (Figure 3A–3D). 

Next, we measured the oxidative stress in circulation. 

Plasma levels of MDA and ROS were markedly elevated, 

and the activity of SOD and GSH were decreased in the 

DHCA group compared with the intact control and sham 

groups (P<0.001). TPL significantly reduced levels of 

ROS and MDA, and increased levels of SOD and GSH 

(P<0.05–0.001) (Figure 3E–3H). 

 

TPL increased brain neurotrophins in DHCA model 

rats 

 

As shown in Figure 4, levels of the brain neurotrophins 

BNDF, NGF, NT-3, and NT-4 were decreased in rats 

subjected to DHCA (P<0.001). In contrast, TPL 

treatment restored the BNDF, NGF, NT-3 and NT-4 

levels compared with the DHCA group in a dose 

dependent manner (P<0.05–0.001). 

 

TPL attenuated microglia activation and cell death 

in DHCA model rats 

 
Microglia activation is a critical hallmark in neuro-

inflammation. After DHCA, a significant activation of 

microglia was found, while the 200 μg/kg and  
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300 μg/kg TPL treatments remarkably mitigated 

microglia activation after DHCA (P<0.05–0.001) (Figure 

5). TPL treatment was also associated with a significant 

reduction in TUNEL-positive cells in the cortex and 

hippocampus after DHCA (P<0.05–0.001) (Figure 6). 

 

TPL activated the Nrf2/NQO-1/HO-1 pathway and 

inhibited NF-κB p65 activity in DHCA model rats 

 

By measuring the levels of Nrf2/NQO-1/HO-1 pathway 

members and of NF-κBp65, the potential molecular 

mechanism of TPL against DHCA-induced inflammation 

and oxidative stress was detected. Compared with the 

intact control and sham groups, the Nrf2 pathway was 

significantly inhibited in DHCA rats (P<0.001). In 

contrast, 200 μg/kg and 300 μg/kg TPL treatments 

upregulated the Nrf2 pathway in DHCA rats (P<0.05 or 

P<0.001) (Figure 7A, 7B). Moreover, the p-P65/P65 

ratio was remarkably increased in the DHCA group 

(P<0.001), but all TPL treatments inverted the p-

P65/P65 ratio compared with the DHCA group 

(P<0.001) (Figure 7C, 7D). 

 

 
 

Figure 1. TPL improved neurobehavioral functions of rats after DHCA. On day 3 after DHCA, rats underwent elevated plus-maze test 

(A) and Y maze test (B) to evaluate anxiety-like behavior and working memory. TPL treatment increased the percentage of open arms entries 
and open arms time after DHCA. From day 3 through day 7 after DHCA, rats underwent Morris water maze test to evaluate spatial learning 
and memory. There was no difference in escape latency, speed and travel distance among groups in the cued phase (C). The results showed 
that TPL treatment significantly shortened the escape latency and increased the time spent in goal quadrant compared to DHCA group (D). 

Values were presented as x s  (n = 10). The MWM data was analyzed by repeated measures ANOVA, with time as the repeated measure 

and Fisher’s least significance difference post hoc test. Parametric values were analyzed by one-way ANOVA followed by Bonferroni's 
multiple comparison tests. Kruskal-Wallis test followed by Dunn’s multiple comparison was used to analyze nonparametric values. A 
difference with P < 0.05 was indicated statically significant. ***P < 0.001 compared to the intact control group and sham group; ##P < 0.01, 
###P < 0.001 compared to the DHCA group. 
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DISCUSSION 
 

The results of this study demonstrated that 100–300 

μg/kg TPL treatments could significantly improve 

neurobehavioral functions and inhibit inflammation and 

oxidative stress in rats after DHCA. The Nrf2 pathway 

and NF-κB p65 activity were associated with the anti-

inflammatory and antioxidative effects of TPL in 

DHCA rats. 

 

It has been reported that more than half of patients who 

receive DHCA treatment suffer from postoperative 

neurological dysfunction [3]. Rats subjected to DHCA 

showed impaired cognitive outcomes [16, 17]. In the 

MWM test, DHCA induced impairments in spatial 

learning and memory, that manifested by extended 

escape latency and reduced crossing to target platforms 

[18]. TPL is a biologically active compound derived 

from herbal medicines that has been regarded as a drug 

candidate to alleviate neurodegenerative diseases [19–

23]. It has been reported that TPL attenuated 

neurological deficits in I/R rats and rats with ischemic 

stroke [13, 14]. In parallel with these studies, we 

showed that TPL treatment improved the spatial 

learning and working memory of rats after DHCA in the 

MWM and Y maze tests. It was also reported that 

anxiety and depression symptoms are associated with 

I/R injury [24, 25]. Our study also revealed that anxiety-

like behaviors increased after DHCA, and that TPL 

decreased anxiety-like behaviors in from DHCA. 

 

Patients receiving DHCA had increased circulating 

inflammatory cytokines [26]. In a rat DHCA model, 

blood TNF-α and IL-6 levels were elevated [27]. It is 

well known that neuroinflammation after cardiac 

surgery is affected by systemic inflammation, which is 

manifested by increased inflammatory cytokines in 

circulation and spinal fluid [28–31]. Our study showed 

that levels of the pro-inflammatory cytokines IL-6, IL-

1β, and TNF-α were increased in both plasma and brain 

tissue after DHCA. Moreover, TPL treatment not only 

reduced the levels of pro-inflammatory cytokines in 

circulation, but also affected the brain concentrations of 

corresponding inflammatory cytokines in DHCA rats. 

Microglia are the native marrow cells in the brain that 

produce pro-inflammatory mediators such as TNF-α, 

 

 
 

Figure 2. TPL inhibited DHCA induced inflammatory response in rats. On day 7 post operation, rats were euthanized and collected 

plasma and brain tissues to detect the inflammatory cytokines levels. The levels of brain TNFα (A), IL-1β (B), IL-6 (C) were decreased with TPL 
treatment after DHCA. In line with the results of brain, TPL treatment reduced the elevation of TNF-α (D), IL-1β (E) and IL-6 (F) levels in 

plasma after DHCA. Values were presented as x s  (n = 10). A difference with P < 0.05 was indicated statically significant. One-way ANOVA 

followed by Bonferroni's multiple comparison tests was performed to analyze differences between groups. 
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Figure 3. TPL inhibited DHCA induced oxidative stress in rats. On day 7 post operation, rats were euthanized and collected plasma 

and brain tissues to evaluate oxidative stress. The levels of brain MDA (A) and ROS production (B) were decreased with TPL treatment after 
DHCA. The activity of brain SOD (C) and GSH (D) was increased with TPL treatment after DHCA. Meanwhile, TPL treatment reduced plasma 

MDA (E) and ROS production (F) levels and increased the activities of SOD (G) and GSH (H) after DHCA. Values were presented as x s  (n = 

10). Values were presented as x s  (n = 10). A difference with P < 0.05 was indicated statically significant. One-way ANOVA followed by 

Bonferroni's multiple comparison tests was performed to analyze differences between groups. 
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Figure 4. TPL increased brain neurotrophins in DHCA rats. On day 7 post operation, rats were euthanized and collected brain tissues 

to measure brain neurotrophins levels. The levels of brain BDNF (A), NGF (B), NT-3 (C) and NT-4 (D) were increased with TPL treatment after 

DHCA. Values were presented as x s  (n = 10). A difference with P < 0.05 was indicated statically significant. One-way ANOVA followed by 

Bonferroni's multiple comparison tests was performed to analyze differences between groups. 
 

 
 

Figure 5. TPL attenuated the activation of microglia in DHCA rats. The effect of TPL on the activation of microglia in cortex (A) and 
hippocampus (B) after DHCA was detected by immunofluorescence assay. TPL effectively inhibited microglial activation both in cortex (C) and 

hippocampus (D) after DHCA. Values were presented as x s  (n = 10). A difference with P < 0.05 was indicated statically significant. One-way 

ANOVA followed by Bonferroni's multiple comparison tests was performed to analyze differences between groups. 
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IL-1β, IL-6, ROS, and NO after an I/R injury [32]. Our 

results of immunofluorescence staining of microglia 

found that TPL treatment remarkably mitigated microglia 

activation after DHCA, which further confirmed the anti-

neuroinflammatory effects of TPL. 

 

The pathophysiology of DHCA primarily consists of 

systemic inflammation induced by contact of the blood 

with an internal surface of the cardiopulmonary bypass 

tube and oxidative stress caused by I/R injury [33]. A 

previous study showed that DHCA rats had significantly 

increased levels of oxidative stress biomarkers, such as 

MDA and 8-Hydroxydeoxyguanosine (8-OH-dG), and 

decreased levels of the antioxidant SOD in circulation 

and cerebral tissue [34]. In line with this, we found that 

DHCA induced oxidative stress in the plasma and brain 

with increased production of oxidants MDA and ROS 

and decreased antioxidants SOD and GSH levels. Zhou et 

al [35] found that 200 μg/kg TPL inhibited the circulating 

oxidative stress by reducing MDA levels and enhancing 

SOD activity in rats with membranous nephropathy. In 

vascular dementia rats, TPL treatment significantly 

increased SOD activity and decreased MDA activity in 

the hippocampus. Additionally, TPL protected PC12 

cells from the oxidative stress induced by Aβ25–35 by 

decreasing ROS and MDA levels. Similar to the above 

findings, our data demonstrate that TPL significantly 

reduced oxidant levels of ROS and MDA, and increased 

antioxidant levels of SOD and GSH compared with the 

DHCA group in the plasma and brain. 

 

BDNF, NGF, NT3, and NT-4 are neurotrophin family 

members [36]. Elevated neurotrophin levels in the brain 

can exert a neuroprotective effect against ischemia 

damage [37–39]. Our study also demonstrated that 

levels of the neurotrophic factors BDNF, NGF, NT3, 

and NT-4 were restored by TPL treatment in DHCA 

rats. Therefore, it is possible that TPL improved 

neurological deficits in DHCA rats by increasing 

neurotrophin levels. 

 

 
 

Figure 6. TPL attenuated cell death in the hippocampus and cortex in DHCA rats. The effect of TPL on the cell death in cortex  

(A) and hippocampus (B) after DHCA was detected by TUNEL assay. TPL significantly reduced cell death both in cortex (C) and hippocampus  

(D) after DHCA. Values were presented as x s  (n = 10). A difference with P < 0.05 was indicated statically significant. One-way ANOVA 

followed by Bonferroni's multiple comparison tests was performed to analyze differences between groups. 
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To investigate the molecular mechanisms underlying 

the neuroprotective effects of TPL in DHCA rats, we 

measured the Nrf2 pathway and NF-κB p65 activity. 

Nrf2 signaling has been shown to be involved in 

oxidative stress in rats with brain I/R injury [40]. Nrf2 

exerts an antioxidant effect by regulating the 

downstream enzymes NQO-1 and HO-1 [41]. Previous 

studies have found that chlorogenic acid had 

antioxidative effects on rats with brain I/R injury by 

mediating the Nrf2/NQO-1/HO-1 pathway [39]. 

Similarly, this study showed that the Nrf2/NQO-1/HO-1 

pathway was inhibited in DHCA rats, while TPL 

reactivated Nrf2 signaling, which may further elevate 

SOD and GSH activity and decrease MDA and ROS 

production. The NF-κB signaling is crucial for 

regulating cell proliferation, apoptosis, and inflamma-

tory responses [42]. After DHCA, the transcriptional 

activity of NF-κB was increased [1, 5]. Consistent with 

our findings, a previous study has demonstrated that 

TPL attenuated neural apoptosis by inhibiting the NF-

κB pathway in cerebral I/R injury rats [13]. Thus, the 

protective effects of TPL against DHCA are possibly 

related to its activation of the Nrf2 pathway and 

inhibition of NF-κB activity. 

 

 
 

Figure 7. TPL activated Nrf2/NQO-1/HO-1 pathway and inhibited the activation of NF-κB p65 in DHCA rats. The expression of 

Nrf2 pathway and activation of NF-κB p65 were measured using western blot analysis. The western blots and bar graph summarized data 
showed that TPL treatment elevated Nrf2 pathway (A, B) and suppressed NF-κB p65 activation (C, D) after DHCA. Values were presented as 
x s  (n = 10). A difference with P < 0.05 was indicated statically significant. One-way ANOVA followed by Bonferroni's multiple comparison 

tests was performed to analyze differences between groups. 
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CONCLUSIONS 
 

Together, our data demonstrate that TPL improved 

neurobehavioral functions, inflammation, oxidative 

stress, and neurotrophin levels in DHCA rats. TPL also 

attenuated microglia activation and cell death in DHCA 

rats. TPL-mediated Nrf2 signaling and NF-κB p65 

activity might be potential molecular mechanisms 

underlying the neuroprotective effects of TPL in DHCA 

rats. As a biologically active compound, TPL expands 

the horizons of treatment tactics to avert or restrict 

neuroinflammation and related neurocognitive obstacles 

after DHCA. 

 

MATERIALS AND METHODS 
 

Animals and drug treatments 
 

All animal experiments and operations complied with 

the ARRIVE guidelines and were performed in 

accordance with the National Institutes of Health guide 

for the care and use of laboratory animals [43]. This 

study was approved by the Research Ethics Committee 

of Fujian Medical University (Approval No. 2018-056). 

Sixty 12–14 weeks old male Wistar rats were obtained 

from Vital River Laboratory Animal Technology Co., 

Ltd. (Beijing, China). Animals were randomly assigned 

into 6 groups: (1) control (rats without any intervention, 

n=10); (2) sham (rats were cannulated without exposure 

to DHCA, n=10); (3) DHCA (n=10); and (4–6) TPL 

(DHCA + TPL, three subgroups of different dosages, 

n=10). TPL was purchased from Sangon Biotech. Co., 

Ltd. (Shanghai, China) and dissolved in pure dimethyl 

sulfoxide (DMSO) as a stock solution. The DHCA 

group and DHCA + TPL groups received intravenous 

(iv) DMSO or different doses [44] of TPL (100 μg/kg, 

200 μg/kg, and 300 μg/kg, respectively, iv) 20 min 

before DHCA, and then were treated for 7 days in 

succession when DHCA had finished. Rats were housed 

at normal ambient room temperature (20 ± 2° C) under 

a 12 h:12 h light:dark cycle with free access to food and 

water. 

 

Cardiac surgery with CPB/DHCA 

 

As described in previous studies [1], after fasting for 12 

h, the animals were anesthetized with 2% sevoflurane. 

Mechanical ventilation was initiated after inserting a 

14-G intubation into the trachea. Then 200 IU of 

heparin and 6 μg of fentanyl was administered via iv 

using an arterial catheter in the rats’ tail artery. CPB 

was initiated at a flow velocity of 140–160 ml/kg/min. 

When rats experienced hypothermia for 30 min  

to the determined pericranial temperature of 16–18° C, 

the flow rate was reduced to 50% and CPB was 

stopped. DHCA was started and confirmed by 

electrocardiographic asystole, without any measurable 

mean arterial pressure (MAP). After 1 h of DHCA, CPB 

was resumed until the pericranial temperature increased 

to 34° C for 30 min, and then mechanical ventilation 

was restarted for 2 h. The rats were placed in a warm 

and oxygen-rich environment and observed for 6 h after 

the operation. After the final neurobehavioral functions 

tests were completed on day 7, animals were 

euthanized. The plasma and brain were collected to 

prepare for further experiments (Figure 8). 

 

The EPM test 

 

The EPM test was used to determine anxiety-like 

behaviors. The protocol of this test was based on a 

standard protocol reported by previous studies [45]. The 

EPM consisted of two open (50 cm×10 cm) arms and 

two closed (50 cm×10 cm×40 cm) arms, which 

 

 
 

Figure 8. Schematic diagram of treatment schedule and protocol design. Rats received 100 μg/kg, 200 μg/kg and 300 μg/kg TPL (iv) 
20 min before CPB/DHCA and then daily (iv) up to day 7 post operation. On day 3 post operation, rats underwent elevated plus-maze test and 
Y maze test. From day 3 through day 7 post operation, rats underwent Morris water maze test. After Morris water maze test on day 7 post 
operation, rats were euthanized and collected plasma and brain tissues to prepare further assessments. 
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connected to the central platform (10 cm×10 cm). The 

entire maze was raised to a height of 50 cm above the 

floor. The animals were placed on the center platform 

facing an open arm for 5 min. The percentage of open-

arm entries and open-arm time were measured. 

 

Y-maze test 

 

The Y-maze test was used to determine working 

memory and consisted of three arms (40 cm×4.5 cm×12 

cm) placed at 120° to each other. First, the rats were 

placed in the arm and the times of each rat entering the 

arms within eight minutes were recorded. Successively 

entering a new branch before returning to the two 

previously visited branches was defined as successful 

alternation. The percentage of correct alternations was 

calculated according to a previous study [46]. 

 

MWM test 

 

The MWM test was performed from day 3 to day 7 to 

evaluate spatial learning and memory after DHCA. The 

water maze consisted of a round pool with a diameter of 

1.5 m and a height of 0.3 m, corresponding cameras, 

and the data analysis software Ethovision XT 11.5 

(Noldus, Netherlands). The pool was divided into 4 

quadrants on average, and a black platform with a 

diameter of 0.12 m that was approximately 2 cm 

beneath the water was randomly located in a quadrant 

of the pool. Rats were trained to find the submerged 

platform starting from the four quadrants, every day for 

a total of 4 days. In each trial, the maximum latency for 

rats to reach the platform was 90 s. If the rat did not find 

the platform it was guided there. The rats were allowed 

15 s to stay on the platform. Additionally, the rats were 

tested in a cued trial of the water maze to assess their 

ability to swim to a platform in the maze. In this, the 

latency and speed of rats to swim to a platform that was 

made visible and cued was used to rule out potential 

influences of treatment on behaviors that were not 

directly related to cognition. On probe day (day 7), the 

hidden platform was removed, and the rats were thrown 

into the water at any selected point of a pool quadrant. 

The time spent in the target quadrant and the swimming 

speed were then recorded. 

 

Measuring inflammatory cytokine levels 

 

Hippocampal tissues were isolated and homogenized in 

ice-cold homogenization buffer supplemented with 

protease inhibitor (Roche, Basel, Switzerland). The 

tissues were extracted at ratio of 100 mg of tissue to 1 ml 

of buffer. The tissues were sonicated and subsequently 
centrifuged at 10,000 g for 10 min at 4° C. The 

supernatants were then collected for analysis. TNF-α, 

IL-6, and IL-1β levels in plasma and brain homogenates 

were measured by ELISA kits obtained from Boster 

(Wuhan, China), following the manufacturer’s 

instructions. All assays were run in duplicate. 

 

Detecting oxidative stress 

 

Levels of SOD, ROS, MDA, and GSH in plasma and 

brain homogenates were detected with commercial test 

kits from Nanjing Jiancheng Bioengineering Institute 

(Nanjing, China) according to the manufacturer’s 

instructions. All assays were run in duplicate. 

 

Measuring levels of neurotrophins 

 

Brain homogenates were used to detect brain-derived 

neurotrophic factor (BDNF), nerve growth factor 

(NGF), neurotrophin-3 (NT-3), and neurotrophin-4 

(NT-4) levels using ELISA kits obtained from Boster 

(Wuhan, China) according to the manufacturer’s 

instructions. All assays were run in duplicate. 

 

Immunofluorescence staining of microglia 
 

Brain tissues were fixed in 4% paraformaldehyde, 

embedded in paraffin, and then sectioned into 10-µm 

thick brain slices, which were used for microglial 

activation assay. Briefly, slices were incubated with 15% 

goat serum (Dingguo Changsheng Biotech Co., Ltd., 

Beijing, China) for 60 min, and then incubated with rabbit 

anti-Iba1 antibody (1:300, Wako, Japan) overnight. The 

slices were then incubated with FITC-conjugated donkey 

anti-rabbit IgG antibody (Abcam, Cambridge, UK, 1:300) 

for 1 h. The mean fluorescence intensity (MFI) of Iba1 in 

the hippocampus and cortex were detected using a N-

800F fluorescence microscope (Novel, China). All results 

were quantified using ImageJ software. 

 

Cell death assessment 

 

Cell death was determined using a fluorescence-based 

TUNEL technique. TUNEL staining was performed 

with the One-step TUNEL apoptosis assay kit 

(Beyotime, China). Briefly, slices were deparaffinized, 

rehydrated, and then treated with proteinase K for 20 

min at 37° C. After three washes with PBS, the slices 

were treated with labeling solution including terminal 

deoxynucleotidyl transferase (TDT), fluorescein-dUTP, 

and buffer at 37° C for 1 h. After 3 washes with PBS, 

the numbers of TUNEL-positive cells were counted 

using a fluorescence microscope. 

 

Western blot analysis 

 
The concentration of total extracted protein was measured 

using a BCA kit (Dingguo Bio, China). Western blot 

analysis was performed using 8%–15% SDS/PAGE 



 

www.aging-us.com 3041 AGING 

gradient gels and transferring onto PVDF membranes 

(Millipore, MA, USA). Antibodies against Nrf2, NQO-1, 

HO-1, p- P65, P65, and β-actin (1:1000, all from Cell 

Signaling Technology, Burlington, MA, USA) were used 

for detection. Immunoreactive bands were developed 

using Super ECL Reagent (HaiGene, China). 

 

Statistical analysis 

 

Data were analyzed with SPSS software v17.0 (SPSS Inc., 

Chicago, IL, USA). All values are presented as .x s  

MWM data were calculated by repeated measurements 

ANOVA, with time as the repeated measure and Fisher’s 

least significance difference post hoc test. The normal 

distribution of data was confirmed using the Shapiro–

Wilk test. Parametric values were analyzed by one-way 

ANOVA followed by Bonferroni's multiple comparison 

tests. The Kruskal–Wallis test followed by Dunn’s 

multiple comparison was used to analyze nonparametric 

values. A difference with P<0.05 was used to indicate 

statically significant results. 
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