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INTRODUCTION 
 

In recent years, the Deptor protein (DEP-domain 

containing mTOR-interacting protein), also known as 

DEPDC6 (DEP-domain containing protein 6), with 

gene ID number Q8TB45, has been described. It is a 

negative regulator of the mTORC1 and mTORC2 

signaling pathways, inhibiting kinase activity of both 

complexes [1]. The Deptor protein is encoded by the 

DEPTOR gene located on chromosome 8 in the long 

arm in the 8q24 region [2], of which at least two 

isoforms have been reported by alternative splicing [3]. 

As mentioned, Deptor is a negative regulator of 

mTORC1 and mTORC2. mTORTC1 is involved in 

anabolism, growth and proliferation signaling pathways 

[4]. In addition to the growth factors and nutrients that 

can activate mTORC1, it can also be activated by other 

factors such as hypoxia, inflammation, energy 

deficiency, cholesterol and nucleotides. Therefore, 

mTORC1, through its activation, promotes metabolism 

and participates in the synthesis pathways of proteins, 

lipids and nucleotides, contributing to cell growth and 

proliferation [4, 5]. Interestingly, the activation of 

mTORC1 inhibits catabolism, blocking autophagy and 

lysosomal biogenesis. This allows Deptor, which 

inhibits mTORC1 activity, to activate catabolism. 

Similarly, activation of this complex can trigger 

negative feedback regulation of growth factor signaling 

pathways by regulating IRS1 (Insulin receptor 

substrate-1) [6, 7] as well as also of the GRB10 factor 

(growth factor receptor-bound 10) [8, 9]. This negative 

regulation by mTORC1-mediated feedback can also be 

positively regulated by the inhibitory effect of Deptor 

on mTORC1 

 

mTORC2 integrates the signaling pathways of growth 

factors that regulate processes such as metabolism, 

survival, organization of the cytoskeleton and cell 

mobility [4, 5] Activation of mTORC2 regulates SGK1 

(Serum and glucocorticoid (GC) -induced protein 

kinase-1), PKC-α (protein kinase C-α), and AKT 

(protein kinase B/AKT) [10]. Much like mTORC1, 
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ABSTRACT 
 

Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor 
is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in 
various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, 
autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very 
important in its study. Because of this, it is important to research its role regarding the development and 
progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in 
cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the 
cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional 
regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, 
its possible role as a biomarker, and its possible clinical relevance in these malignancies. 
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Deptor plays an inhibitory role in the activation of these 

pathways dependent on the activation of mTORC2. 

 

Due to its ability to inhibit mTOR pathway, studies in 

Deptor have been of great interest regarding cancer 

development and progression. Studies reveal a low 

expression of Deptor in most tumors [1], with some 

exceptions such as multiple myeloma (MM), thyroid 

carcinoma and lung cancer, where its expression is high 

[11]. So, it is suggested that Deptor has a dual role in 

human malignancies, acting either as an oncogene or as 

a tumor suppressor [12]. 

 

The focus of this review is to discuss current knowledge 

of Deptor regarding its structure, function and regulation, 

as well as its role specifically in hematological 

malignancies such as Multiple Myeloma, Leukemia and 

Lymphoma. 

 

Structure of Deptor 
 

Deptor is a 409 amino acid protein, weighing 48 kDa 

and is only expressed in vertebrates [1]. It is a 

ubiquitously expressed and highly conserved protein that 

contains two tandems of DEP domains in the amino-

terminal region and one PDZ domain at the Carboxyl-

terminal region. (Figure 1). The two DEP domains are 

84 and 74 aa respectively and are located at residues 

T36-K119 and S145-M219 respectively of the amino-

terminal region [12, 13]. Although their role in these 

DEP domains is not fully understood, they are believed 

to play an important role in associating membrane and 

signaling proteins. These DEP domains have been 

identified in a large number of proteins [14] and they are 

highly conserved in sequence and structure. DEP 

domains function as a membrane anchor [15], signaling 

regulators at G protein-coupled receptors [14]. Although 

tandem of two DEP domains are infrequent in proteins 

containing DEP domains, it’s believed that the tandem 

of DEP domains may have an important role in 

mediating the connection to PI3K, just as the inhibitory 

role of Deptor on mTOR activity can be mediated by the 

structural organization of these tandem DEP domains 

[4]. The PDZ domain in Deptor contains 78 aa located in 

the carboxyl terminal region between residues T330-

L407 and is responsible for the protein-protein 

interaction [1, 13]. This domain is responsible for 

binding with mTOR, likewise PDZ domains are present 

in a wide variety of proteins and are highly conserved 

sequences of G-L-G-F, which participate in folding and 

interaction with the target protein [16]. Interestingly, 

some of the proteins that have PDZ domains belong to 

the Central Nervous System, involved in the neuronal 

synapse [17]. The PDZ domain can regulate cell 

signaling by inhibiting phosphorylation of residues in 

the interaction domain in the carboxyl terminal region on 

its ligand or in the PDZ domain by itself [16]. Studies by 

Peterson and Co [1] have demonstrated Deptor 

phosphorylation at 14 different residues (T and S) 

located between the DEP2 and PDZ domain junction 

and comprising between residues T241-S299, 

determined by spectrometric studies. These studies 

reveal that the stability of Deptor and its binding to 

mTOR is in part regulated by Deptor phosphorylation. 

Additionally, studies by mass spectrometry in our group 

have identified two additional Deptor phosphorylation 

residues (S235, and S260), where preliminary studies 

show that at least one of these residues participates in the 

stability and degradation of Deptor (Figure 1) [18]. A 

sequence located in the junction region between the C-

terminus of the sequence and the amino-terminal region 

of PDZ, designated as Degron and comprising the S286-

S291 region (SSGYFS), has also been characterized. 

Degron is recognized and degraded by βTrCP1, in which 

 

 
 

Figure 1. Structure of Deptor. Schematic representation of Deptor and his two DEP domains are indicated as well PDZ domain. Degron 
motif and phosphorylation residues are indicated. phosphorylation at 15 different residues (T and S) located between the DEP2 and PDZ 
domain junction and comprising between residues T241-S299, which was determined by spectrometric studies, are also indicated. 
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the phosphorylation of three sites susceptible to 

phosphorylation is necessary for their interaction with 

βTrCP1 (S286, S287 and S291) [19]. This triggers their 

ubiquitylation and degradation, which may play a role in 

Deptor function (Figure 1) [20]. Studies have reported 

that Deptor undergoes ubiquitin ligase-mediated 

ubiquitination by the SCFβTrCP E3. Upon stimulation 

of growth factors, Deptor is rapidly degraded by the 

ubiquitin-proteasome pathway to ensure proper 

activation of the mTOR pathway [20]. This can be 

counteracted by the interaction with UBTOR [21], which 

interacts with the PDZ domain of Deptor, promoting its 

stability and inhibiting its ubiquitination and consequent 

Deptor degradation [21]. 

 

As we mentioned above, at least two Deptor isoforms 

originated by alternative splicing have been reported. 

Isoform 1 has been chosen as the canonical sequence. 

Isoform 2 differs from the canonical sequence in that it 

lacks the L42-K142 region (Q8TB45-2) situated in the 

C-terminal region, encoding a short form of 308 aa 

(L143-C409) [3]. Therefore, it lacks the DEP1 domain 

and part of the DEP2 domain, and its possible function 

is unknown.  

 

As we mentioned above, like another proteins, many of 

their biological and regulatory functions are controlled 

by phosphorylation events on Deptor. Since its 

phosphorylation determines its binding and regulation 

with the mTOR complex [1], as well as the stability of 

the protein. To date, at least 18 sites susceptible to 

phosphorylation of Deptor are known, which suggest of 

the importance of the phosphorylation events in this 

protein.  

 

Obviously, the observed phosphorylation events on 

Deptor as well as other posttranscriptional modification, 

may have significance in relation to oncogenic 

pathobiology, such relevance of phosphorylation events 

has been clearly demonstrated in other hematologic 

malignances [22–29] It remaining to be seen of these 

events also regulate contribution of Deptor to 

carcinogenesis. For example, our recently data, which 

demonstrate of ERK-dependent phosphorylation of 

Deptor which maintains its stability, suggests a critical 

effect in Myeloma. ERK activation by growth factors 

(i.e., IL-6, EGF-1), as well as mutated RAS, may 

promote Myeloma progression, in part, via stabilization 

of Deptor. 

 

Deptor expression and localization 
 

Important levels of Deptor expression in different 

tissues have been reported, as well as high levels of 

Deptor mRNA. An important expression of Deptor in 

serum, tonsils, bone marrow cell stroma, frontal cortex, 

spinal cord, stomach, colon, rectum, liver, kidney, 

spleen, salivary glands, thyroid, adrenal, pancreas, islets 

of Langerhans, gallbladder, prostate, bladder, skin, 

placenta, uterus, cervix, ovary, testis, seminal vesicles, 

as well as in different cell lines, is reported through an 

analysis of integrated proteomic protein expression 

(www.proteomicsbd.org) [30]. Of these cell lines, the 

most important Deptor expression is in breast cancer 

cell lines (LCC2), Lung cancer (NCI-H522), colon 

cancer (CCK-81 and HCA-46), cervical cancer (Hela) 

and multiple myeloma (8226). At the intracellular level, 

Deptor is expressed in cytosol, mitochondria and 

nucleus, with less expression in the plasma membrane, 

cytoskeleton, endoplasmic reticulum, endosome and 

lysosomes (according to an analysis in COMPONENTS 

Subcellular location data base: (https://compartments. 

jensenlab.org) [31] and the Atlas of Human Proteins 

[www.proteinatlas.org]) [32]. Different studies describe 

that the location of Deptor correlates with its function 

[1, 4, 5, 10, 33, 34]. 

 

Deptor regulation 
 

Studies have demonstrated the different regulatory 

mechanisms of Deptor, including diverse and 

complicated epigenetic, post-transcriptional and 

transcriptional mechanisms. Different studies involve 

the mTORC1 and mTORC2 complex in 

downregulation of Deptor at the post-transcriptional 

level (e.g., phosphorylation) [1]. However, recent 

study has focused on knowing the transcriptional 

regulation of Deptor. 

 

Epigenetic factors 
 

Deptor regulation has been associated with epigenetic 

processes, as reported in rat kidney cells (NRK-52E), in 

which inhibition of histone methyltransferase EZH2, 

responsible for the trimethylation of histone H3 lysine 

27 (H3K27me3), was related to an increase in Deptor 

expression [35]. Effect of inhibition of EZH2 on Deptor 

expression was confirmed in HCT116 colorectal 

carcinoma cells, in which interfering RNA treatment as 

well as a specific EZH2 inhibitor resulted in an increase 

in Deptor expression [36]. On the other hand, it was 

reported that in HEC1B cells silencing of the 

arginosuccinate synthase 1 gene, resulted in decreased 

Deptor expression as a result of altered methylation of 

histones, suggesting this mechanism as an epigenetic 

regulation of Deptor [37]. In another study in prostate 

cancer cells, there was the indication that treatment with 

the androgen receptor agonist dihydrotestosterone 

induces a decrease in acetylation of lysine 9 and 14 in 

histone 3 in the region corresponding to the 4th intron of 

Deptor and as a consequence, suppresses the expression 

of Deptor mRNA [38]. Additionally, an interaction 

http://www.proteomicsbd.org/
https://compartments.jensenlab.org/
https://compartments.jensenlab.org/
http://www.proteinatlas.org/
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between Deptor and Glycine-N-Methyltransferase has 

been reported [39]. However, the involvement of 

Glycine-N-methyltransferase as an epigenetic regulator 

of Deptor needs to be studied.  

 

Transcription factors 

 

In this review, we focus on reviewing Deptor’s 

transcriptional regulatory mechanisms. 

 

Notch1: Studies describe a direct regulation of Deptor 

expression by Notch by mediating binding to NCID in a 

conserved sequence near the Deptor promoter start 

codon [40], in which Notch1 induces a high expression 

of Deptor, resulting in mTORC1 inhibition. This 

compensates for feedback inhibition of mTORC1 

signaling to PI3K and induces Akt phosphorylation at 

residues S437 and T308, which contributes to AKT 

activation, a critical factor in T-ALL leukogenesis. The 

Notch pathway plays an important role in various 

cellular processes, including stem cell self-renewal, 

proliferation, and differentiation. Several studies have 

identified recurrent mutations in hematologic 

malignancies that make Notch a therapeutic target in 

acute T-cell lymphoblastic leukemia, chronic lympho-

cytic leukemia, and mantle cell lymphoma [41].  

 

GR: Other studies suggest that Glucocorticoids, by 

binding to their nuclear receptor (GR), are capable of 

inducing Deptor expression [5] where it was shown that 

elements of response to GC were identified upstream of 

the Deptor transcriptional initiation site [42], suggesting 

that Deptor plays a role in GR-mediated inflammation. 

Interestingly, studies also suggest that nuclear estrogen 

receptors directly regulate Deptor expression.  

 

ER-α: This has been observed in ER-α positive prostate 

cell lines where ER-α antagonists represses Deptor 

expression in these cells [43]. While it has not been 

established whether ER-α directly regulates Deptor 

transcription, it is suggested that ER-α may interact with 

the response elements identified in the Deptor promoter.  

 

VDR: Several response elements for the vitamin D 

receptor (VDR) have been identified, and since vitamin 

D inhibits the activity of mTOR [44], it is suggested that 

VDR can positively regulate the Deptor expression [45].  

 

AR: Studies suggest a reverse effect for nuclear 

androgen receptors, since AR directly inhibits Deptor 

expression by binding to androgen response elements 

identified in an intron of the DEPTOR gene [38].  

 

AATF: Recent studies have described that AATF is 

capable to regulate the expression of various genes 

involved in cellular processes. These genes are KLF4, C-

Myc, p53, p21, mTORC1 and recently reported Deptor 

[46–48]. Interestingly, this regulation of Deptor by 

AATF could be due to the direct binding to its promoter, 

or it can be down-regulated by regulating the expression 

of miR-2909, which binds to the 5” UTR region of 

Deptor by inhibiting its expression (Figure 2) [49]. 

 

c-MAF: Studies suggest that the c-MAF proto-oncogene 

and the MAFB transcription factor who regulates 

cellular processes are capable of regulating Deptor 

 

 
 

Figure 2. Transcription factors network involved in the regulation of Deptor. Transcription regulation of Deptor expression by 
Transcription factors are represented. Transcription factors involved in the regulation of Deptor revised here are shown. 
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expression. This happens specifically in MM where 

high Deptor expression is shown [1], although it is 

unknown to date whether they do it directly or not.  

 

Six4: Another transcriptional regulator that has been 

reported to be capable of regulating Deptor is Six4, 

which is a transcriptional factor involved in cell 

differentiation, cell migration, and cell survival. 

Consensus binding sites for Six4 have been identified in 

the Deptor promoter, and mutations at these sites inhibit 

activation of Deptor expression by Six4 and its cofactor 

Baf60c [50].  

 

C-Myc: Additional studies show that Deptor is 

regulated by Wnt/β-Catenin/c-Myc and has implications 

for the pathogenesis of colorectal cancer. Where a direct 

transcriptional regulation of C-Myc on the Deptor 

promoter is demonstrated (Figure 2) [51].  

 

Predicted transcription factors in the regulation of 

deptor 
 

Our group carried out a bioinformatic study using the 

Jaspar platform (http://jaspar.genereg.net) [52], in order 

to predict the possible binding of transcription factors in 

the Deptor promoter. This analysis reveals according to 

the significant score, that transcription factors such as 

Arid3a, CDX1, CDX2, CREB1, CUX1, KLF4, KLF14, 

SP1 BCL-6 and YY1 may be involved in the 

transcriptional regulation of Deptor (Table 1).  

 

Arid3a: Transcription factor Arid3a is a paralog of the 

family of interactive AT-rich domains and is associated 

with the regulation of genes in the development of B 

cells and cancer such as ovarian cancer [53]. 

Interestingly we identified at least 6 different possible 

binding sites for this factor in the Deptor promoter 

(Table 1). Transcription factor ARID3A emerges as one 

of the most consistently and differentially expressed 

genes in ABC-DLBCL, compared to GC-DLBCL [54]. 

In B-ALL (B-cell Acute Lymphoblastic Leukemia), 

ARID3a is targeted by miR-125b, where ARID3a 

inhibits differentiation, increases proliferation and 

inhibits apoptosis [55]. Recent studies have also 

identified that miRNA-30b/c/d can regulate key factors 

of PCD (plasma cell differentiation) such as ARID3A. 

This miRNA is aberrantly over-expressed in multiple 

myeloma (MM) tumor plasma cells, suggesting that 

MM cells frequently acquired expression changes in 

miRNA that promote dynamic modulation of expression 

during normal PCD [56].  

 

As mentioned previously, MM shows a high expression 

of Deptor which is probably regulated by the effect of 

these miRNAs on the regulation of ARD13A, who 

could regulate Deptor in MM. 

CDX1: CDX1 is another of the factors identified by our 

analysis. Interestingly, recent studies indicate that the 

Wnt/β-Catenin/signaling pathway can regulate CDX1 

through CKIP-1 in gastric cancer [57] and as we 

mentioned previously, Deptor can be regulated by the 

signaling pathway of Wnt/β-Catenin/ by c-Myc. 

Therefore, this pathway may also be involved in CDX1-

mediated regulation of Deptor from which at least two 

possible binding sites are predicted in the Deptor 

promoter (Figure 3 and Table 1). Studies have shown 

that CDX binding sites are required to mediate Oct-2 

ability to activate bcl-2 in lymphomas impacting cell 

survival [58]. In addition to the role of CDX in 

hematopoiesis, it has been described that CDX2 can 

contribute to oncogenesis since data indicates that CDX 

expression has a functional role in leukemia and 

malignant blood disease [59].  

 

CREB1: CREB1 is a transcription factor member of the 

leucine zipper DNA binding protein family which can 

be activated by the TGF-β signaling pathway [60] 

which is linked to the regulation of Deptor expression 

mediated by degradation induced by the mTOR 

complex. However, a possible transcriptional regulation 

is suggested to be probably mediated by transcription 

factors regulated by this pathway. The bioinformatic 

analysis carried out by our group suggests that CREB1 

can regulate Deptor transcription showing two possible 

binding sites in its promoter (Figure 3 and Table 1). 

Studies indicate that CREB has a critical role in the 

proliferation, survival and apoptosis of PBC-ALL cells, 

suggesting an oncogenic role of CREB in both ALL and 

CML [61, 62]. Immunohistochemical study shows an 

important expression of pCREB in DLBCL tissue, 

suggesting that high levels of pCREB could be 

associated with tumorigenesis in lymphoma [63]. The 

presence of CREB has also been associated with 

resistance to Lenalidomide in MM [64]. 

 

KLF4: KLF4 is a transcription factor attributed to 

bifunctional roles in cancer, as a potent tumor 

suppressor or as an oncogene [65]. Recent studies have 

shown that KLF4 can transcriptionally regulate Deptor 

expression [49]. Interestingly, our bioinformatic study 

reveals the presence of at least one consensus site for 

the binding of KLF4 in the Deptor promoter (-82) 

(Figure 3 and Table 1). KLF4 shows a bifunctional role 

in hematological malignancies, even though we and 

other authors have shown an oncogenic role in MM, 

pediatric lymphoma, and NHL cell lines [66]. 

Therefore, the regulation of Deptor in NHL and MM 

could be regulated by KLF4, contributing to 

pathogenesis at least in MM.  

 

KLF14: KLF14, like KLF4, is a member of the recently 

identified KLF family of factors and of interest for its 

http://jaspar.genereg.net/
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Table 1. Predicted transcription factors involved in the regulation of Deptor. 

Transcription 

Factor 

Score 

(Jaspar) 

Position Predictive sequence 

(Jaspar) Start End 

Arid3a 9.84 -1693 -1688 ATTAAA 

CDX1 12.25 -242 -234 ACAATAAAA 

CDX2 13.312 -244 -234 GTACAATAAA 

CREB1 10.52 -770 -759 CCTGACCTAGG 

CUX1 12.19 -1835 -1826 TTATCGATAG 

KLF4 11.50 -258 -248 CCACACCCAA 

KLF14 14.45 -82 -69 GGCCCCGCCCCCG 

SP1 8.59 -81 -72 GGGGGCGGGGC 

YY1 8.38 64 69 GCCATC 

BCL6 9.29 -1387 -1372 TAACTTTCTAGGCAGA 

Predicted transcription factors using Jaspar Platform, with potential binding sites 
in the Deptor promoter. In this table we list the transcription factors binding sites 
with the highest score according to Jaspar Score. One or more sites with lower 
score can be found in the database (Data not shown). 

 

involvement in the field of tumorigenesis and immune 

regulation [67]. KLF14 expression is induced by TGF-

β in intrauterine and ectodermal tissue. We identified 

three consensus binding sites for KLF14 in the Deptor 

promoter region. Thus, the known TGF-β signaling 

pathway mediates Deptor regulation, possibly through 

TGF-β-regulation of KLF14. Preliminary results by 

our group suggest that KLF14 plays a tumor 

suppressing role in lymphoma, since a low expression 

of KLF14 is observed in the more aggressive 

lymphoma phenotypes. 

 

YY1: YY1 is a zinc finger protein, which regulates 

numerous genes involved in cell death, cell cycle, cell 

metabolism, and the inflammatory response. YY1 is 

highly expressed in many types of cancer which is 

associated with cell proliferation, survival and 

metabolic reprogramming [68]. In our bioinformatic 

analysis we identified at least one YY1 binding site in 

the Deptor promoter. In addition, studies in lymphoma 

have demonstrated the transcriptional regulation of 

KLF4 by YY1 [69]. Therefore, YY1 probably 

participates in the regulation of Deptor directly on its 

promoter or through the regulation of KLF4 or c-Myc, 

which as mentioned above, can also regulate the 

expression of Deptor. YY1 has been reported to play an 

important role in several biological processes, including 

the development and function of B cells [70]. Different 

studies have shown that YY1 is expressed in acute 

myeloid leukemia, B-NHL cell lines, and DLBCL tissues 

[71]. YY1 overexpression has also been reported to 

correlate with disease progression in MM and childhood 

 

 
 

Figure 3. Transcription factors involved in the regulation of Deptor. Predicted transcription factors involved in the Deptor regulation 
according of bioinformatic analysis using the Jaspar platform (http://jaspar.genereg.net) [52]. 

http://jaspar.genereg.net/
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acute lymphocytic leukemia [72]. Therefore, YY1 may 

be playing a role in these hematological malignancies 

either by direct regulation of Deptor, or by regulating 

KLF4 and/or c-Myc (Figure 2 and Table 1). 

 

BCL6: The B-cell lymphoma 6 gene (BCL6) encodes a 

transcription factor belonging to the family Broad-

Complex, Tramtrack and Bric-a-brac/Pox and Zinc 

Finger (BTB/POZ) [73] which is critical for the 

initiation and maintenance of GC [74, 75]. The Bcl-6 

protein is capable of regulating more than 1000 target 

genes [76]. In normal GCB cells, Bcl-6 also suppresses 

the expression of the anti-apoptotic oncogene Bcl-2 by 

binding to its promoter region. However, in DLBCL 

and FL, Bcl-6-mediated deletion of Bcl-2 is often lost 

due to Bcl-2 translocation and Miz1 dysregulation [77]. 

Furthermore, although Bcl-6 is also expressed in Burkitt 

lymphoma, its role has not been investigated, yet it is 

expressed in all cases and is likely to contribute to 

proliferation and survival, since the BCL6 gene has 

long been recognized as an important oncogene in B-

cell lymphoma [78, 79]. Recent studies have identified 

that certain subpopulations of DLBCL and BL contain 

MYC, Bcl-2 and/or Bcl-6 translocations and were called 

“double hit” lymphoma (DHL) or “triple hit lymphoma” 

(THL) [80]. In the most recent WHO review of 

lymphoma classification, the DHL/THL category is 

now recognized as "high-grade B-cell lymphoma 

(HGBL) with rearrangements of MYC and Bcl-2 and/or 

Bcl-6. DHL and THL have an aggressive clinical 

presentation and are difficult to treat with conventional 

chemotherapy [81, 82] 

 

Interestingly, as discussed below, a high expression of 

Deptor in BL can be observed, which correlates with a 

high expression of Bcl-6. Because of this, it would be 

important to know the possible relation of regulation of 

Deptor by Bcl-6 in BL. 

 

Since Multiple Myeloma is characterized by clonal 

accumulation of malignant plasma cells (PC) in the bone 

marrow, which secrete a monoclonal immunoglobulin, it 

has been of great interest to know the factors involved in 

PC differentiation. Recent studies have revealed that 

alterations in the expression of IRE1, XBP1, FOXP1, 

PAX5 or BCL6/MTA3 can reprogram PCs to previous 

stages of maturation [83]. Interestingly, studies in PC 

have shown that Deptor inhibition changed the 

transcriptional program associated with PC differen-

tiation through upregulation of PAX5 and Bcl-6, which 

maintains the B cell program, and downregulation of 

IRF4, a factor that favors the differentiation of PC [84]. 

This suggests that Deptor is likely to down-regulate Bcl-6 

and according to our analysis in sílico (Table 1), where 

Bcl-6 can regulate Deptor expression, it could be a loop 

of regulation between Deptor and Bcl-6. 

SP1: Finally, our bioinformatic analysis shows at least 4 

consensus sites for SP1 binding in the Deptor promoter 

region. SP1 is a zinc finger-containing transcription 

factor and its ubiquitous expression apparently mediates 

the maintenance of normal and malignant biological 

processes such as cell growth, differentiation, angio-

genesis, apoptosis, cell reprogramming, and 

tumorigenesis [85]. Sp1 exerts its effects on cellular 

genes that contain putative GC-rich Sp1 binding sites in 

their promoters. Therefore, it is likely that SP1 can 

regulate direct Deptor expression. Transcriptional factor 

SP1 is over-expressed in pediatric acute lymphocytic 

leukemia B and T, which in turn increases the 

expression of Bcl-3, MYC, and AATF [48]. SP1 has 

also been described to be involved in the autocrine-

paracrine loop of IL-10 in B-NHL that plays a role in 

cell proliferation [86]. Recent studies have shown that 

Sp1 regulates the expression of IQGAP1, which is a 

protein that plays an important role in ERK-mediated 

MM cell proliferation [87]. Therefore, it would be 

interesting to explore the possible Sp1/Deptor 

interaction network in MM cell proliferation. 

 

This bioinformatic analysis suggests the possible 

participation of different transcription factors in the 

regulation of Deptor either directly or through the 

activation of signaling pathways mediated by growth 

factors such as TGF-β. However, functional interaction 

studies should be performed to corroborate the role of 

these factors in the possible regulation of Deptor 

(Figure 3). 

 

Regulation of Deptor by miRNAs 
 

miR-2909: Different studies have reported that Deptor 

regulation expression can be regulated by miRNAs. 

miR-2909 is capable of regulating crucial genes such as 

KLF4, c-Myc, p53, p21, SP1 and mTORC1, all 

essential in the regulation of cellular processes such as 

cell progression, cell cycle and autophagy/apoptosis 

[48]. Recent studies demonstrate that the expression of 

miR-2909 inhibits the expression of Deptor, either by 

inhibiting the expression of KLF4 that, as mentioned 

above, positively regulates the expression of Deptor or 

by direct binding to consensus sites in region 3'UTR of 

Deptor [49] (Figure 4). As well by the possible 

regulation of SP1 expression, who can also regulate the 

expression of Deptor as mentioned above.  

 

As we mentioned, miR-2909 is capable of regulating 

the expression of KLF4, which in pediatric ALL 

functions as a tumor suppressor, regulates cell cycle and 

apoptosis. MiR-2909-mediated down-regulation 

resulted in loss of KLF4 (isoform 1) activity in B-ALL 

as opposed to T-ALL where miR-2909 was unable to 

regulate KLF4 expression in T-ALL (isoform 2), due to 
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mutations in KLF4 3'UTR, which includes the miR-

2909 binding site [48]. As reviewed below, Deptor 

expression is higher in T-ALL than in B-ALL, so these 

results suggest that downregulation of KLF4 by miR-

2909 may be affecting the transcriptional regulation of 

Deptor by KLF4 in B-ALL as reviewed above [49]. 

 
miR-155: MiR-155 is a miRNA that has been frequently 

studied in various types of cancer [88]. The importance 

of this miRNA in cancer progression is not entirely 

clear because in some types of cancer miR-155 exerts a 

tumor suppressing function, such as in the case of 

melanoma [89]. Recent studies have reported that miR-

155 binds to the 3'-UTR region of Deptor by inducing 

its inhibition in breast cancer, leukemia and bladder 

cancer cells (Figure 4) [90–92]. Additionally, there is 

evidence to suggest that miR-155 acts as an 

"OncomiR", and is important for tumor development, 

such as leukemia. miR-155 is involved in various 

physiological processes in the cell, including 

hematopoiesis, immunity, inflammation and 

differentiation. Increased expression of miR-155 is 

observed in many malignant diseases, including 

lymphomas, acute myeloid leukemia and CLL, where 

miR-155 has been shown to be involved in the 

pathogenesis of these lymphoproliferative diseases [93]. 

Abnormal miR155 expression was closely associated 

with drug resistance to myeloma, since targeted 

inhibition of miR155 expression could restore 

sensitivity to chemotherapy by increasing FOXO3a 

expression in drug-resistant myeloma cells [94]. Recent 

studies associate miR-155 expression with increased 

risk of disease progression in GCB-DLBCL patients 

treated with R-CHOP [95]. Furthermore, recent studies 

report that miR-155 promote Burkitt lymphoma 

progression through PI3K/AKT signaling [96]. 

However, miR-155 is expressed at low levels in 

Bortezomib-resistant myeloma cells and is a direct 

regulator of CD47 through its 3'UTR. In addition, low 

miR-155 levels are associated with advanced stages of 

the disease, so miR-155 plays a tumor suppressor role in 

MM [97, 98]. This bifunctional role of miR-155 in 

hematological malignancies, as well as in other cancers, 

does not make clear the importance and relevance in the 

regulation of Deptor in cancer. 

 

miR-181: miR-181 is a family of four miRNAs (a, b, c 

and d), which is evolutionarily conserved among 

vertebrates, indicating its important role in physiology. 

miR-181 was originally described as being highly 

expressed in T and B lymphocyte cell lines, although its 

expression is abundant in the lung, brain, and bone 

marrow [99]. miR-181 acts as a tumor suppressor in 

acute myeloid leukemia [100]. Recent studies and as 

previously mentioned have shown that TGF-β negatively 

regulates Deptor, which increases mTOR activity [101]. 

However, the mechanism by which Deptor is 

downregulated by TGF-β was not precisely known. A 

recent study shows that miR-181a is induced by TGF-β 

and this miRNA is capable of inhibiting Deptor 

expression by binding to the 3'UTR region of it. 

Demonstrating that miR-181a regulates TGFβ-

stimulated mTORC1 and mTORC2 activities by direct 

regulation of Deptor expression (Figure 4) [102]. Recent 

studies show that miR-181a is overexpressed in MM 

cells, and may play a role in the biological function of 

cancer [103]. Additionally, increased levels of miR-181 

have been reported in acute myeloid leukemia M1  

and M2, and chronic lymphocytic leukemia (CLL)  

[104, 105]. While other studies in chronic B-cell 

lymphocytic leukemia (B-CLL) reveal that miR-181 can 

regulate the T-cell leukemia/lymphoma1 (TCL1) 

oncogene that is associated to the development of 

aggressive human B-CLL CD5
+ 

[106]. While in 

 

 
 

Figure 4. microRNAs involved in the regulation of Deptor. Reported microRNAs involved in the regulation of Deptor revised here are 
shown. 
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cytogenetically normal acute myeloid leukemia (CN-

AML), low expression of all miR-181 family members 

has been identified to have clinically favorable outcomes 

[107]. Thus, also in AML patients, high levels of mir-

181 are expressed in the initial diagnosis compared to 

the first complete remission [108]. Meanwhile, in 

Anaplastic large cell lymphoma cells (ALK
+
 ALCL), a 

low expression of miR-181 is also observed [109]. 

 

So although it seems that miR-181 could also have a 

bifunctional role in hematological malignancies, its role 

as a tumor suppressor is dominant, which could be 

associated with its ability to inhibit Deptor expression, 

where, as we reviewed below, Deptor expression is 

important in MM and AML, which correlates with low 

miR-181 expression, while in CLL where significant 

miR-181 expression is observed, they have low Deptor 

expression. This suggests that miR-181 is probably 

playing some role in the regulation of Deptor in these 

hematological malignancies (Figure 4). 

 
miR-375; Recent studies demonstrate that miR-375 

promotes osteogenic differentiation in adipocyte-derived 

mesenchymal stem cells, and one of the mechanisms 

involved is inhibition of Deptor expression [110]. This 

study reports at least one consensus site in the Deptor 3'-

UTR region for miR-375 binding, thus suggesting that 

miR-375 is capable of directly inhibiting Deptor 

expression. miR-375 was identified as a regulator of 

insulin secretion in pancreatic islets [111]. Subsequent 

studies revealed that miR-375 participated in multiple 

biological processes and, furthermore, miR-375 is 

significantly downregulated in different types of cancer 

such as multiple myeloma. Additionally, it inhibits their 

proliferation by inhibiting some important genes such as 

PDPK1, IGF1R, JAK2, and YAP1 [112–114]. 

Expression of miR-375 in MM has been related to 

myelomagenesis and subsequent progression due to its 

activity on oncogenes such as PDPK1 [115]. Low miR-

375 expression levels predict poor outcome in AML 

patients as it regulates HOXB3 expression [116]. These 

results suggest that miR-375 in MM and AML may be 

playing a tumor suppressor role, interestingly in these 

malignancies there is a high expression of Deptor as 

reviewed below (Figure 4). Elevated miR-375 

expression has been reported in chronic myeloid 

leukemia [117]. Additionally, in a study in MALT 

lymphoma, an elevated expression of miR-375 was 

demonstrated [118]. High miR-375 expression has been 

associated with the development and progression of 

pediatric AML, as it correlates with poor relapse-free 

survival and OS [119]. Recent studies indicate that 

NFKB2 may be involved in the development of Hodgkin 

Lymphoma by regulating miR-135a expression [120]. 

This suggests that miR-375 may be a potent oncomiR in 

MALT lymphoma, pediatric AML and HL. As reviewed 

further below, low Deptor expression is observed in 

CLL, which could be related to high expression of miR-

375, while a low expression of miR-375 in MM and 

AML is related to a significant expression of Deptor in 

which miR-375 could have a tumor suppressor role 

through Deptor regulation (Figure 4). 

 
miR-135b: A recent study in Multiple Myeloma reveals 

that Deptor expression is also controlled by two other 

miRNAs, miR135b and miR642a, which are down-

regulated in several MM patients [121]. In other study it 

was shown in vitro that transfection of miR135b and 

miR642a decreased Deptor levels in myeloma cells. 

MiR135b and miR642a were observed to modulate 

Deptor expression through binding to consensus sites in 

the 3 'UTR region of Deptor [122]. Interestingly, this 

expression of Deptor regulated by miR135b and 

miR642a reversed the transcriptional program of 

myeloma cells and reduced cell size and tumor mass. The 

miR-135b has been found to play an important role in 

multiple life activities. For example, miR-135b inhibits 

the production of LPS-induced reactive oxygen species 

(ROS), the activation of nuclear factor-κB (NF-κB), and 

the mRNA expression of TNF-α in human macrophages 

[123]. In cancer, miR-135b acts as a double-edged factor. 

It promotes the development of pancreatic cancer and 

gastric cancer [124]. However, miR-135b can inhibit the 

proliferation of tumor cells in osteosarcoma [125]. 

Recent studies show that miR-135b regulates the 

expression of RBX1, significantly inhibiting the 

malignant behaviors of MM cells [126]. As we already 

mentioned, miR-135b is downregulated in MM and is 

associated with 14q32 rearrangement [127]. In addition, 

studies reveal the importance of circulating levels of 

miR-135b in detecting bone disease and in predicting the 

prognosis of patients with multiple myeloma, suggesting 

their possible clinical applications [128]. Studies have 

revealed that short-term treatment of leukemia cells with 

etoposide, results of transient resistance associated with 

the transient increase in miR-135b and miR-196b, 

suggesting that the increase of the expression of these 

miRNAs, associated with ABC1, may have a role in 

chemo resistance in leukemia [129]. Studies in 

Anaplastic Large Cell Lymphoma (ALCL) report that 

miR-135b is involved in anaplastic nucleophosmin-

lymphoma kinase-mediated oncogenicity (NPM-ALK) 

and potentiates the IL-17-producing immunophenotype 

[130]. The NPM-ALK oncogene promotes the 

expression of miR-135b and its target gene LEMD1. At 

the same time miR-135b decreases chemosensitivity in 

Jurkat cells, suggesting its contribution to the oncogenic 

activities of NPM-ALK. In addition, another study 

describes that miR-135b is over-expressed in ALK
+ 

ALCL. Thus, this association of miR135b with ALK 

expression may represent important downstream 

effectors of the ALK oncogenic pathway [131]. 
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Interestingly, and as discussed later in the section on the 

role and expression of Deptor in lymphoma, 

ALK
+
ALCL vs ALK

-
ALCL, shows in general that there 

are no differences in Deptor expression. Therefore, it is 

not clear if miR-135b plays a relevant role in the 

expression of Deptor in ALK
+
ALCL. Additionally, the 

expression of miR-135b could play a critical role in the 

pathogenesis of gastric MALT lymphoma (GML) 

related to H. pylori infection [132, 133]. Therefore, in 

addition to the regulation of Deptor by miR-135b, it 

may also be associated with the regulation of KLF4 

who, as previously reviewed, regulates the expression 

of Deptor [134]. 

 
miR-642a: There are currently very few reports 

regarding miR642a and its biological role. Some reports 

indicated that it is associated with some disease 

conditions including Leiomyoma, Uterine and Systemic 

Lupus Erythematosus [135]. As already mentioned, the 

low expression of miR642a has been reported in patients 

with MM, especially in the cytogenetic group t (14; 16) 

[121]. This observation suggests a possible link between 

the miR-642a downregulation in these MM subsets and 

an advantage in myeloma cell growth. Also, as 

previously stated, miR-642a inhibits the expression of 

Deptor in MM (Figure 4), which leads to the regulation 

of IRF4, regulating the terminal stages of differentiation 

[122]. miR642a was downregulated in classical Hodgkin 

Lymphoma compared to normal B cells, although no 

difference was found between stage, response to 

treatment, Disease Free Survival, and Overall Survival. 

However, there was no clinical association between 

clinical variables and with miR642a expression. 

Therefore, more studies are required to evaluate the 

miRNA profile and the clinical result in Hodgkin 

Lymphoma [136]. However, as we review below, the 

low expression of miR-642a in HL may be associated 

with high levels of Deptor expression in HL (Figure 4). 

 
miR-671-3p: A recent study showed that miR-671-3p is 

capable of regulating Deptor expression in breast cancer 

(Figure 4) [137]. In breast cancer, it was observed that 

there is a significantly lower miR-671-3p expression than 

in normal breast epithelial cells. The forced expression of 

miR-671-3p induces a decrease in cell proliferation and 

invasion, whereas inhibition of miR-671-3p obviously 

promoted cell proliferation and invasion. Deptor was 

shown by a reporter plasmid to be a target gene for miR-

671-3p and overexpression of miR-671-3p caused 

significant downregulation of Deptor protein expression. 

These findings demonstrate that miR-671-3p suppresses 

the proliferation and cell invasion of breast cancer by 

directly regulating the expression of Deptor [137]. 

 

Recent studies have reported that miR-671 plays an 

important role in multiple cancers [138–141]. The miR-

671 precursor forms two mature miRNAs known as 

miR-671-5p and miR-671-3p. A recent study has shown 

that miR-671-3p is an antioncogene in breast cancer, 

where forced expression can inhibit cell proliferation 

and invasion and sensitize cells to chemotherapy in a 

Breast Cancer cell line [139]. Additionally, it was 

demonstrated that the tumor suppressor role of miR-

671-3p in breast cancer is given through its influence on 

the Wnt signaling cascade [140]. 

 

However, in non-small-cell lung cancer, miR-671-3p 

has been shown to play an oncogenic role by inhibiting 

FOXP2. Therefore miR-671-3p has also been proposed 

as a potential therapeutic target in NSCLC [141]. 

Additionally, in glioma, miR-671-3p has been shown 

to promote cell proliferation and migration in vitro and 

to decrease apoptosis through CKAP4 regulation 

[142]. This study demonstrates that miR-671-3p is a 

predominant positive regulator of glioma progression, 

suggesting that the miR-671-3p/CKAP4 axis may 

serve as a possible therapeutic target or biomarker in 

glioma [142]. 

 

Predicted microRNAs in the regulation of Deptor 
 

To address what other possible miRNAs may be 

regulating the post-transcriptional expression of 

Deptor, we looked for miRNAs-Deptor interaction in a 

database (mirTarBase platform; http://miRTarBase. 

cuhk.edu.cn/) [143], using a value of p=0.05 for 

miRNAs whose predicted binding sites in the Deptor 

3’UTR region. According to the high prediction score, 

at least 8 miRNAs were predicted to have a binding 

site in the Deptor 3’UTR region and these sites were 

consistent in at least four other databases (miRMap, 

PITA, RNA22 and RNAhybrid). From these, we 

revised the following: miR-190a-3p, miR-4796-5p, 

miR-654-3p, miR-5011-5p, miR-1277-5p. miR-4803, 

miR-384 and miR-375 (Table 2). These miRNAs  

were validated by the Next-Generation Sequencing 

(NGS) method on at least one study, so it is  

necessary to expand the experimental evidence of 

these miRNAs. 

 

Very little is currently known about miR-190a-3p. 

Recent studies demonstrate that miR-190a-3p regulates 

glioblastoma tumorigenesis by regulating PTEN [144]. 

The possible binding site of miR-190a-3p in Deptor 

mRNA is shown in Figure 5. The biological role of 

miR-4796-5p is currently unknown. 

 

Low expression of miR-654-3p has been demonstrated 

in natural extranodal killer/T-cell lymphoma NKTCL 

[145]. Recent studies reveal that the expression of  

miR-654-3p in hepatocellular carcinoma (HCC) is low 

and is associated with metastasis and is a predictor of 

http://mirtarbase.cuhk.edu.cn/
http://mirtarbase.cuhk.edu.cn/
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Table 2. Predicted microRNAs involved in the regulation of Deptor. 

MIcroRNA 

Position in 

DEPTOR 

3'UTR 

Score 
(miRTarBase) 

Pairing of microRNAs and 3’ UTR Deptor 

miR-375 5480 - 5498 125 

 

miR-190 1275 - 1299 164 

 

miR-4796-5p 4289 - 4311 152 

 

miR-654-3p 4161 - 4183 143 

 

miR-5011-5p 1474 - 1493 155 

 

miR-1277-5p 1302 - 1325 194 

 

miR-4803 4186 - 4206 135 

 

miR-384 2436 - 2455 134 

 

Using the mirTarbase database, we found a potential binding sites of microRNAs in the 3’UTR of Deptor. Here we show the 
site of miRNA binding, with the highest score in accordance with mirTarbase.  
 

poor prognosis. Overexpression of this inhibits the 

proliferation, migration and invasion of HCC, which 

proposes miR-654-3p as a tumor suppressor [146]. 

However, in colon cancer it is observed as an oncomiR, 

since its high expression correlates with poor survival in 

these patients [147]. Its role in hematologic 

malignancies is currently unknown with precision. The 

role of miR-5011-5p in biological functions of 

homeostasis or cancer is currently unknown. Studies in 

Parkinson's disease reveal that miR-1277-5p 

overexpression correlates with cell viability and 

inhibition of apoptosis in human neuroblastoma cells 

[148]. Our bioinformatic analysis predicts that miR-

1277-5p has Deptor as a potential target gene (Figure 

5). Like other miRNAs identified in our bioinformatic 

analysis that may have Deptor as target gene, the 

biological role of miR-4803, in cancer is unknown. 

Although the functional role of miR-384 in hematologic 

malignancies is unknown to date, previous studies have 

shown that miR-384 was abnormally expressed in 

various tumors. miR-384 can inhibit the proliferation 

and invasion of tumor cells in tumor tissues such  

as gastric cancer, colon cancer and liver cancer and in 

osteosarcoma [149–151]. Furthermore, miR-384 is 

involved in the phenotypic properties of cancer cells, 

such as cell proliferation, apoptosis, and the cell cycle, 

and plays a vital role in the expression of gene products 

[152]. These studies suggest a potential role for  

miR-384 as a tumor suppressor. Our bioinformatic 

analysis suggested that Deptor could be a possible target 

gene for miR-384 (Figure 5). Interestingly, our 

bioinformatic analysis shows the miR-375 which, as 

already mentioned, is involved in the regulation of 

Deptor [110]. 

 

 
 

Figure 5. Predicted miRNAs involved in the regulation of Deptor. Schematic representation of predicted miRNAS involved in the 
Deptor regulation using the database (mirTarBase platform; http://miRTarBase.cuhk.edu.cn/) [143]. A value of p=0.05 for miRNAs whose 
predicted binding sites in the Deptor 3’UTR region was considerate. 

http://mirtarbase.cuhk.edu.cn/
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Role of Deptor in hematological malignances 
 

Deptor in Multiple Myeloma 

 

Multiple Myeloma (MM) is a hematologic disorder 

which is characterized by a proliferation of malignant 

monoclonal plasma cells in the bone marrow (BM) 

and/or extramodular sites. Progress in the first PFS and 

overall survival (OS) has been achieved through the 

introduction of high-dose therapy (HDT) with 

autologous stem cell transplantation (SCT), and by the 

introduction of thalidomide, bortezomib and 

lenalidomide. Despite the recent progress in OS rates, 

MM remains an incurable disease and the majority of 

patients will relapse and will require treatment [153]. 

Recently studies have been shown that Deptor can be 

implicated in the chemosensitivity to melphalan in vitro. 

Deptor knockdown was associated with melphalan-

induced growth inhibition due to an induction of 

apoptosis associated with the inhibition of p-AKT 

protein level, probably due to the fact that Deptor acts 

as an oncogene, compensating for the inhibition of 

feedback from p-P70S6K to PI3K, thus activating to 

AKT [154]. It is known that the inhibition of Deptor 

results in the inhibition of proliferation and induction of 

apoptosis in myeloma cells. In addition, high levels of 

Deptor protein are predictive of a poor response to 

thalidomide in myeloma, which indicates that the levels 

of Deptor expression is important as a prognosis marker 

for myeloma patients and a possible target for a new 

therapeutic strategy as a small chemicals inhibitor alone 

or in combination with conventional treatments [155]. 

 

Deptor is a 48 kDa protein that binds to mTOR and 

inhibits this kinase in TORC1 and TORC2 complexes 

specifically in MM [156]. Different reports have 

associated Deptor with different pathways and 

mechanisms in myeloma. Interestingly, Deptor 

expression is required to maintain myeloma cell 

differentiation and that high level of its expression are 

associated with better outcome [122]. Two GEO 

repository were analyzed in a study [121, 157], finding 

that the PFS was significantly longer in MM patients 

with high expression levels of Deptor that in those with 

low Deptor expression levels (p <0.05) [122]. 

 

In another study, the silencing of Deptor with a new 

drug prevents the Deptor-mTOR binding, promoting the 

activation of MTORC1 and MTORC2 and induction of 

cytotoxicity, suggesting that Deptor is a potential 

therapeutic target and implicating the critical role of 

Deptor and mTORC1 in MM [156]. Additionally, 

Deptor plays a crucial role in the proliferation pathway. 

This was related to p21 because the knockdown of 

Deptor induces p21 expression independent of p53, and 

p21 knockdown prevents the cytotoxic effects of Deptor 

silencing [158]. According to this the silencing of 

Deptor with a shRNA resulted in an inhibition of 

proliferation an increase in cleaved caspase 3 and PARP. 

This increase was related to apoptosis induction, chemo 

sensitization, suppression of autophagy [159], melphalan 

chemo sensitization effects, and reduced levels of 

phosphor-AKT. These factors caused an inhibition of 

PI3K-AKT pathway [154]. In this context, several drugs 

have been proposed for a theorical treatment, such as 

Thalidomide. This immunomodulating agent can 

increase PTEN expression and suppress AKT signaling, 

which is fundamental for MM development and 

maintaining [155]. 

 

Some authors have proposed Deptor as a tumor 

suppressor in MM, the author suggest that this due to 

its regulation on mTORC2, which participates in 

regulation of NDRG1 through the activation of SGK1, 

which confers chemo resistance to Bortezomib [160]. 

Since the decrease in SGK1 reduces the 

phosphorylation of NDRG1 and promotes the induction 

of apoptosis or chemo sensitivity to Bortezomib. This 

suggests that depending on the activation pathways 

mediated by mTORC2; PI3K/PDK1 or PI3K/AKT and 

the regulation of mTORC2 by Deptor will depend on 

the role of Deptor as an oncogene or tumor suppressor 

[12]. Additionally, low levels of Deptor has been found 

in several cancers [1]. In conclusion, the information 

above presented support a possible role as tumor 

suppressor.  

 

A study analyzed if Deptor is capable of regulating 

different signaling pathways, cells transfected with 

siRNA-Deptor were analyzed by a protein/kinases 

microarray. The results showed that Deptor effectively 

regulates the activity of mTORC1, but interestingly 

shows that Deptor affects the phosphorylation and 

activation of ERK1/2 as well as STAT1, p38α, Paxillin, 

PLCγ-1 and FAK, but each to a lesser degree than 

ERK1/2.  
 

In that same study, it was analyzed whether the 

regulation of these kinases was associated with each 

other, results showing that Deptor inhibition increases 

ERK1/2 levels independently of the mTOR pathway. 

Therefore, these findings indicate that Deptor selectively 

regulates the endogenous activity of ERK1/2 and 

mTORC1 through independent mechanisms. Deptor has 

been suggested to show independent regulatory effects 

on MAPK signaling pathways [161], which is consistent 

with reports suggesting that it contains putative ERK1/2 

binding and association sites [20, 162]. Therefore, the 

phosphorylation and degradation mechanisms of Deptor 

reported mediated by the "degron" domain [20, 162] 

may be a regulatory mechanism in biological processes 

where Deptor plays a role. 



 

www.aging-us.com 1540 AGING 

Interestingly, and according to the characteristics of 

MM of higher secretion of immunoglobulins, the 

participation and homeostasis of endoplasmic 

reticulum is critical for the maintenance of MM. 

Deptor has been identified as a protein able to bind to 

DNA and woks by regulating the transcription of 

several genes involved in the maintenance of the 

endoplasmic reticulum such as ERLIN2, KEAP1, 

PSEN2 and DERL3 [33]. Since it was demonstrated by 

chromatin immunoprecipitation (ChIP) analysis, that 

Deptor is capable of binding DNA specifically to the 

promoter region of these genes.  

 

This topic is still unclear because some reports identified 

no association with activation of the unfolded protein 

response after MM cytotoxicity was induced by the 

silencing of Deptor with drugs. However, Deptor 

depletion with siRNAs can induce endoplasmic reticulum 

stress and synergizes the effect of the proteasome 

inhibitor bortezomib in MM cells [33]. This could be 

explained as the silencing of Deptor with shRNA 

produces a feedback downregulation of the IGF/IRS-

1/PI3-K/PDK1 pathway [163]. In our group, a set of 

small chemical inhibitors for Deptor was developed in 

which they inhibited Deptor/mTOR binding. Therefore, 

mTORC1 is up-regulated, promoting feedback down-

regulation of the IGF/IRS-1/PI3-K/PDK1 pathway, and 

activating AKT phosphorylation. On the other hand, 

elimination of AKT decreases activation, and this effect 

probably results in increased mTORC2 activity which 

overcomes any inhibitory effect on the PI3-K/PDK1 

pathway [163]. These compounds activate mTORC1  

and selectively induce MM cell apoptosis and cell cycle 

arrest [163]. 

 

Leucine-rich repeat containing 4 (LRRC4), also called 

netrin-G ligand-2, is a member of the leucine-rich 

repeat (LRR) superfamily [164]. Previous studies have 

confirmed that LRRC4 plays a central role in the 

development and early differentiation of the nervous 

system, especially during synapse formation [165]. 

Furthermore, a new role for LRRC4 as a tumor 

suppressor for glioma has been reported [166]. 

 

Recent studies have shown that LRRC4, an autophagy 

inhibitor, interacts directly with Deptor, which induces 

a decrease in the level of Deptor protein. This 

interaction was determined by co-immunoprecipitation 

assays for which plasmids with different domains of 

Deptor were constructed, finding an interaction of 

LRRC4 with the PDZ region (330-407). Additionally, 

the deletion of the C-terminal binding domain resulted 

in an abolition of the interaction of Deptor with LRRC4. 

This resulted in the activation of mTOR, thus 

decreasing the level of cellular autophagy [167]. 

Therefore, it has been suggested that LRRC4 could be 

used as a possible therapeutic strategy in malignancies 

associated with high expression of Deptor. 

 

In addition, natural compounds have been proposed as a 

potential therapeutic treatment for MM; for example, 

cell lines treated with 1,2,3,4,6-Penta-O-galloyl-beta-D-

glucopyranoside (PGG) show a cell cycle arrest in G1 

phase and increased of apoptosis by caspase 3 cleaved 

expression. Interestingly, the treatment with PGG in 

cells was closely associated with a decreased effect on 

Deptor expression in a dose-dependent way in MM. In 

contrast with other compounds, this antagonizes the 

effect of bortezomib [168].  

 

It was reported a Deptor was increased in a time 

dependent way at 0, 6, 12 and 18 h, and then decreased 

after nutrient depletion in 8226 cells. These levels were 

consistent with autophagy [169], confirming the 

participation of Deptor in apoptosis and provides a 

possible participation in autophagy. 

 

The potential biological roll of Deptor in MM was 

predicted by our analysis, using bioinformatic tools 

(ONCOMINE), and the expression of Deptor was 

analyzed to be significantly upregulated in MM cells 

(P<0.001). When analyzing different studies related to 

the expression of Deptor in MM, it is typical to find a 

high expression of Deptor. In a study involving 133 

MM samples, moderate expression was observed 

compared to plasma cells. In this same study, an 

analysis was made to observe if there were differences 

between the expression of Deptor and the stage of the 

disease and finding that there are no statistically 

significant differences [170]. Another study shows a 

significant expression of Deptor in MM (12 samples) 

compared to bone marrow cells (Figure 6A) [171].  

 

A significant expression of Deptor was observed 

compared to leukocytes or bone marrow cells in a study 

that included 84 samples [172]. Studies presented by 

Chapman that included 289 MM samples [173], Broyl 

with 320 samples [174], Dickens with 247 samples 

[172], and finally Zhou with 115 samples [175] showed 

significant Deptor expression. Interestingly, in two 

studies that included 65 and 264 samples, respectively, 

it is observed that there is a moderate relationship with 

Deptor expression and Progression-free survival (PFS) 

at 1 year, or with OS (Figure 6B, 6C). In the first study, 

a relationship with disease recurrence and Deptor 

expression was observed (Figure 6B). In the second, a 

relationship with poor response to therapy (Bortezomib) 

was also observed (Figure 6D) [176, 177]. In a study 

that included 414 samples, an important Deptor 

expression is also observed, but it is not possible to 

establish a significant difference in the relationship with 

Deptor expression and OS [171]. Another study 
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observed a lower expression in the samples from alive 

patients of MM compared with a high expression in 

samples from dead myeloma patients (Figure 6E) [176]. 

Finally, in the same study using the overall survival, we 

perform a Kaplan Meier analysis. We compared the 

overall survival of patients with high and low Deptor 

expression and observed that high Deptor expression 

correlates with a lower percent survival (*p<0.05). 

(Figure 6F) [176]. 

 

All these results together strongly suggest that Deptor 

has a tumor promoting role (oncogene) in MM, where 

this oncogenic role of Deptor is very specific and 

important in MM. Additional studies are necessary to 

establish more clearly the role of Deptor in MM, 

however, important studies have currently been carried 

out using Deptor with an important therapeutic target 

with very successful results that to date have led to pre-

clinical studies [18]. 

 

Deptor in Leukemia 
 

Another hematological malignancy in which Deptor 

plays an important role is Leukemia. Especially in 

patients with T-ALL, where the role of aberrant 

NOTCH1 is crucial in the pathogenesis [178]. NOTCH1 

promotes leukemogenesis in cooperation with AKT 

[179]. In this case, NOTCH1 promotes Deptor by union 

in his promoter identifying a transcriptional control of 

Deptor and its regulation of AKT, proliferation, and 

leukemogenesis in T-ALL [40].  

 

In AML, Deptor has been related to KDM4A 

specifically Depletion of KDM4A decreases [180]. 

KDM4A is an αKG-dependent enzyme of the Jumonji 

family of lysine demethylases [181]. KDM4A 

overexpression reduces the ubiquitination of Deptor 

while 2HG-induced KDM4A inhibition promotes 

mTOR activation and act with Deptor. Inhibition of 

KDM4A results in reduction of Deptor levels, leading 

to mTOR activation independently of the PI3K/AKT/ 

TSC1-2 pathway [40]. In promyelocytic leukemia cells, 

the cullin-RING ligase (CRL)-NEDD8 pathway 

maintains essential cellular processes. The treatment 

with the antineoplastic ATRA promotes an up-regulated 

protein expression of Deptor which downregulates 

mTOR and could promotes the differentiation of 

promyelocytic cells [182].  

 

 
 

Figure 6. Expression of Deptor in Multiple Myeloma. Oncomine Deptor expression was revised in different reports; (A) Zhan et al, 
analysis of Deptor Expression. MM shows a higher expression compared to bone marrow cells (*p<0.001). (B) In Carrasco et al, Analysis of 
Deptor, relationship with disease recurrence and Deptor expression was observed with high Deptor expression compared to non-
recurrence (*p<0.05). (C) in Carrasco et al Analysis, we found a moderate high expression of Deptor in Alive patients compared to Dead 
patients (*p<0.05). (D) in Mullygan et al, analysis shown a responder patient has a moderated high expression of Deptor compared to Non-
responders (*p<0.05). (E) In the same data analysis overall survival was shown, and dead patients have an important high expression of 
Deptor (*p<0.001). (F) Overall survival of patients with MM according to Deptor expression. Number of patients (n) is listed next to the 
graph (*p<0.05). 
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Currently there is very little information on Deptor 

expression in leukemia and its biological role. However, 

we reviewed through Oncomine platform database, 

studies that included the analysis of Deptor mRNA 

expression in some types of leukemia. Through this 

analysis, we found that studies in samples of patients 

from Acute Myeloid Leukemia (AML) with 542 

samples [183], another 23 [184], and 285 samples [185] 

had a significant expression of Deptor compared to 

peripheral blood cells or bone marrow cells respectively 

(Figure 7A–7C). Another study that included 43 

samples of AML showed an important expression of 

Deptor [186]. Another important expression of Deptor 

is observed in another study that included 162 AML 

samples, in which analyzing the PFS at 3 years and the 

OS shows that there is no significant difference between 

these and the Deptor expression [187]. However, in 

another study that included 78 AML samples, where 

important Deptor expression is also shown, it is 

observed that Deptor expression is related to poor PFS 

at 3 years and total survival (Figure 7D, 7E) [187].  

 

In the same study, we perform a Kaplan Meier analysis 

to compare the Deptor expression over percent survival 

of patients. We observe that high Deptor expression was 

found in patients with poor survival. (Figure 7F) [187]. 

 

Another study reported by Heuser and Co that includes 

33 AML samples, a relatively low expression of Deptor 

is observed. However, when analyzing the response to 

treatment, a poor response is observed in the group of 

samples with higher Deptor expression (p =0.001), 

although it is not possible to establish whether there is a 

relationship between PFS 3-year or OS [188]. In other 

two studies carried out by Raponi and Co. they show an 

important Deptor expression in 58 AML samples and 

other with 34. Interestingly, in the last one, a poor  

OS is observed in relation to higher Deptor expression 

(Figure 7G) [189, 190].  

 

In a study in Childhood AML (237 samples), a 

significant expression of Deptor is shown [191]. 

However, in another study that included 248 Adult AML 

samples and 93 Childhood AML samples, a negative 

expression of Deptor was observed [192]. Therefore, the 

expression of Deptor in childhood AML is not as clear 

as the case of AML where an important expression of 

Deptor is consist in the different studies reviewed here. 

Acute Myeloid Leukemia (AML) is a hematologic 

cancer characterized by abnormal clonal proliferation of 

undifferentiated blasts and by their primary infiltration 

of hematopoietic organs, such as the bone marrow  

(BM), lymph nodes, and spleen. Uncontrolled expansion 

of leukemic cells suppresses normal hematopoiesis 

[193]. Conventional AML treatment and allogeneic 

transplantation are the current therapeutic alternatives 

[193]. However, relapse and disease progression remain 

the main causes of treatment failure [194]. Thus, 

 

 
 

Figure 7. Deptor expression in Acute Myeloid Leukemia. Bioinformatic analysis with Oncomine of Deptor expression on AML was 
revised. (A–C) three different studies by Hafferlach et al, Andersson et al, and Valk et al, were revised and respectively shows an important 
higher expression of Deptor in patients with AML compared to controls (PBMC and bone marrow) (*p<0.001). (D–G) Metzeler et al, and 
Raponi et al, analysis shown overall survival status on relationship with Deptor expression (D, G), dead patients have an important high 
expression of Deptor (*p<0.001). and Progression free survival (E), shows a moderate relationship with high expression of Deptor in dead 
patients (*p>0.05). (F) Overall survival of patients with AML according to Deptor expression. Number of patients (n) is listed next to the graph 
(n/s p>0.05). 
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treatment of AML remains an important unmet clinical 

need, especially for patients lacking mutations. 

According to this review and the important expression of 

Deptor in AML, this may be of importance in studies as 

a potential therapeutic target, as in MM (Table 3). 

 

When we reviewed the reports that show data in T-Cell 

Acute Lymphoblastic Leukemia (T-ALL), it is observed 

in several reports that the expression of Deptor is 

consistent in this malignancy; for example, in a study 

with 174 samples, a moderate expression is observed 

compared to peripheral blood cells [183]. In another 

report that included 11 T-ALL samples, a high 

expression of Deptor is observed compared to healthy 

bone marrow cells [184]. Similarly, in another study in 

T-ALL with 23 samples, an important expression of 

Deptor was observed [195]. In other studies where the 

Deptor expression in T-Cell childhood Acute 

Lymphoblastic Leukemia was reviewed, it is observed 

that there is also an important expression of Deptor in a 

report that included 46 samples, compared to normal 

cells or B-ALL [196] (Figure 8A). In this study, the 

minimum residual disease was reported at 46 days and 

moderate inverse relationship is shown between it and 

Deptor expression (p=0.05) (Figure 8B). Likewise, in 

another study in 10 samples of T-Cell Childhood Acute 

Lymphoblastic Leukemia it is observed that the Deptor 

expression is related to the recurrence of the disease 

(Figure 8C, 8D) [197]. T-ALL is a highly proliferative 

hematologic malignancy caused by malignant 

transformation of T-cell progenitors [198]. T-ALL 

patients generally present aggressive clinical features 

correlated with a poor prognosis, including inhibition of 

normal hematopoietic function [199]. The complete 

remission rate of T-ALL can reach 94%, and the long-

term survival rate can reach 85% [200]. However, 20% 

of pediatric patients and 40% of adult patients are 

susceptible to recurrence and develop refractory 

leukemia [199]. Because of this, understanding the 

underlying mechanisms of T-ALL development is 

highly relevant. As already mentioned, a different study 

indicates that Deptor is importantly expressed in T-ALL 

and some mechanisms have been described that 

implicate its role in the development of this condition as 

an oncogene where it promotes the activity of Notch 

[40] and activation of the PI3K/AKT pathway. 

Therefore, all these results suggest Deptor with an 

important role in the pathophysiology of T-ALL and of 

interest as an important therapeutic target in T-ALL 

(Table 3)  

 

Contrary to what was observed in T-ALL, when we 

analyzed Deptor expression in B-Cell Acute 

Lymphoblastic Leukemia (B-ALL), a decreased or 

negative expression is shown. Thus, in a study that 

included 147 samples of B-ALL, a moderate expression 

was observed when compared to peripheral blood cells 

[183]. Consistent with another study that included 87 

samples of B-ALL, Deptor expression is very low 

(Figure 8E) [184]. This low Deptor expression is 

consistent in Pro-B Acute Lymphoblastic Leukemia (70 

samples) [183]. When Deptor expression was reviewed 

in B-Cell Childhood Acute Lymphoblastic Leukemia in 

studies that included 359 samples, negative Deptor 

expression was also observed (Figure 8F) [183]. As 

already mentioned, ALL is a hematological neoplasm 

caused by the proliferation and accumulation of 

lymphoid progenitor cells in the bone marrow or in 

extramedullary sites, which can be presented as 

phenotypic subgroups of B cells and T cells. However, 

more than two thirds of all adult cases are B cell 

phenotypes [201]. B-ALL has a more favorable survival 

than T-ALL in a young population and the opposite 

occurs in older ages [201]. Interestingly, our analysis 

generally shows significant expression of Deptor in T-

ALL and not in those of the B-ALL phenotype, 

suggesting that Deptor may have a more potential role 

as an oncogene in T-ALL than in B-ALL. Additional 

studies are necessary to determine the possible role of 

Deptor in B-ALL, which according to our review, could 

play a role as a tumor suppressor much like in other 

types of cancers, such as breast cancer (reviewed by 

Caron) [4]. 

 

Additional studies also show a negative expression of 

Deptor in Chronic Myelogenous Leukemia (76 samples), 

Myelodysplastic Syndrome (206 samples), Chronic 

Lymphocytic Leukemia (448 samples) [183], while 

observing a positive expression in Acute Promyelocytic 

Leukemia (12 samples) [202]. Chronic lymphocytic 

leukemia (CLL) is one of the most common types of 

leukemia in western countries [203]. CLL is mainly 

characterized by the accumulation of mature monoclonal 

CD5
+
 B cells in lymphoid tissues and peripheral blood 

[204]. Despite significant advances in its treatment, CLL 

remains incurable [205]. Therefore, our observations in 

the analysis of Deptor expression in acute and chronic 

hematological diseases suggest that Deptor expression is 

not observed in mature (chronic) phenotype leukemias, 

but in T-cell lymphoid (acute) leukemias and not so in B 

cells (Table 3). 

 

Recently, it was revealed that mTOR plays critical roles 

in regulating CD4
+
T cell activation and proliferation 

[206]. In addition, Deptor as part of the mTOR 

signaling complex, may be playing a role in the 

activation, proliferation and even differentiation of 

CD4
+
T cells [207]. Deptor has been found to be 

expressed at high levels in non-activated CD4
+
T cells 

and its expression regulates the activation state of 

CD4
+
T cells. Low levels of Deptor are associated with 

an optimal mTOR activity with a differentiation of 
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Table 3. Expression of Deptor in hematological malignancies. 

Malignancy Subtype Deptor expression Reference 

Multiple Myeloma   High [170], [171], [172], [173], [174], [175],  

Leukemia AML High [183], [184], [185], [186], [187], [189] [190] 

[191]  

T- ALL High [184], [195], [196] 

B-ALL  Low [184] [183, 195, 196] 

CML Low [183] 

CLL  Low [183] 

Non-Hodgkin Lymphoma DLBCL High  [208], [209],  

Low  [210–212] 

 ABC High  [208, 217, 218] 

 GCB High  [208, 217, 218] 

FL Low  [211, 220] 

High [208] 

BL High  [209, 211] 

MCL High [224] 

MZL Low [212] 

ALCL High [228] 

 ALK- High [227] 

 ALK+ High [227] 

Hodgkin Lymphoma cHL High  [234] 

 

 
 

Figure 8. Deptor expression in Acute Lymphocytic Leukemia. Oncomine analysis of Deptor expression in ALL was revised. (A) in 
Coustan Smith et al, expression analysis shows a higher expression in T-ALL vs normal cells and B-ALL (*p=0.05). (B) analysis of minimal 
residual disease in relationship with Deptor expression, we observed moderate high Deptor expression in patients with positive MRD 
(*p>0.05). (C) Another study presents by Bhojwani et al, a significant higher Deptor expression was observed in T-ALL compared to B-ALL 
(*p<0.001), (D) In the same study the Deptor expression was related to recurrence of the disease compared with primary recurrence. 
Moderate high Deptor expression was related with recurrence (*p<0.05). (E) On the other study presented by Andersson et al, Deptor 
expression is low in B-ALL compared with Bone Marrow (*p= N/S). (F) On Haferlach et al. study, very low Deptor expression in B-ALL and in B-
ALL childhood were observed compared with PBMC (*p= N/S). 
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CD4
+
T cells [207], while the high expression of Deptor 

in CD4
+
T cells modulates the differentiation to effector 

cells and favors Foxp3 T cells. Thus, the mTOR 

pathway is involved in the differentiation and activation 

of CD4
+
 T cells and Deptor could be involved in the 

biological regulation of CD4
+
T cells and their final 

destination after activation [206]. Therefore, it is not 

surprising that Deptor is involved in the pathophysiology 

of hematologic malignancies of T cells.  

 

In conclusion, and according to the studies reviewed 

here, an important expression of Deptor is observed in 

T-ALL, as well as in T-Cell Childhood Acute 

Lymphoblastic Leukemia, while Deptor expression is 

very low or negative in B-ALL and in B-Cell Childhood 

Acute Lymphoblastic Leukemia as well as in CLL 

(Table 3). 

 

Deptor in Non-Hodgkin Lymphoma 
 

Since there is also very few or no information about 

Deptor expression in lymphoma and its possible 

biological role, through Oncomine platform we analyzed 

different works that contain the mRNA Deptor 

expression database, finding the following result: A study 

by Compagno and Co. shows high Deptor expression in 

Diffuse Large B-Cell Lymphoma (DLBCL) (44 samples) 

(Figure 9A) [208], which is consistent with another study 

that included 166 samples [209]. While in other studies, 

Jais and Co. with 53 samples, Bruce and Co., and Storz 

and Co. with 6 samples respectively, a negative 

expression is observed [210–212]. This level of 

expression of Deptor is important but lower when 

compared to MM, where it is observed that there is a 

tendency for greater expression [213]. 

 

DLBCL represents the most common Non-Hodgkin’s 

Lymphoma subtype and is within 30% to 40% of cases 

in the adult population [214]. DLBCL is an aggressive 

lymphoma subtype, where two histologically 

indistinguishable DLBCL subtypes have been identified 

by gene expression profiling, each derived from a 

different cell of origin (COO) [215]. The germinal 

center B-cell-like DLBCL (GCB) subtypes and the 

 

 
 

Figure 9. Deptor expression in Lymphoma. Based on the Oncomine Analysis we revised Deptor expression in different subtypes of 
DLBCL lymphoma. (A) in Compagno et al. analysis, we observe a differential expression of Deptor in different subtypes of DLBCL. DLBCL, GCB-
DLBCL and ABC-DLBCL, shows higher Deptor expression compared with memory B-cell (*p<0.001). (B) In Shaknovich et al, Analysis, overall 
survival according Deptor expression was revised, alive patients show slight high Deptor expression compared with dead patients (*p=N/S). 
(C) in the same analysis two subtypes of DLBCL were revised; ABC-DLBCL vs GC-DLBCL shows a higher Deptor expression in GC-DLBCL 
(*p<0.05). (D) in the same study recurrence was analyzed and Deptor expression was no significantly high in the patients with recurrence vs 
patients with no recurrence (*p=N/S). 
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other activated B-cell-like subtype (ABC) have been 

identified. They are controlled by different oncogenic 

pathways, show different clinical behaviors, and have 

different clinical results. Therefore, the ABC-DLBCL 

subtype has worse prognosis and clinical evolution 

compared to GCB-DLBCL subtype [216, 217]. Because 

of this, we reviewed studies that contained Deptor 

expression data in ABC-DLBCL. One study with 17 

samples, and others with 20 samples and 167 samples 

showed a significant expression of Deptor compared 

with normal memory B cells. In the last study, with 167 

samples, an inverse relationship of Deptor expression 

and poor OS is observed, but is positively related to the 

presence of extra nodal sites (Figure 9B)
 
[208, 217, 

218]. We also reviewed studies that included GCB-

DLBCL samples, finding an important expression of 

Deptor compared to ABC-DLBCL (Figure 9C) [218]. In 

other studies with 9, 40 and 183 samples respectively, 

where Deptor expression was analyzed [208, 217, 218], 

the study with 40 samples shows a moderate inverse 

relationship between Deptor expression and recurrence 

at 5 years (Figure 9D) [218]. 

 

Follicular lymphoma (FL) is the second most frequent 

subtype of malignant lymphomas and represents 

approximately 20% of all cases of lymphoma in the 

adult population. It is typically an indolent disease with 

long-term survival [219]. In this review we also 

analyzed Deptor expression in some studies that 

contained FL data. We found that in two of the three 

studies reviewed, one of 191 and the other with 5 

samples show a low or negative expression of Deptor 

[211, 220]. The third study that includes 38 samples 

shows a high expression of Deptor [208], therefore, 

considering the size of the samples in general, it can be 

suggested that the FL shows a low or negative Deptor 

expression according to this analysis. This is consistent 

with other study where 8 cutaneous FL samples were 

included showing to be negative for Deptor expression 

(Table 3) [212]. 

 

Other frequently diagnosed aggressive B-NHLs include 

mantle cell lymphoma (MCL) and Burkitt's lymphoma 

(BL), while another prevalent indolent lymphoma 

includes marginal zone lymphoma (MZL). In our 

analysis in this review we found two studies that 

included 5 and 8 BL samples and are consistent with 

high Deptor expression [209, 211]. In the study of 

Brune et al, we observe a high expression of Deptor in 

BL compared to memory B-cell as control (Figure 

10A). Interestingly in the last study, there is an inverse 

expression between Deptor vs Bcl-2, while there is a 

positive expression between Deptor and Bcl-6. 

Furthermore, Deptor expression is inverse related to 

poor 5-year PFS or OS (p =0.001). In addition, a 

Kaplan Meier analysis was performed to compare 

survival percent of patients with high Deptor 

expression. We observed that a high expression of 

Deptor correlated with a better overall survival percent 

(*p< 0.01). (Figure 10B–10D) [209]. Bcl-2 is an anti-

apoptotic protein member of the Bcl-2 family of 

proteins that can cause interruption of the apoptotic 

process and survival of malignant cells [221]. The 

aberrant expression of the Bcl-2 protein contributes to 

the pathogenesis of many types of human malignancies, 

including leukemias and lymphomas. Within B-NHL, 

Bcl-2 overexpression commonly arises from genetic 

abnormalities and is substantially different in several 

lymphoma subtypes. Unlike the rest of B-NHL, the 

level of Bcl-2 expression in Burkitt lymphoma is low or 

undetectable, which has been used as part of the 

diagnostic algorithm for this subtype of lymphoma 

[222, 223].  

 

Therefore, probably due to the low expression of Bcl2, 

it was not possible to establish any relationship between 

the positive expression of Deptor and Bcl-2. Knowing 

the important role of Bcl-2 in the response to treatment 

and the inverse expression of Deptor, it is not surprising 

that the expression Deptor is not related to response to 

treatment. So, these observations briefly suggest that 

Deptor may have a role in lymphoma development than 

in mechanisms of resistance to therapy. BCL6 gene 

encodes a transcription factor that is critical to the 

normal development of the B-cell germinal center 

reaction important for cell proliferation and DNA 

damage. Bcl-6 activity can be deregulated by a variety 

of mechanisms and contributes to the development of 

B-cell lymphoma. Therefore, finding a positive 

relationship between the presence of Bcl-6 and Deptor 

may suggest that Deptor has some role in the 

development of Burkitt’s Lymphoma. Furthermore, our 

review of the in silico analysis of possible transcription 

factors that regulate Deptor expression is interestingly 

found in Bcl-6, as described in the Deptor regulation 

section (Table 1 and Figure 3). Likewise, our analysis 

shows an important expression of Deptor in 57 MCL 

samples, which, as already mentioned, together with BL 

is another of the most aggressive B-NHL subtypes 

[224]. Therefore, this data suggest that Deptor 

expression is more related to more aggressive B-NHL 

subtypes like ABC-DLBCL and GCB-DLBCL. We also 

analyzed a report of MZL, an indolent B-NHL subtype, 

and found low and negative Deptor expression 

compared to tonsil tissue [212]. This seems to be 

consistent with our hypothesis of low Deptor expression 

in less aggressive lymphoma subtypes (Table 3). 

 

ALK-positive anaplastic large cell lymphoma (ALK
+
 

ALCL) is a rare subtype of peripheral T-cell Non-

Hodgkin Lymphoma (NHL), and is more common in 

children and young adults. Patients generally have 
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advanced stage (stage III or IV) disease and systemic 

symptoms (75%) [225]. Lymphoma cells show strong 

and uniform CD30 expression and aberrant expression 

of anaplastic lymphoma kinase (ALK) protein due to 

translocations involving the ALK gene at the 2p23 locus 

[80]. ALK
+
 ALCL has a more favorable clinical course 

than ALK negative cases [226]. Two studies included in 

our analysis show that there are no differences in Deptor 

expression between Anaplastic Large Cell Lymphoma, 

ALK-Negative (4 samples), and Anaplastic Large Cell 

Lymphoma, ALK-Positive (5 samples) [227], while the 

other study shows a very high expression of Deptor in 

ALCL (30 samples) [228]. A study containing 13 

samples of Adult T-Cell Leukemia/Lymphoma and 37 

samples of Angioimmunoblastic T-Cell Lymphoma was 

also analyzed, showing that both conditions show a very 

important expression of Deptor in the samples analyzed 

(Figure 11) [228]. Adult T-Cell Leukemia/Lymphoma 

(ATL) is an aggressive type of intractable peripheral T-

cell malignancy. It is caused by infections with the 

human T-cell leukemia virus type I (HTLV-1). The 

results, after therapeutic interventions for ATL, have not 

been satisfactory [229], and is characterized by multiple 

organ invasion by ATL cells, a high frequency of 

opportunistic infections, resistance to chemotherapeutic 

drugs, and poor prognosis [230].  

 

Angioimmunoblastic T-cell lymphoma (AITL) is 

another peripheral T-cell lymphoma with aggressive 

lymphoproliferative disorders, almost all associated 

with poor clinical outcomes [231]. The review of our 

Deptor expression analysis suggests that ATLs 

generally show significant Deptor expression, although 

some relationship of Deptor expression with some 

clinical characteristic cannot be established. Therefore, 

additional analysis and studies are necessary to establish 

the importance and role of Deptor in ATLs (Table 3). 

 

Hodgkin Lymphoma (HL) is a lymphoid neoplasm and 

is one of the most common cancers diagnosed in 

adolescents. HL is classified according to immuno-

histochemistry and biological behavior in 

 

 
 

Figure 10. Deptor expression in Burkitt’s Lymphoma. Oncomine analysis was done to revised Deptor expression in Burkitt’s 
Lymphoma. (A) in Brune et al, analysis, show high Deptor expression Burkitt’s Lymphoma compared to memory b-cell (*p<0.05). (B) In 
Hummel et al, shows a moderate high Deptor expression the alive patients at 5 years or at total OS (C) (*p=N/S or *p<0.05 respectively). (D) 
Overall survival of patients with DLBCL according to Deptor expression. Number of patients (n) is listed next to the graph (*p>0.01). 



 

www.aging-us.com 1548 AGING 

classical HL (cHL) and predominant HL in nodular 

lymphocytes. CHL is a more aggressive disease, 

accounting for 95% of HL cases, while Nodular 

lymphocyte predominant HL is rarer showing indolent 

and localized behavior [232, 233]. In a study where 

Hodgkin's Lymphoma (130 samples) was analyzed, a 

very important Deptor expression was observed (Figure 

12A), and this expression was moderately related to the 

 

 
 

Figure 11. Deptor expression in T-cell Non-Hodgkin Lymphoma. Using Oncomine we analyzed Deptor expression on TCL and ALCL. A) 
a study by Iqbal et al, show high Deptor expression in Adult T-Cell leukemia, Anaplastic Large Cell Lymphoma and Angioimmunoblastic T-cell 
lymphoma compared with CD4+ T cell lymphoma (*p<0.001). 
 

 
 

Figure 12. Deptor expression in Hodgkin Lymphoma. Deptor expression in Hodgkin Lymphoma was revised by Oncomine analyzes. (A) 
Hodgkin Lymphoma shown a high Deptor expression. (B) Deptor expression has relationship with stage of the disease, stage IV shown higher 
Deptor expression compared with stage I (*p<0.05). (C) Deptor expression is higher in dead patients vs alive patients when OS was analyzed 
(*p<0.05). (D) Relapse timing was related to Deptor expression in refractory is higher Detour expression compare with late relapse timing 
(*p<0.05). 
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Ann Arbor stage and to the relapse in the refractory 

population to treatment (Figure 12B), although there was 

no relationship with total OS or recurrence. (Figure 12C, 

12D) [234]. In another study that included Mixed 

Cellularity Classical Hodgkin's Lymphoma (17 

samples), Nodular Sclerosis Classical Hodgkin's 

Lymphoma (42 samples), shows an important expression 

of Deptor, although this is not related to any clinical 

characteristic such as the outcome [235]. Therefore, 

according to the review of these analyzes, it is suggested 

that high Deptor expression in cHL and could be related 

to the stage and relapse of the disease (Table 3). 

However, further studies and analysis are necessary to 

establish the role of Deptor more precisely in cHL. 

 

CONCLUSIONS 
 

Since the discovery of Deptor in 2009, more than ten 

years ago, several a large number of information has 

been accumulated, revealing its importance in a large 

number of biological processes. As described in this 

review, Deptor appears to play an important role in the 

pathogenesis of some types of hematologic 

malignancies. This is due to its ability to control mTOR 

activity and PI3K-AKT axis activity, which has been of 

great importance in cancer among other biological 

processes. In recent years, Deptor has become an 

important therapeutic target not only in cancer, but also 

in metabolic and immunity processes. Therefore, in the 

coming years the development of many therapies based 

on the regulation of this protein will not be surprising. 
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