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INTRODUCTION 
 

Ischemic stroke is a common cause of severe disability 

and death worldwide [1]. To reduce primary injury due 

to acute ischemic stroke and limit infarct size, timely 

reperfusion therapy (thrombolysis or thrombectomy) is 

required [2]. However, post-ischemic reperfusion itself 

causes damage and dysfunction in a process known as 

cerebral ischemia-reperfusion (I/R) injury [3, 4]. In 

this process, reperfusion triggers an inflammatory 

cascade [5], a key mechanism contributing to 

secondary neuronal damage and death following the 
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ABSTRACT 
 

To investigate the therapeutic mechanism of action of transplanted stem cells and develop exosome-based 
nanotherapeutics for ischemic stroke, we assessed the effect of exosomes (Exos) produced by human umbilical 
cord mesenchymal stem cells (hUMSCs) on microglia-mediated neuroinflammation after ischemic stroke. Our 
results found that injected hUMSC-Exos were able to access the site of ischemic damage and could be 
internalized by cells both in vivo and in vitro. In vitro, treatment with hUMSC-Exos attenuated microglia-
mediated inflammation after oxygen-glucose deprivation (OGD). In vivo results demonstrated that treatment 
with hUMSC-Exos significantly reduced infarct volume, attenuated behavioral deficits, and ameliorated 
microglia activation, as measured three days post-transient brain ischemia. Furthermore, miR-146a-5p 
knockdown (miR-146a-5p k/d Exos) partially reversed the neuroprotective effect of hUMSC-Exos. Our 
mechanistic study demonstrated that miR-146a-5p in hUMSC-Exos reduces microglial-mediated 
neuroinflammatory response through IRAK1/TRAF6 pathway. We conclude that miR-146a-5p derived from 
hUMSC-Exos can attenuate microglia-mediated neuroinflammation and consequent neural deficits following 
ischemic stroke. These results elucidate a potential therapeutic mechanism of action of mesenchymal stem cells 
and provide evidence that hUMSC-Exos represent a potential cell-free therapeutic option for ischemic stroke. 
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initial ischemic episode [6, 7]. Overzealous up-

regulation of endogenous neuroinflammatory 

processes leads to destruction of hypoxic tissue, 

induction of apoptosis, and initiation of an 

inflammatory cascade feed-forward loop that can 

enlarge the damaged region [8–10]. 

 

Microglia, the major central nervous system resident 

innate immune cells, play an important role in 

modulating neuroinflammation [11]. Cerebral IR-

activated microglia undergo polarization into either 

“classically activated” M1 or “alternately activated” 

M2 phenotypes [12, 13]. While M1 microglia produce 

a large number of pro-inflammatory factors (e.g. IL-6, 

TNF-α, and IL-1β) [14–16] that impede post-injury 

neural regeneration and produce poorer longterm 

neurological outcomes [17], M2 microglia are able to 

perform efferocytosis and produce numerous 

protective and trophic factors that promote 

neurogenesis [18]. Decreasing microglial-mediated 

neuroinflammatory injury by targeting M1/M2 

polarization may therefore have therapeutic potential 

in ischemic stroke. 

 

Our previous meta-analysis revealed that mesenchymal 

stem cell (MSC) transplantation after ischemic stroke 

significantly improves neurological deficits and quality 

of life [19]. In addition, our previous original research 

demonstrated that MSCs are able to protect brain tissue, 

regulate inflammatory responses after traumatic brain 

injury [20] and stroke [21, 22], and can regulate 

microglia-mediated inflammatory responses [23]. 

However, the mechanisms by which MSCs modulate 

microglia-mediated inflammation remain unclear. For 

the above reasons, elucidation of these mechanisms 

would be of significant benefit. 

 

Relative to human bone marrow-derived MSCs 

(BMSCs), human umbilical cord MSCs (hUMSCs) are 

more readily obtained, exhibit superior viability, are 

compatible with therapeutic methods featuring higher 

levels of patient acceptability and compliance, and are 

not susceptible to immune-mediated graft rejection [24, 

25]. In addition, although hUMSCs are considered more 

primitive than bone marrow derived MSCs, they do not 

induce teratomas, but do exhibit immunomodulatory 

capabilities [26]. Stroke occurs frequently at 45-65 

years old, and there is an autologous bone marrow aging 

problem. In clinical research, it can avoid pain during 

bone marrow extraction and enhance volunteer 

compliance. We therefore selected hUMSCs for use in 

the current research. 

 
Although information regarding MSC therapeutic 

mechanisms of action is limited and fewer than 1% of 

transplanted MSCs reach and engraft at target sites 

(since most become entrapped in the pulmonary 

capillary bed due to their large size) [27], their 

therapeutic effect is nonetheless frequently observed 

[28], currently mainly attributed to MSC-produced 

paracrine factors. We reasoned that transplanted MSC-

derived exosomes (Exos) generated in vivo may be one 

factor contributing to the distal paracrine therapeutic 

effects of stem cell therapy. 
 

Small non-coding microRNAs (miRNAs) can act as 

inhibitors of mRNA transcription and protein translation 

in most cell types [29]. Cell-derived exosomes contain 

numerous miRNAs that are able to act both locally and - 

via entering circulation - at distal sites [30, 31]. 

Exosomes are also internalized by neighboring or distal 

cells, thereby modulating the function of these recipient 

cells [32–34]. A recent study demonstrated that MSC-

derived exosome content member miR-146a decreases 

inflammation and enhances anti-sepsis therapeutic 

efficacy [35]. Our sequencing data demonstrate that 

hUMSC-derived exosomes contain large amounts of 

miR-146a-5p. We thus hypothesized that hUMSC-

derived exosomes (hUMSC-Exos), via provision of 

miR-146a-5p to microglia and consequent regulation of 

microglial gene expression, decrease microglia-

mediated inflammation in the ischemic mouse brain. 

We injected wild-type and miR-146a-5p knockdown 

(miR-146a-5p k/d) hUMSC-Exos into ischemic mice to 

test this hypothesis as well as to explore mechanisms of 

potential therapeutic activity. 

 

RESULTS 
 

Characterization of hUMSCs and hUMSC-Exos 

confirms hUMSC phenotype and demonstrates 

typical exosomal features 
 

In vitro, hUMSCs were expanded to the third and fifth 

generations (Figure 1A). Flow cytometry was used to 

characterize hUMSC surface phenotype (Figure 1B). 

The majority of hUMSCs were positive for expression 

of CD73 (100%), CD105 (99.96%), and CD90 (100%), 

and negative for expression of CD45 (0.06%), HLA-DR 

(0.50%), CD34 (0.06%), CD11b (0.06%), and CD9 

(0.46%). Such results are representative of the known 

hUMSC phenotype, confirming hUMSC identity. After 

removal of dead cells and debris from the hUMSC-

conditioned culture medium, secreted extracellular 

vesicles were harvested by differential centrifugation. 

Such vesicles displayed typical exosomal features, 

including morphology and size (30-150 nm) as detected 

by electron microscopy (Figure 1C) and NanoSight 

analysis (Figure 1D), and the presence of Exos markers 
CD9, Alix, and TSG101 [36] as detected by western 

blot (Figure 1E). Therefore, they were designated 

hUMSC-Exos. 
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In a murine model, hUMSC-Exos alleviate ischemic 

stroke injury and inflammation 

 

We examined the in vivo effects of hUMSC-Exos in a 

murine model of ischemic stroke. Mice were 

randomly allocated to vehicle-only (phosphate-

buffered saline (PBS)) or experimental (hUMSC-Exo 

in PBS) groups, and interventions were intravenously 

administered via the tail vein four hours post-

reperfusion (Figure 2A). Seventy-two hours post-

reperfusion, neurological function scores were 

examined. Lower Bederson scale and higher grip 

strength test scores (Figure 2C, P < 0.05) were 

observed in the experimental group. After 

experimental animal euthanasia, brain slices were 

obtained to assess infarct volume via 2,3,5-

triphenyltetrazolium chloride (TTC) staining, 

demonstrating smaller infarct size in the experimental 

group (Figure 2B, p < 0.05). Additionally, the area of 

ischemic penumbra was smaller in the experimental 

group (Figure 2D). Furthermore, hematoxylin and 

eosin (H&E) staining demonstrated lower levels of 

tissue edema and cell edema and fewer contracted 

nuclei in the experimental group (Figure 2E). 

Immunohistochemical detection of IL-6 and NFκB in 

the ischemic penumbra demonstrated significantly 

lower expression of these proteins in the experimental 

group (Figure 2F, p < 0.05). Finally, infiltration of 

PKH26 (red)-labeled intravenous Exos into the site of 

brain injury was demonstrated by fluorescence 

microscopy (Figure 2G). Taken together, these results 

suggest that circulating hUMSC-Exos infiltrate the 

relevant anatomical site and are protective against I/R 

injury after ischemic stroke, in part by decreasing 

levels of local neuroinflammation. 

 

We next examined the effect of hUMSC-Exos on 

activated microglia in vivo. Treatment with hUMSC-

Exos markedly decreased the presence of IBA-1+CD16+ 

cells at 72 h post-stroke (Figure 2H, p < 0.05) but 

markedly increased the presence of IBA-1+CD206+ cells 

at 72h post-stroke (Figure 2I, p < 0.05). Since IBA-1 is 

a marker of brain microglia [37], CD16 is an M1 

marker [38], and CD206 is an M2 marker [39], this 

suggests that hUMSC-Exos treatment decreased and 

increased, respectively, the number of M1 and M2 

microglia. Expression of pro-inflammatory cytokines 

IL-6, TNF-α, and IL-1β was also significantly decreased 

in the experimental group (Figure 2J, p < 0.01). Taken 

together, these results suggest that hUMSC-Exos may 

decrease microglia-mediated neuroinflammation after 

ischemic stroke in mice. 

 

 
 

Figure 1. Analysis of human umbilical mesenchymal stem cells (hUMSCs) and hUMSC-derived exosomes (hUMSC-Exos). (A) 

Representative micrographs of cultured hUMSCs at passage 3 (P3). Scale bar: 200 μm. (B) Flow cytometry analysis of hUMSC CD73, CD105, 
CD90, CD11b, CD19, CD34, CD45, and HLA-DR expression. (C) Representative electron micrographs of hUMSC-Exos. Scale bar: 200 nm. (D) 
Exosome particle size and concentration. (E) Western blot analysis of Exos-specific markers CD9, ALIX, and TSG101. Each blot represents 
three independent experiments of two samples each. 
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Figure 2. Treatment with hUMSC-Exos attenuates microglia-mediated inflammation and neurological deficits after ischemic 
stroke. (A) Schematic of the protocol. (B) Representative photomicrographs of TTC-stained tissue from the control, vehicle-only, and 
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experimental groups, with associated infarct size as calculated using ImageJ software. Data are expressed as mean ± SEM (n = 12 per group). 
Significant differences are indicated (*p < 0.05). (C) Neurological deficit scores in the vehicle-only and experimental groups 72 hours post-
reperfusion. Data are expressed as mean ± SEM (n = 12 per group). Significant differences are indicated (*p < 0.05, **p < 0.01). (D) The red 
box indicates the cerebral ischemic penumbra. (E) H&E staining. Scale bar: 50 μm. (F) Representative photomicrographs of IL-6 and NFκB in 
the ischemic penumbra 72 hours post-reperfusion, with associated relative intensities as calculated using ImageJ software. Scale bar: 50 μm. 
Data are expressed as mean ± SEM (n = 6 per group). Significant differences are indicated (*p < 0.05). (G) Red fluorescence indicates PKH26-
labeled exosomes which have accessed the site of cerebral damage. Scale bar: 50 μm. (H) Microglial M1 markers IBA-1 and CD16 in the 
ischemic penumbra 3 days following ischemic stroke, in the control, vehicle-only, and experimental groups. Scale bar: 50 μm. Associated M1 
counts are shown (A, B). (I) Microglial M2 markers IBA-1 and CD206 in the ischemic penumbra 3 days following ischemic stroke, in the 
control, vehicle-only, and experimental groups. Scale bar: 50 μm. Associated M2 counts - from the same animals in which M1 counts were 
determined - are shown (C, D). Significant differences are indicated (*p < 0.05). (J) Lower protein levels of pro-inflammatory cytokines IL-6, 
TNF-α, and IL-1β in the experimental group. Data are expressed as mean ± SEM (experiments were performed in triplicate). Significant 
differences are indicated (*p < 0.05, **p < 0.01). 

Microglial pro-inflammatory activity is also 

decreased by hUMSC-Exos in vitro 

 

First, we tested whether red fluorescent dye 

(PKH26)-labeled hUMSC-Exos are internalized 

during co-culture with BV2 microglia. After 6 h, 

microglia had efficiently internalized hUMSC-Exos 

as indicated by intracellular fluorescence (Figure 3A). 

To further validate the direct effects of hUMSC-Exo 

on activated microglia, the latter were cultured in 

serum-free medium for 6 h in a hypoxic incubator (to 

mimic oxygen-glucose deprivation (OGD)) prior to 

culture in conventional medium with or without 

hUMSC-Exos. After 24 h, IL-6, TNF-α, and IL-1β 

intracellular transcription and supernatant protein 

levels were determined by real-time polymerase 

chain reaction (RT-PCR) and enzyme-linked 

immunosorbent assay (ELISA), respectively. 

Treatment with hUMSC-Exos significantly decreased 

both IL-6, TNF-α, and IL-1β transcription and protein 

levels (Figure 3B, 3C, p < 0.01). Results suggest that 

hUMSC-Exos decrease microglial pro-inflammatory 

activity in vitro. 

  

Microglial pro-inflammatory activity is attenuated 

by hUMSC-Exosomal miRNAs in vitro 

 

In an attempt to elucidate at least one mechanism by 

which hUMSC-Exos modulate microglial activity, we 

investigated whether hUMSC-Exosomal miRNAs 

attenuate microglial pro-inflammatory activity in vitro. 

To demonstrate that miRNAs are a key functional 

component of these Exos, we conducted small 

interfering RNA (siRNA) knockdown of Drosha (an 

essential polymerase required for miRNA synthesis) in 

hUMSC (Figure 4A, 4B) in order to generate miRNA-

depleted hUMSC-Exos (Figure 4C, 4D). Treatment of 

activated microglia with wild-type or Drosha-

knockdown hUMSC-Exos demonstrated that miRNA 

depletion significantly weakened the anti-inflammatory 
effect of hUMSC-Exos (Figure 4E). Results suggest that 

hUMSC-Exosomal miRNAs contribute to microglial 

modulation. 

Specifically, hUMSC-Exosomal miR-146a-5p 

attenuates microglial pro-inflammatory activity in 

vitro through suppression of the IRAK1/TRAF6 

signaling pathway 

 

To determine which hUMSC-Exosomal miRNAs may 

contribute to microglial polarization and attenuation 

of microglial pro-inflammatory activity, BV2 

microglia were exposed to OGD with or without 

subsequent hUMSC-Exos treatment for 24 hours, and 

hUMSC-Exosomal small RNA expression analysis 

and deep sequencing were performed. The following 

formula was used to calculate corrected miRNA 

expression: reads per million (RPM) = (number of 

reads mapping to miRNA/number of clean reads) 

*106. To the best of our knowledge, this is the first 

study to report sequencing of hUMSC-Exos-derived 

miRNAs. The analysis revealed that several hundred 

miRNA species are present within hUMSC-Exos. 

Among the top ten miRNAs identified as 

significantly differentially expressed between 

hUMSC-Exos treated and untreated microglia (Figure 

5A), miR-146a-5p was higher in the treatment group 

and is known to modulate inflammation [40]. As 

demonstrated by PCR, treatment with hUMSC-Exos 

significantly increases BV2 microglial miR-146a-5p 

content (Figure 5B). Results suggest that hUMSC-

Exosomal miR-146a-5p is internalized by microglia 

(or that hUMSC-Exos induce microglial miR-146a-5p 

expression) and may contribute to modulating 

inflammation. The in vitro experimental scheme is 

pictured (Figure 5C). Western blot analysis 

demonstrated decreased IL-6, TNF-α, and IL-1β, as 

well as IRAK1/TRAF6 signaling pathway member 

IRAK1, TRAF6, and NFκB (p65) protein expression 

after hUMSC-Exos treatment. Furthermore, expres-

sion of IL-6, TNF-α, and IL-1β was higher after 

treatment with miR-146a-5p knockdown hUMSC-

Exos (Figure 5D–5F). Results suggest that hUMSC-

Exosomal miR-145-5p contributes to modulating 
OGD-induced microglial pro-inflammatory activity 

via suppression of the IRAK1/TRAF6 signaling 

pathway. 
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Microglia-mediated neuroinflammation and neural 

deficits resulting from ischemic stroke are 

attenuated by hUMSC-Exosomal miR-146a-5p in 

mice 

 

To investigate whether hUMSC-Exosomal miR-146a-

5p exerts neuroprotective effects in the ischemic mouse 

brain via IRAK1/TRAF6 signaling pathway 

modulation, both wild-type and miR-146a-5p knock-

down hUMSC-Exos were administered in a murine 

ischemic stroke model. Relative to treatment with miR-

146a-5p knockdown hUMSC-Exos, treatment with 

wild-type hUMSC-Exos significantly reduced infarct 

volume three days post-ischemia (Figure 6A) and 

 

 
 

Figure 3. Treatment with hUMSC-Exos reduces microglial pro-inflammatory activity in vitro. (A) Confocal imaging demonstrating 

uptake of PKH-26-labeled exosomes (red) by BV2 microglia. Scale bar: 50 μm. (B) Lower protein levels of pro-inflammatory cytokines IL-6, 
TNF-α, and IL-1β in the hUMSC-Exos treatment group. (C) Levels of IL-6, TNF-α, and IL-1β mRNA as detected using qRT-PCR. Data are 
expressed as mean ± SEM (experiments were performed at least in triplicate). Significant differences are indicated (*p < 0.05, **p < 0.01). 
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Figure 4. Exosomal miRNAs are implicated in hUMSC-Exos-mediated attenuation of microglial pro-inflammatory activity. (A, 
B) After 24 hours’ siRNA-Drosha transfection, hUMSC Drosha knockdown efficiency was evaluated by qPCR quantitation of Drosha mRNA and 
western blot-based quantitation of Drosha protein. Western blots are representative of three independent experimental replicates. (C, D) 
Exosomal miR-146a-5p and miR-21-5p content was significantly decreased after Drosha knockdown. (E) Protein levels of the pro-
inflammatory cytokines IL-6, TNF-α, and IL-1β in hUMSC-Exos were decreased after Drosha knockdown. (F) Detection of IL-6, TNF-α, and IL-1β 
mRNA levels via qRT-PCR. Data are expressed as mean ± SEM. (A-F) Each experiment is representative of n = 3 per group. Significant 
differences are indicated (*p < 0.05, **p < 0.01). 
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Figure 5. Exosomal miR-146a-5p decreases microglial pro-inflammatory activity by suppressing the IRAK1/TRAF6 signaling 
pathway in vitro. (A) Expression levels of the top ten hUMSC-Exosomal miRNAs, including MiR-146a-5p. (B) After post-OGD exposure to 
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hUMSC-Exos, BV2 microglia exhibited significantly increased miR-146a-5p content. Data were normalized to levels of U6. (C) In vitro 
experimental scheme. (D) Expression of pro-inflammatory cytokines IL-6, TNF-α, and IL-1β, as well as signaling pathway IRAK1, TRAF6, and 
NFκB (p65) in microglia treated with wild-type versus miR-146a-5p knockdown hUMSC-Exos. (E) Determination of IL-6, TNF-α, and IL-1β 
mRNA levels via qRT-PCR. (F) Determination of supernatant IL-6, TNF-α, and IL-1β protein levels via ELISA. Data are expressed as mean ± SEM. 
(A–F) Each experiment is representative of n = 3 per group. Significant differences are indicated (*p < 0.05, **p < 0.01, ***p < 0,001). 

resulted in lower Bederson scale scores and higher grip 

strength test scores (Figure 6B, 6C). Results suggest 

that hUMSC-Exosomal miR-145a-5p may attenuate I/R 

damage and neural deficits after ischemic stroke in a 

murine model. 

 

Immunohistochemistry demonstrated that levels of IL-6 

and NFκB in the ischemic penumbra were significantly 

lower in the group treated with wild-type hUMSC-Exos 

(Figure 6D, 6E, p < 0.01). Furthermore, immuno-

fluorescent labeling demonstrated that significantly 

fewer microglia were activated in the group treated with 

wild-type hUMSC-Exos (Figure 6F, p < 0.01). Western 

blots demonstrated that expression of IRAK1/TRAF6 

signaling pathway proteins IRAK1, TRAF6, and NFκB 

(p65) was significantly decreased in the group treated 

with wild-type hUMSC-Exos (Figure 6G, p < 0.001). 

Finally, levels of IL-6, TNF-α, and IL-1β were 

significantly reduced in the group treated with wild-type 

hUMSC-Exos (Figure 6H, p < 0.001). Results suggest 

that hUMSC-Exosomal miR-146a-5p may attenuate 

microglia-mediated neuroinflammation after ischemic 

stroke in a murine model. 

 

DISCUSSION 
 

In vivo, OGD activates microglial-mediated 

inflammatory response [41]. During the acute period 

after stroke, microglia secrete pro-inflammatory 

cytokines IL-6, TNF-α, and IL-1β [38], which can 

induce secondary cytotoxicity. Studies have proven that 

decreasing microglia-mediated neuroinflammation is 

beneficial during stroke recovery [13, 17]. Although 

MSC transplantation is neuroprotective after both 

traumatic brain injury and stroke, at least in part via 

modulating microglia-mediated neuroinflammation, 

mechanisms of the latter remain incompletely 

understood. However, since over 99% of transplanted 

MSCs become entrapped in the pulmonary vasculature 

without impeding therapeutic effect, mechanisms likely 

involve distally acting MSC-produced paracrine factors 

which may hold promise as cell-free therapies. Nearly 

all cell types secrete exosomes, which are important 

mediators of cellular communication. 

 

One important group of Exos cargo molecules is 

miRNAs (short non-coding RNAs that inhibit target 

gene expression by directly binding their mRNAs) 

[42]. Prior studies report that Exos play an important 

role in transmitting miRNAs between cells [43–46], 

via interstitial fluid and circulation delivering 

biologically active miRNAs to both neighboring and 

distant cells [47]. For example, adipose tissue 

constitutes an important source of circulating 

exosomal miRNAs that serve as a previously 

unrecognized form of adipokine to regulate gene 

expression in distant tissues [48], adipose tissue-

resident macrophage-derived exosomal miRNAs 

modulate insulin sensitivity [43], and exosomal 

transfer of miR-181b from cardiosphere-derived cells 

(CDCs) into macrophages reduces PKCδ transcription 

(a mechanism underlying the post-reperfusion 

cardioprotective effects of CDCs) [49]. The present 

study investigated the potential therapeutic role 

hUMSC-Exos in ameliorating I/R injury. 

 

Results suggest that in a murine model of ischemic 

stroke, quality-controlled hUMSC-Exos delivered 

intravenously four hours post-reperfusion are able to 

traverse the blood-brain barrier to access the site of 

ischemic injury and are then taken up by local 

microglia, in which exosome-derived miR-146a-5p 

inhibits IRAK1/TRAF6 signaling pathway-mediated 

NFκB activation and consequent M1 polarization and 

production of potent pro-inflammatory cytokines 

(instead favoring M2 polarization), ultimately resulting 

in decreased: I/R-induced tissue edema, cell death, 

extent of the ischemic infarct and penumbra, and 

functional motor deficits. 

 

This is consistent with prior studies which have 

demonstrated that immunofluorescently labeled Exos 

are detectable both extracellularly and intracellularly at 

sites of brain injury [50] and are taken up by recipient 

cells [50, 51]. It has also previously been demonstrated 

that MSC-derived Exos exert powerful effects in the 

context of ischemic stroke, for example ameliorating 

inflammation-induced astrocyte alterations [52]. 

Regarding mechanisms, pro-neurogenic effects of 

UMSC-Exos may be partially attributable to histone 

deacetylase 6 (HDAC6) inhibition by exosomal miR-

26a [53]. Furthermore, it is known that without miRNA-

184 and -210, MSC-derived extracellular vesicles lose 

the ability to promote neurogenesis and angiogenesis 

[54]. Although it is difficult to completely exclude the 

effects of other exosomal cargo molecule groups on 

microglia in the present study, miRNAs are considered 

a key functional element. The miRNA miR-146a-5p is a 

well-known anti-inflammatory molecule with a key role 

in inflammatory disorders [55–57]. The receptor 

proteins IRAK1 and TRAF6 are abundant in the 

cytoplasm and nucleus of various cell types [58]. They  
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Figure 6. Treatment with hUMSC-Exos decreases neuroinflammation and is neuroprotective by down-regulating 
IRAK1/TRAF6 signaling pathway activity in vivo. (A) Representative photomicrographs of TTC-stained tissue from wild-type versus miR-
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146a-5p knockdown hUMSC-Exos groups, with infarct size as calculated using ImageJ software. Data are expressed as mean ± SEM (n = 6 per 
group). Significant differences are indicated (*p < 0.05). (B, C) Neurological deficit scores in vehicle-only versus experimental groups at 72 
hours post-reperfusion. Data are expressed as mean ± SEM (n = 12 per group). Significant differences are indicated (*p < 0.05, **p < 0.01). (D, 
E) Representative photomicrographs of IL-6 and NFκB in the ischemic penumbra 72 hours post-reperfusion, with associated relative 
intensities as calculated using ImageJ software. Scale bar: 50 μm. Data are expressed as mean ± SEM (n = 6 per group). Significant differences 
are indicated (*p < 0.05). (F) Microglial M1 markers IBA-1 and CD16 in the ischemic penumbra 3 days following ischemic stroke. (G) 
Expression of signaling pathway IRAK1, TRAF6, and NFκB (p65) in the wild-type versus miR-146a-5p knockdown groups. (H) Determination of 
IL-6, TNF- α, and IL-1β protein levels via ELISA. Data are expressed as mean ± SEM (experiments were performed in triplicate). Significant 
differences are indicated (*p < 0.05, **p < 0.01, ***p < 0,001). 

are largely involved in Toll-like receptor (TLR)-

initiated pathways, leading to expression of pro-

inflammatory mediators [59]. Overexpression of IRAK1 

and TRAF6 can activate NFκB [60], a transcription 

factor which is a key activator of pro-inflammatory 

gene expression programs [57]. Through binding the 

3′UTR of the mRNAs encoding IRAK1 and TRAF6, 

miR-146a-5p down-modulates inflammatory responses 

[61, 62]. 

 

Apart from recommending follow-up research into the 

therapeutic potential of cell-free miR-146a-5p in the 

context of I/R injury and inflammatory disorders, 

results raise a number of interesting theoretical 

questions. For example, it is unknown whether 

hUMSC-Exosomal cargo is also perhaps involved in  

 regulating glial ion transporters (which are involved 

in the Warburg effect, glial activation, neuro-

inflammation, and neuronal damage during glioma 

[63]). Additionally, might other miRNAs impact 

microglial function after ischemic stroke? Might 

hUMSC-Exos also impact the function of other local 

cell types (e.g. neurons, astrocytes, and/or 

oligodendrocytes) after ischemic stroke? Finally, by 

which mechanisms might such effects occur? 

 

CONCLUSIONS 
 

In conclusion, hUMSC-Exos and or miR-146a-5p 

represent novel therapeutic options for the improvement 

of outcomes after ischemic stroke (Figure 7), warranting 

further investigation. 

 

 

Figure 7. A potential mechanism contributing to the hUMSC-Exos-induced decrease in microglia-mediated 
neuroinflammation after ischemic stroke. After injection of hUMSC-Exos into the tail vein of the murine ischemic stroke model, they 
traversed the blood-brain barrier and were internalized by microglia at the site of cerebral injury. Exosomal miR-146a-5p may decrease 
microglia-mediated neuroinflammation by suppressing the IRAK1/TRAF6 signaling pathway. 
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MATERIALS AND METHODS 
 

Animals 

 

Experimental animals (C57BL/6 mice aged 8 weeks, 

weighing 20-30 g each) were purchased from the 

Animal Experiment Center of Southern Medical 

University (Guangzhou, China), fed a standard 

laboratory diet with ad libitum access to food and water, 

and maintained at a temperature of 22 ± 1° C and a 

humidity of 65–70 % in a controlled room with a 12 h 

light–dark cycle. All experimental procedures were 

approved by the Southern Medical University Ethics 

Committee and performed in accordance with the 

National Institutes of Health Guidelines for the Care 

and Use of Laboratory Animals. 

 

Murine model of ischemic stroke 

 

As described previously [64], mice were anesthetized 

via intraperitoneal injection (35 mg/kg sodium 

pentobarbital). Transient middle cerebral artery 

occlusion (MCAO) was produced by advancing a 4-0 

nylon monofilament (0.23–0.25 mm) (Yushun Bio 

Technology Co. Ltd., China) via the left common 

carotid artery to occlude the middle cerebral artery 

for 60 minutes, prior to filament withdrawal 

(reperfusion). Success of blood-flow occlusion and 

restoration was verified using a laser Doppler 

flowmeter (Moor LAB, Moor Instruments, Devon, 

UK). During the MCAO procedure, head temperature 

was maintained at 36° C. At four hours post-

reperfusion, 250 μL PBS with or without 50 μg 

hUMSC-Exos was injected into the tail vein 

(experimental and vehicle-only groups). Mice in a 

third (control) group received no injection. 

 

Evaluation of motor function 

 

At 24 hours post-reperfusion, global neurological 

and motor function was assessed (Table 1) using a 

modified Bederson Scale and grip strength 

evaluation [65] by a researcher blinded to group 

allocation. For grip strength evaluation, taut string 

(50 cm) was suspended between two vertical 

supports at a height of 40 cm. Each mouse was 

placed midway on the string and rated as shown in 

Table 1. 

 

Evaluation of cerebral infarct volume 

 

At 72 hours post-reperfusion, mice were euthanized. 

Thereafter, the brain was removed for coronal 

sectioning. Infarct size was measured using 2% 2,3,5-

triphenyltetrazolium chloride (TTC) staining in 

conjunction with microscopy. Infarct volume was 

evaluated by a blinded observer using ImageJ 

software version 1.61 (National Institutes of Health, 

Bethesda, MD, USA). 

 

H&E staining 

 

Fresh brain tissues were fixed using 4% PFA (pH 7.4), 

gradually dehydrated, embedded in paraffin, cut into 

4-μm-thick sections using a microtome, and stained 

with H&E to visualize cellular structures by 

microscopy. 

 

Immunofluorescent staining 

 

Four-micron-thick coronal brain sections were 

deparaffinized in xylene, rehydrated via an alcohol 

gradient, and washed with PBS (0.01 M, pH 7.4). 

Sections were blocked using 5% bovine serum 

albumin (BSA) for 60 min at room temperature prior 

to overnight incubation at 4° C with the following 

primary antibodies: goat anti-IBA-1 (1:200 dilution; 

ab48004, Abcam), rabbit anti-CD16 (1:200 dilution; 

ab252908, Abcam), and goat anti-CD206 (1:200 

dilution, R&D Systems). Automated image analysis 

was performed using ImageJ software version 1.61 

(National Institutes of Health, Bethesda, MD, USA). 

Cell numbers were calculated per square millimeter 

from three random microscopic fields (200 × 

magnification) on three sections (a total of nine 

images) (n = 6 animals per group). All counts were 

performed in a blinded manner. 

 

Cell types and cell culture methods 

 

Human umbilical cords were provided by 

Guangzhou Saliai Stem Cell Science and 

Technology Co. Ltd. for hUMSC isolation. 

Thereafter, hUMSCs were cultured in complete 

Dulbecco’s modified Eagle’s medium (DMEM)/F12 

(Gibco) supplemented with 10% fetal bovine serum 

(FBS) (Gibco, Australia), and cells between the 3 rd 

and 5th generations were used for subsequent 

experiments. The BV2 murine microglial cell line 

was obtained from Xiehe Medical University 

(Beijing, China). Microglia were cultured in DMEM 

supplemented with 10% heat-inactivated FBS, 100 

μg/mL streptomycin, and 100 U/mL penicillin 

(HyClone). 

 

Exosome isolation, characterization, and treatment 

 

After hUMSCs were cultured in DMEM/F12 medium 

supplemented with 10% (FBS), culture supernatants 
containing Exos were centrifuged at 2,000 x g for 20 

min at "4° C, followed by 10, 000 x g for 30 min at 4° 

C, and the supernatant was passed through a 0.22 μm 
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Table 1. Neurological function score. 

Score A modified Bederson score Score The grip test 

0 No deficit. 0 Falls off. 

1 Forelimb flexion. 1 Hangs onto string by one or 

both forepaws. 

2 As for 1, plus decreased resistance to lateral 

push. 

2 As for 1, and attempts to climb 

onto string. 

3 Unidirectional circling. 3 Hangs onto string by one or 

both forepaws plus one or both 

hind paws. 

4 Longitudinal spinning or 

seizure activity. 

4  

Hangs onto string by fore and 

hind paws plus tail wrapped 

around string. 

5 No movement. 5 Escape (to the supports). 

 

filter (Millipore), to pellet and exclude contaminating 

dead cells and debris. Thereafter, the filtrate was 

subjected to ultracentrifugation at 110,000 g for 70 

min at 4° C to pellet Exos. Pellets were washed with 

PBS, followed by ultracentrifugation at 110,000 × g 

for 70 min at 4° C to re-pellet Exos, which were then 

resuspended in PBS. The bicinchoninic acid (BCA) 

Protein Assay kit (KeyGEN BioTECH) was used to 

estimate Exos concentration. For transmission electron 

microscopy (JEM-1200EX, JEOL Ltd.), 5-10 µl of 

each sample was added to a copper mesh and 

precipitated for 3 min. Remaining liquid was carefully 

pipetted from the filter paper edge. Thereafter, filter 

paper was rinsed with PBS and phosphotungstic acid 

was used for negative staining prior to drying at room 

temperature for 2 min and imaging (operating voltage: 

80-120 kV). 

 

Determining Exos internalization by microglia via 

fluorescence microscopy 

 

Exos were labeled using the red fluorescent membrane 

dye PKH67 (Sigma). Labeled Exos were washed by 

resuspension in 10 mL PBS, pelleted by ultra-

centrifugation as described above, and finally 

resuspended in 100 µl PBS. For cell treatment, a 

volume of suspension corresponding to 2 µg of Exos 

was added to 2×105 recipient cells prior to 24 hours of 

incubation. 

 

In vitro OGD and “reperfusion” model 

 

An anaerobic chamber containing 95% N2 and 5% 

CO2 was used in conjunction with deoxygenated 

glucose-free DMEM (Gibco) was used to simulate 

microglial OGD. After 6 hours, culture medium  
was replaced with maintenance medium, and cells 

were moved to a regular incubator to recover for 24 

hours. 

RT-PCR 

 

Total RNA was extracted from cells and brain tissues 

using Trizol reagent (Life Technologies) and from Exos 

using an Exosome RNA Purification Kit (EZB-exo-

RN1), both according to the manufacturer’s 

instructions. Reverse transcription was performed using 

the PrimeScript RT reagent Kit (RR037A, Takara Bio 

Inc., Shiga, Japan). Real-time PCR was conducted using 

SYBR Green PCR Master Mix (Applied TaKaRa, Otsu, 

Shiga, Japan) in conjunction with an Applied 

Biosystems 7500 Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA, USA). Sequences of all 

primers are provided (Table 2). 

 

Quantitation of supernatant cytokines by ELISA 
 

Concentrations (pg/mL) of IL-6, TNF-α, and IL-1β in 

BV2 microglia culture supernatants and damaged cerebral 

tissue were determined via ELISA (kits from R&D 

Systems, Minneapolis, MN, USA), performed as per 

manufacturer instructions. Briefly, standards and samples 

were added to a 96-well ELISA plate pre-coated with 

biotinylated anti-IL-6, anti-TNF-α, and anti-IL-1β. 

Unbound substances were washed away, and enzyme-

linked polyclonal antibodies specific for IL-6, TNF-α, and 

IL-1β were added to the corresponding wells. Plates were 

incubated for 2 hours, washed four times, and enzyme 

substrate was added prior to 30 min incubation. Color 

development was terminated using stop solution and 

absorbance at 450 nm was determined using a microplate 

reader. The concentration of each sample was calculated 

from a standard curve prepared using the cytokine 

standards. Each experiment was performed in triplicate. 
 

Transfection with siRNA 
 

In order to decrease miRNA synthesis, siRNA-Drosha 

(Ribobio) was transfected into recipient hUMSC using  



 

www.aging-us.com 3074 AGING 

Table 2. Primers used for real-time PCR. 

Genes Primer sequences 

IL-6 FORWARD   ACTTCCATCCAGTTGCCTTCTTGG 

 REVERSE    TTAAGCCTCCGACTTGTGAAGTGG 

TNF-α FORWARD   GCGACGTGGAACTGGCAGAAG 

 REVERSE   GCCACAAGCAGGAATGAGAAGAGG 

IL-1β FORWARD   ACTTCCATCCAGTTGCCTTCTTGG 

 REVERSE    TGCTCATGTCCTCATCCTGGAAGG 

DROSHA FORWARD   AAGGCAAGACGCACAGGAATTAGG  

 REVERSE    TCTGCCAGCATTGTTGGTCATAGG 

Arg-1 FORWARD    CATATCTGCCAAAGACATCGTG 

 REVERSE    GACATCAAAGCTCAGGTGAATC 

miR-21-5p FORWARD    GCGCGTAGCTTATCAGACTGA 

 REVERSE    AGTGCAGGGTCCGAGGTATT 

miR-146a-5p FORWARD    CGCGTGAGAACTGAATTCCA 

 REVERSE    AGTGCAGGGTCCGAGGTATT 

U6 FORWARD    CTCGCTTCGGCAGCACA 

 REVERSE    AACGCTTCACGAATTGCGT 

 

riboFECTTMCP Reagent (Ribobio). After 24 hours, 

transfection efficiencies were evaluated via qPCR or 

western blots. 

 

Western blots 

 

Tissues, cells, and Exos were lysed using RIPA buffer 

(KeyGEN BioTECH), followed by protein quantitation 

using a Bradford Protein Assay kit (KeyGEN BioTECH). 

Briefly, lysates were subjected to SDS–PAGE and 

transferred onto PVDF membranes (Millipore). 

Membranes were incubated overnight at 4° C with 

primary antibodies specific for the following proteins, as 

required by each experiment: TSG101 (1:1000 dilution; 

ab125011, Abcam), CD9 (1:1000 dilution; ab92726, 

Abcam), ALIX (1:1000 dilution; ab117600, Abcam), 

IRAK1 (1:1000 dilution; #511166, ZEN BIO), TRAF6 

(1:1000 dilution; #380803, ZEN BIO), NFκB (p65) 

(1:1000 dilution; ab76302, Abcam), GAPDH (1:5000 

dilution; 60004-1-Ig, Proteintech), IL-6 (1:1000 dilution; 

ab6672, Abcam), TNF-α (1:1000 dilution; Ab8348, 

Abcam), IL-1β (1:1000 dilution; 12242S, CST), and 

Drosha (1:1000 dilution; ab183732, Abcam). Thereafter, 

membranes were incubated with the relevant horseradish 

peroxidase (HRP)-conjugated secondary antibody to 

visualize protein spots using an enhanced chemi-

luminescence (ECL) kit (Thermo Scientific). House-

keeping protein GAPDH was selected as an internal 

control. Each experiment was conducted in triplicate. 

 

Microarray analysis 

 

The miRNA content of hUMSC-Exos (n = 3) total 

RNA was profiled via small RNA deep sequencing 

analysis (Illumina). Library preparation and miRNA 

sequencing were performed by Ribobio (Guangzhou, 

China). Briefly, total RNA samples were fractionated 

and only small RNAs (18-30 nucleotides in length) 

were used for library preparation. After amplification 

by PCR, products were sequenced using the Illumina 

HiSeq 2500 platform. 

 

Knockdown of miR-146a-5p via lentiviral vector 

transduction 

 

Lentiviruses expressing miR-146a-5p inhibitor were 

used to transduce hUMSCs at a multiplicity of 

infection (MOI) of 200 particles/cell. The procedure 

was performed in 24-well plates in DMEM (HyClone), 

in a 5% CO2 incubator at 37° C for three days. 

Successful transduction was confirmed by assessing 

hUMSC and hUMSC-Exos miR-146a-5p content via 

RT-PCR. No-load shRNA lentivirus was used as a 

control. 

 

Statistical analysis 

 

All data are expressed as mean ± standard error (SE). 

Differences between two groups were analyzed by 

Student’s t-test (two-tailed), while differences between 

multiple groups were analyzed by one-way ANOVA in 

conjunction with the Bonferroni/Dunn post hoc test. A 

p-value < 0.05 was considered statistically significant. 

All statistical analyses were carried out using GraphPad 

Prism 8 software. 

 
Ethics approval 

 

All experimental procedures were approved by the Ethics 

Committee of Southern Medical University and perform-
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ed in accordance with the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals. 
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