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INTRODUCTION 
 

Atherosclerosis (AS) is a chronic disease characterized 

by lipid deposition in the vessel wall that leads to an 

inflammatory and proliferative cascade [1]. Myocardial 

infarction (MI) and stroke, the common complications of 

AS, represent the most common cause of death 

worldwide [2, 3]. Despite its epidemiological importance, 

the fundamental mechanisms of AS remain poorly 

understood and there is an urgent need to investigate the 

molecular pathways responsible for AS development and 

to identify diagnostic and prognostic biomarkers. 

 
The immune system plays a crucial role in various stages 

of AS [4]. In AS, hypercholesterolemia leads to the 

accumulation of plasma LDL (low-density lipoprotein) in 

the artery wall which elicits local inflammation with an 

influx of monocytes that differentiate into macrophage 

[5]. These mononuclear phagocytes express scavenger 

receptors that permit them to bind lipoprotein particles 

and become foam cells [6]. T lymphocytes, although 

numerically less abundant than monocytes, also enter the 

intima and regulate functions of the innate immune cells 

as well as the endothelial cells (ECs) and smooth muscle 

cells (SMCs) [7, 8].  

 

Long noncoding RNAs (lncRNAs) are a type of RNA 

over 200 nucleotides in length [9]. Although they  

do not participate in protein coding, increasing evidence 

has made it clear that lncRNAs can have numerous 

biological and molecular functions such as epigenetic 

regulation, signal transduction, cell differentiation,  
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and immunoregulation [10]. Furthermore, sufficient 

information has demonstrated that lncRNAs can take part 

in the development of diverse cardiovascular diseases 

through interactions with microRNAs (miRNAs) or 

messenger RNAs (mRNAs) [11]. This competing 

endogenous RNA (ceRNA) hypothesis proposed by 

Salmena et al. has attracted increasing attention [12]. In 

this hypothesis, lncRNAs transcripts act as ceRNAs or 

natural microRNA sponges—they communicate with and 

co-regulate each other and mRNAs by competing for 

binding to shared miRNAs, a family of small non-coding 

RNAs that are important post-transcriptional regulators 

of gene expression [13]. In recent years, researchers have 

begun to shed light on the role of ceRNA in AS [14]. For 

instance, the LncRNA MIAT can sponge miR-149-5p 

and inhibit efferocytosis in advanced atherosclerosis 

through upregualting CD47 [15]. 

 

We should note that the detailed mechanism of 

immunoregulation during AS remains poorly understood. 

Besides, the role of ceRNA in immunoregulation during 

AS development has not been investigated. What’s  

more, no prognostic biomarkers based on a ceRNA 

immunoregulatory network have even been identified in 

AS. In this study (Figure 1), we constructed a ceRNA 

network in AS by using the method of weighted gene co-

expression network analysis (WGCNA), which makes 

sure that the nodes are highly interconnected and that the

 

 

Figure 1. The workflow of the integrative bioinformatics analyses. 
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network is highly reliable. We then conducted the 

immune cell infiltration analysis and constructed a 

macrophage related ceRNA subnetwork. Further, we 

identified several key factors in the subnetwork that can 

be prognostic biomarkers for ischemic events of AS. A 

nomogram based on these hub factors was then 

constructed. Findings from our study may contribute to 

the development of therapeutic targets and molecular 

prognostic tools in AS. 

 

RESULTS 
 

Construction of co-expression modules and 

identification of key module 

 

A β value of 10 was used to obtain the approximate 

scale-free topology with a scale-free topology fit index 

> 0.85 at the lowest power (Figure 2A). Next, dynamic 

tree cutting was used to produce co-expression modules 

and 19 modules were generated in the co-expression 

network (Figure 2B). The interaction and connectivity 

of eigengenes among different gene co-expression 

modules were plotted in Figure 2C. We then calculated 

and plotted the relation of each module with their 

corresponding clinical traits. From Figure 2D, we could 

conclude that the Red module revealed the strongest 

correlation (module-trait weighted correlation = 0.81, p 

< 0.001) with advanced atherosclerosis plaque and was 

identified as key module for plaque development. The 

significant correlation between module membership 

(MM) in the Red module and gene significance (GS) for 

an advanced plaque is presented in Figure 2E. The most 

significantly enriched biological process term of each 

module was summarized in Table 1. 

 

CeRNA network in AS plaque development 

 

127 downregulated miRNAs were identified from 

GSE28858. They were sent for ceRNA construction 

along with lncRNAs/mRNAs with a GS > 0.3/0.5 in the 

Red module. Firstly, based on the miRcode database that 

matches potential miRNAs with lncRNAs, a total of 80 

lncRNA-miRNA pairs containing 9 lncRNAs and 32 

miRNAs were identified. Next, concerning the target 

gene predictions of the 32 miRNAs, we used the 

miRTarBase database and predicted 8308 miRNA-

mRNA pairs, including 4327 target genes. Subsequently, 

we matched the predicted target gene with significant 

mRNAs in the Red module. Finally, we constructed a 

lncRNA-miRNA-mRNA network which includes 9 

lncRNAs, 29 miRNAs, 90 mRNAs, and visualized them 

in Cytospace software (Figure 3). Through the above 

stringent screening and prediction protocol, the 

constructed ceRNA networks were therefore considered 

highly interconnected and may contribute to AS plaque 

development. 

Enrichment analysis and PPI analysis  

 

GO (gene ontology) annotation (BP: biological process; 

CC: cellular component; MF: molecular function) and 

Reactome pathway enrichment analyses were conducted 

to clarify the biological functions of the ceRNA network 

by inputting the list of 90 target mRNAs. As presented in 

Figure 4A–4C, the enriched GO annotations include 

positive regulation of leukocyte activation, T cell 

activation, mononuclear cell proliferation in the BP 

category; endocytic vesicle, vacuolar lumen, lysosomal 

lumen in the CC category; and protein tyrosine kinase 

activity, actin filament binding, virus receptor activity in 

the MF category. Figure 4D shows that the ceRNA 

network is significantly enriched in platelet activation, 

neutrophil degranulation, and phagocytosis. The above 

results suggested that the constructed ceRNA may play 

crucial roles in regulating the immune response during 

AS development. We also constructed a PPI network of 

the target genes with each pair having a combined score 

of > 0.4 (Figure 5), based on the STRING database. 

 

Immunocyte subtype infiltration detection 

 

We first detected the landscape of 22 immunocyte 

infiltration in 29 atherosclerosis plaques using the 

CIBERSORT algorithm. The top 3 abundant subtypes in 

carotid plaque were ‘Macrophage.M2’, ‘T.cells.CD8’, 

and ‘T.cells.CD4.memory.resting’ (Figure 6A). After the 

Wilcoxon rank test, 7 immunocytes were detected 

differentially infiltrated between the advanced and early 

group (Figure 6B). To make the results more reliable, we 

compared the infiltration score of 12 immune cells 

between two groups using the GSVA method (Figure 

6D). By integrating the GSVA and CIBERSORT results, 

macrophage was then identified as hub immune cell as it 

was the only one to have similar trends from the two 

methods.  

 

Construction of macrophage related ceRNA subnetwork 

 

We used GSE21545 to identify key genes associated  

with the macrophage GSVA infiltration score. After 

correlation analysis, 2 lncRNAs and 21 mRNAs were 

found to have strong correlations with macrophage 

infiltration (Figure 7A). We then constructed a 

macrophage related ceRNA subnetwork by matching the 

miRNA targets of the 2 lncRNAs and the 23 mRNA 

which led to 29 lncRNA-miRNA-mRNA pairs including 

2 lncRNAs, 14 miRNAs, and 18 mRNAs (Figure 7B). 

 

Prognosis analysis of macrophage related ceRNA 

subnetwork 

 

As the constructed macrophage related ceRNA 

subnetwork may drive atherosclerosis plaque 
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Figure 2. Construction of weighted co-expression network and module analysis. (A) Soft threshold selection process; (B) Cluster 
dendrogram. Each color represents one specific co-expression module. In the colored rows below the dendrogram, the two colored rows 
represent the original modules and merged modules; (C) Eigengene adjacency heatmap of different modules; (D) Heatmap of the correlation 
between status (advanced and early plaque) and module eigengenes. Each row corresponds to a module eigengene, and each column 
corresponds to a trait. Each cell contains the corresponding correlation (first line) and P-value (second line). The table is color-coded by 
correlation according to the color legend. P-value < 0.05 represents statistical significance; (E) Correlation between module membership of 
Red module and gene significance with advanced plaque (absolute value).  
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Table 1. Gene ontology biological process enrichment analysis of modules. 

model color number of mRNAs most significant term p.adjusted 

blue 1589 GO:0071806 protein transmembrane transport 1.15E-03 

black 363 GO:0042659 regulation of cell fate specification 1.07E-01 

magenta 264 GO:0048193 Golgi vesicle transport 2.88E-01 

salmon 92 GO:0070125 mitochondrial translational elongation 6.95E-12 

tan 73 GO:0045116 protein neddylation 2.85E-01 

lightcyan 78 GO:0000380 alternative mRNA splicing, via spliceosome 1.64E-01 

pink 296 GO:0010603 regulation of cytoplasmic mRNA processing body 

assembly 

5.66E-04 

greenyellow 98 GO:0050806 positive regulation of synaptic transmission 1.68E-02 

grey60 67 GO:0043062 extracellular structure organization 1.75E-04 

purple 146 GO:0030098 lymphocyte differentiation 4.25E-04 

red 595 GO:0042119 neutrophil activation 1.62E-24 

green 798 GO:0010631 epithelial cell migration 3.48E-08 

lightgreen 57 GO:2001238 positive regulation of extrinsic apoptotic signaling 

pathway 

2.84E-01 

yellow 298 GO:0003214 cardiac left ventricle morphogenesis 9.64E-02 

turquoise 1346 GO:0023061 signal release 1.04E-01 

cyan 83 GO:0043434 response to peptide hormone 4.85E-03 

brown 856 GO:0030198 extracellular matrix organization 1.26E-07 

midnightblue  85 GO:0008380 RNA splicing 1.20E-04 

grey 513 GO:0010721 negative regulation of cell development 3.17E-03 

 

development and rupture, we then investigated their 

prognostic value to ischemic events. Univariate Cox 

regression analysis was used to identify the correlation 

between factors in the subnetwork and ischemic events. 

Through univariate Cox analysis, CTSB, macrophage 

GSVA score, AL138756.1, MAFB, LYN, GRK3, and 

BID were identified as crucial prognostic factors (Table 2). 

The Kaplan-Meier plots grouped by the median value of 

each factor were displayed in Figure 8. We then integrated 

them into a multivariate Cox regression model with age 

and gender-adjusted (Figure 9A). The C-index was tested 

as 0.74 which indicates the model to be reliable. Based on 

the model, a nomogram was established to predict the 

ischemic freedom probability of atherosclerosis patients 

(Figure 9B). The calibration curves (Figures 9C) were 

applied and manifested an acceptable calibration of the 

nomogram. 

 

GSEA analysis 

 

The GSEA analysis was applied in GSE21545 to elucidate 

the regulatory pathways of the key prognostic factors after 

grouping by the median value of AL138756.1, CTSB, 

MAFB, LYN, GRK3, BID, and macrophage GSVA score. 

Through cluster analysis of the pathway NES values, 

phagosome and lysosome were significantly positively 

correlated with the expression value of AL138756.1, 

CTSB, MAFB, LYN, GRK3, BID, and macrophage 

GSVA score (Figure 10A). In contrast, the PD1 pathway, 

primary immunodeficiency were significantly negatively 

associated with these factors (Figure 10B). The negative 

correlation between PD1 signaling and the prognostic 

factors indicates that targeting the PD1 immune 

checkpoint during cancer immunotherapy may contribute 

to atherosclerosis development and ischemic risk through 

the macrophage related ceRNA subnetwork. Figure 11 

further proves that a low level of PD1 might contribute to 

higher AL138756.1 expression. 
 

DISCUSSION 
 

Atherosclerosis is initiated by the subendothelial 

retention of LDL, which then triggers a maladaptive 

inflammatory process that drives disease progression 

[16]. It is now understood that macrophage plays 

important roles in all stages of atherosclerosis, from 

initiation of lesions, to necrosis that leads to plaque 

rupture and the clinical manifestations, to resolution and 

regression of lesions [17]. In the current study, we 

identified a ceRNA immunoregulatory network in AS 

plaque development. We then established a macrophage 

related ceRNA subnetwork and identified several key 
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factors that can be a prognostic tool to predict ischemic 

events including AL138756.1, CTSB, MAFB, LYN, 

GRK3, BID, and macrophage GSVA score.  

 

To our knowledge, this is the first study to construct the 

ceRNA network in AS by using the method of WGCNA, 

the first to link ceRNA with immunoregulation, and the 

first to identify prognostic factors based on a ceRNA-

immunoregulatory network. A previous study has used 

the differentially expressed gene (DEG) analysis to 

discover the ceRNA network in AS rabbits [18]. 

However, this method can be highly affected by the 

human-made criteria as a P-value and fold change must 

be set in advance, which ignores the high relationship 

between genes and may filter out those genes that have 

high interconnectivity in the network [19]. Our present 

study applied the WGCNA method and acquired the 

key modules of AS plaque development in which the 

lncRNAs and mRNAs were highly co-expressed. 

Therefore, it is more rational to construct the ceRNA 

network base on significant genes from the same 

module than simply using the results of DEG analysis. 

 

 
 

Figure 3. ceRNA network of the 9 lncRNAs, 29 miRNAs, and 90 mRNAs. Note: Blue diamond represents lncRNAs, yellow round 

denotes miRNAs, and red square represents mRNAs. 
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Through enrichment analysis, the ceRNA network was 

mostly involved in the immune response. Therefore, we 

then conducted an immune infiltration analysis and 

identified macrophage as hub immunocyte in plaque 

development. In the established macrophage related 

ceRNA subnetwork, the two lncRNA AL138756.1 and 

LINC01094 lack sufficient investigation, while for the 

downregulated miRNAs, some of them have been 

implicated to be protective against AS. miR-106b can 

inhibit ox-LDL-induced endothelial cell apoptosis in AS 

[20]. It also inhibits the expression of PTEN in vascular 

ECs, which could block TNF-α-induced activation of 

caspase-3, thus preventing ECs apoptosis in AS [21]. 

miR-195-5p expressed in human aortic SMCs has the 

potential to inhibit SMC proliferation and migration in 

AS [22]. Thrombospondin 1 activates macrophage 

differentiation and SMC apoptosis [23] in human aortic 

dissection while decreases miR-25-5p expression in 

vascular SMCs [24]. miR-490-3p overexpression 

suppresses cell proliferation and inhibits proliferation 

and migration of vascular SMCs in AS [25]. ox-LDL 

inhibits the expression of miR-490-3p, resulting in 

vascular SMC proliferation on AS development [26]. 

 

Most of the mRNAs in the macrophage related ceRNA 

subnetwork have been reported in AS or macrophage 

related study. ADGRE2 (also known as EMR2), 

encodes for adhesion G protein-coupled receptor E2 and 

is expressed predominantly in macrophage [27]. EMR2 

expression is upregulated during the differentiation and 

maturation of macrophage [28] and high levels of 

EMR2 have been detected in foamy macrophage in AS 

vessels [29]. A recent study indicated that macrophage 

BCAT1 (branched-chain amino acid transaminase 1) 

can interfere with metabolic reprogramming and was an 

attractive pharmacological target for the treatment of 

chronic inflammatory diseases [30]. CLEC7A (also 

known as Dectin-1), is a pattern recognition receptor 

 

 
 

Figure 4. GO functional annotation and Reactome pathway enrichment analysis for the 90 mRNAs. (A) Top 20 enriched 
biological process; (B) Top 20 enriched cellular component; (C) Top 20 enriched molecular function; (D) Top 20 enriched Reactome pathway. 
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necessary for the TLR2-mediated inflammatory response 

and enhances cytokine production in macrophage. 

Dectin-1 has been implicated to contribute to the 

oxidation of lipids and cholesterol accumulation in AS 

[31]. CTSS (cathepsin S) encodes a cysteine protease 

and is associated with lesion size, plaque vulnerability, 

and inflammatory markers in AS [32]. Of note, miR-

106b-5p, the upstream of CTSS in the network, has been 

validated to bind to the 3'-untranslated region of CTSS 

while miR-106b-5p gain-of-function experiments lead to 

a decreased CTSS expression [33]. CXCL16 (C-X-C 

motif chemokine 16) significantly contributes to AS 

progression and functions as a biomarker for plaques at 

risk of rupture [34]. PYCARD, known as apoptosis-

associated speck-like protein containing a CARD (ASC), 

is a component of NLRP3 inflammasome and is 

significantly increased in AS plaques compared to 

normal arteries [35]. Moreover, as the mRNAs are 

highly correlated, one could speculate that the upstream 

miRNA of one mRNA may affect other mRNAs. For 

instance, the miR-146a-3p targets BCAT1, GRK2 (G-

protein-coupled receptor kinase 2), and P2RX7 

(purinergic ligand-gated ion channel 7 receptor) in the 

network. These 3 mRNAs can therefore communicate 

with each other through ceRNA language. Studies have 

also proved that the miR-146a family can negatively 

regulate LPS-induced CXCL16 expression therefore 

preventing inflammation [36]. Interestingly, CXCL16 

contributes to foam cell formation in the radial arteries 

and this process may be regulated by P2X7R [37]. These 

further support the high interconnections of the 

established ceRNA network and vouch for their 

importance in preventing macrophage-mediated AS 

development. 

 

 
 

Figure 5. PPI network of 90 mRNAs based on the STRING database. Each node represents a protein-coding gene. The size of each node is 
mapped to its degree. Terms with a combined interaction score > 0.4 are linked by an edge (the thickness of the edge represents the interaction 
score). 
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Through univariate Cox regression analysis, the 

lncRNA AL138756.1 and 5 mRNAs (CTSB, MAFB, 

LYN, GRK3, BID) were identified as prognostic 

biomarkers to ischemic events, which highlighted their 

importance in AS plaque development and rupture. 

Among them, the lncRNA AL138756.1 can upregulate 

the expression of CTSB, MAFB, LYN, and BID by 

competitively binding to miRNAs miR-1271-5p, miR-

24-3p, let-7d-5p, and miR-195-3p/miR-507, 

respectively. Consistent with our results, previous 

studies suggested that CTSB (cathepsin B) contributed 

to AS vascular remodeling and plaque rupture [38, 39]. 

CTSB can regulate the activation of NLRP3 

inflammasome [40, 41] and mediate macrophage 

promoted vascular inflammation and arterial 

remodeling. The CLARICOR study found that serum 

CTSB was associated with an increased risk of 

cardiovascular events in patients with stable coronary 

heart disease [42] and higher cathepsin activity along 

with an M2 macrophage phenotype was observed in 

carotid plaques from symptomatic patients [40]. MAFB 

is a transcription factor that regulates macrophage 

differentiation and function. It promotes AS by 

inhibiting foam-cell apoptosis in early plaque [43]. In 

advanced plaque, however, MAFB seems to be 

protective as macrophage-specific deletion of MAFB 

and exacerbated macrophage apoptosis in advanced AS 

results in more unstable and more vulnerable lesions 

because of defective efferocytosis [44]. Nevertheless, 

MAFB also seems to be related to atherogenesis 

through a macrophage-independent mechanism by 

exacerbating insulin resistance and lipid levels [45]. 

 

 
 

 
Figure 6. Immune cell infiltration analysis. (A) Cell composition analysis of the 29 plaque samples; (B) Grouped by type (advanced/early); 

(C) Scale histogram of immune cell fraction; (D) Heatmap of 12 immune cells GSVA score. * represents statistical significance. 



 

www.aging-us.com 3089 AGING 

LYN (tyrosine-protein kinase Lyn) plays important role 

in CD36 mediated ox-LDL uptake by foam cell [46] 

and promotes AS. GRK3 belongs to the G protein-

coupled receptor kinase family which serves broadly to 

regulate receptor function. BID is a member of the 

BCL-2 family of cell death regulators and promotes 

apoptosis. The functions of GRK3 and BID in 

atherosclerosis remain poorly investigated. The present 

study has pointed out their diagnostic and prognostic 

values.  

 

We also conducted the GSEA analysis to identify key 

regulatory pathways of these prognostic factors. The 

results indicated that these factors were positively 

associated with phagocyte and lysome while negatively 

associated with PD1 signaling. Programmed cell death 

protein 1 (PD1, also known as PDCD1) is expressed 

during T cell activation and strongly interferes with T 

cell receptor signal transduction, thereby balancing 

protective immunity and immunopathology [47]. In 

animal studies, the PD-1 immune checkpoint has been 

implicated in protecting tissue tolerance while 

disruption of PD-1 associated negative signaling is 

associated with inflammatory disease including AS [48]. 

We found that the expression of AL138756.1 was 

significantly high when the PD1 immune checkpoint 

was down expressed. This may explain a recently 

published study in which targeting PD-1 signaling using 

monoclonal antibodies during cancer therapy leads to 

serious arterial inflammation [49].  

 

There are limitations in our present study. Firstly, we 

didn’t conduct any validation and mechanism 

experiments, whether the identified association is a 

cause or result remains unclear. Besides, the miRNA 

profiles were retrieved from the platelets of patients 

with CAD. This is because no miRNAs feature of 

atherosclerotic plaque has been provided in GEO 

database. What’s more, the nomogram established has 

not been validated due to lacking external datasets. 

Further study can investigate their biological interaction 

in an experimental model and verify their prognostic 

values through a larger cohort. 

 

In conclusion, our study innovatively linked ceRNA with 

immunoregulation in AS plaque development. Increased 

macrophage infiltration and higher expression of 

AL138756.1, CTSB, MAFB, LYN, GRK3, BID are 

associated with increased risk of ischemic events. These 

results will help us to better understand the mechanisms 

of immunoregulation in AS from the ceRNA perspective 

and provide candidate therapeutic and prognostic targets. 

 

 
 

Figure 7. ceRNA network associated with macrophage infiltration score. (A) Pearson's correlation matrix; (B) Macrophage related 

ceRNA subnetwork. Flow indicates interaction. 
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Table 2. Univariate cox regression analysis of members in macrophage related ceRNA subnetwork. 

Factor  HR Lower (0.95) Upper (0.95) p 

CTSB  7.677 1.805 32.645 0.006 * 

Macrophages  15.043 2.112 107.116 0.007 * 

AL138756.1  2.899 1.182 7.109 0.020 * 

MAFB  4.245 1.14 15.809 0.031 * 

LYN  2.866 1.087 7.551 0.033 * 

GRK3  7.556 1.14 50.089 0.036 * 

BID  3.576 1.022 12.513 0.046 * 

P2RX7  3.319 0.9 12.235 0.072 

ADGRE2  1.88 0.913 3.872 0.087 

CXCL16  1.763 0.843 3.688 0.132 

LINC01094  1.615 0.841 3.103 0.150 

LILRB2  1.884 0.721 4.921 0.196 

CTSS  2.252 0.53 9.57 0.271 

PYCARD  2.226 0.518 9.57 0.282 

PNKD  1.534 0.592 3.976 0.379 

BCAT1  1.475 0.59 3.689 0.406 

CLEC7A  1.405 0.608 3.249 0.426 

PSAP  1.706 0.345 8.443 0.513 

SUSD1  1.411 0.319 6.235 0.65 

GM2A  0.955 0.373 2.448 0.924 

SRGAP2  0.985 0.196 4.953 0.985 

*. p < 0.05. 

 

 
 

Figure 8. Kaplan-Meier survival curves of 7 factors in the macrophage related ceRNA subnetwork. The P-value was 

calculated by the log-rank test. 

 



 

www.aging-us.com 3091 AGING 

 
 

Figure 9. The results of the multivariate Cox regression (A), nomogram (B), and model diagnosis process of the calibration curve  
(C) constructed by the prognostic factors of the macrophage related ceRNA subnetwork (adjusted by age and gender).  
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Figure 10. The GSEA in response to AL138756.1, CTSB, MAFB, LYN, GRK3, BID, and macrophage GSVA score. (A) shows the 

significant terms correlated with higher value, while (B) presents the opposite case. 
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MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

Three datasets, GSE21545, GSE28829, and GSE28858, 

were obtained from the NCBI Gene Expression 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo). 

The GSE21545 dataset contains 97 peripheral blood 

mononuclear cells (PBMC) gene expression profiles 

from the Biobank of Karolinska Endarterectomy (BiKE) 

[50]. The 97 patients with atherosclerosis were followed 

for 1,159 ± 631 days (average ± standard deviation) and 

the ischemic events were defined as myocardial 

infarctions or ischemic strokes. GSM892606 were 

excluded due to the lack of age information and the rest 

96 samples were selected for the following analysis. The 

GSE28829 dataset includes 16 advanced and 13 early 

atherosclerotic plaque samples from human carotid from 

the Maastricht Pathology Tissue Collection [51]. The 

GSE28858 dataset contains platelet miRNAs profiles 

from 12 patients with premature coronary arterial disease 

(CAD) and 12 age- and sex-matched healthy controls. 

 

 
 

Figure 11. Correlation between expression of PDCD1 and AL138756.1. 

http://www.ncbi.nlm.nih.gov/geo


 

www.aging-us.com 3094 AGING 

Both GSE21545 and GSE28829 were based on the 

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome 

U133 Plus 2.0 Array platform. We reannotated the probes 

of GPL570 as it improves accuracy and makes it possible 

to identify new transcripts. In brief, the probe sequences 

were downloaded from Affymetrix (https://www.affy 

metrix.com) and were remapped to the human genome 

(GRCh38 release 99 primary assembly) using the R 

package ‘Rsubread’ [52]. Then, the chromosomal 

positions of these probes were matched to the 

corresponding genome annotation database in Ensembl 

using the R package ‘GenomicRanges’ [53]. Probe sets 

that were mapped to >1 gene were removed to ensure the 

reliability of the reannotation. For each dataset, the raw 

CEL files were preprocessed using robust multi-array 

average algorithm for background correction, quantile 

normalization, and summarization with ‘affy’ package 

[54]. The mean expression values among all multiple 

probe IDs were selected to represent the corresponding 

gene symbol. After that, 19557 unique genes were 

retained, which included 15394 protein coding genes  

and 3479 lncRNA according to the biotypes identified  

by Ensembl. 

 

Construction of weighted gene co-expression network 

 

The expression profiles of GSE28829 were used to 

construct a gene co-expression network by using the 

package ‘WGCNA’ implemented in R software [55]. 

The top 50% mRNAs with the highest variability and 

all the lncRNAs were selected for further analysis. 

Subsequently, the power parameter ranging from 1-20 

was screened out using the ‘pickSoftThreshold’ 

function. A suitable soft threshold of 10 was selected as 

it met the degree of independence of 0.85 with the 

minimum power value. The Dynamic Tree Cut method 

was applied to generate modules with the following 

major parameters to avoid the generation of too many 

modules: deepSplit of 2 and minModuleSize of 30. The 

height cut-off was set as 0.25, modules were merged if 

their similarity was >0.75. Ultimately, these mRNAs 

and lncRNAs in a co-expression module are considered 

to be highly interconnected. For each module, we 

conducted a gene ontology biological process 

enrichment analysis and the most significantly enriched 

term was summarized in Table 1. 

 

Relationship between clinical information and modules 

 

The correlation between modules and clinical 

information (advanced or early atherosclerosis plaque) 

was identified by Pearson correlation’s analysis. For 

each module, module eigengenes (MEs) referred to the 
first principal component of all gene expression levels 

in the module, and therefore, it was reasonable to 

consider that MEs represented all genes within a 

specific module. We identified the association between 

MEs and external clinical information. If P-value was < 

0.05, it was considered to be a significant correlation. 

Gene significance (GS) was defined as the correlation 

between gene expression and plaque status.  

 

CeRNA network construction and visualization 

 

The expression file of GSE28858 was used to identify 

downregulated miRNAs in CAD using limma [56] 

packages in R with a criterion of P < 0.05 and 

CAD/healthy ratio < 1. Then, the downregulated 

miRNAs and lncRNAs/mRNAs in the most relevant 

module with a Gene significance >0.3/0.5 were used to 

construct a ceRNA network. Briefly, the associated 

ceRNA network in AF was constructed following three 

stages. (a) Prediction of lncRNA-miRNA: The potential 

miRNAs binding with lncRNAs were predicted based on 

the highly conserved microRNA family files of the 

miRcode [57] database (http://www.mircode.org/), and 

the primates conservative score should be >50%; (b) 

Prediction of miRNA-mRNA: We predicted the mRNAs 

binding with miRNAs identified from the previous step 

based on the annotation files of miRTarBase [58], which 

is one of the most comprehensively annotated and 

experimentally validated miRNA–target interaction 

databases.; (c) Construction of lncRNA-miRNA-mRNA 

ceRNA network: Cytoscape 3.7.2 software [59] 

(http://cytoscape.org/) was used to construct and visualize 

the ceRNA network based upon lncRNA-miRNA and 

miRNA-mRNA pairs.  

 

Gene ontology annotation, pathway enrichment, and 

protein-protein interaction analysis 

 

Gene Ontology functional annotation and Reactome 

pathway enrichment analysis were conducted using the 

‘ClusterProfiler’ [60] and ‘ReactomePA’ [61] packages 

in R solftware. To find out the functional associations 

among the identified genes, we used the online Search 

Tool for the Retrieval of Interacting Genes (STRING 

database; http://string-db.org/) to construct a protein-

protein interaction (PPI) network based on uniquely 

comprehensive coverage and predictive function of 

genome-wide data [62]. A reliability threshold of a 

combined score of > 0.4 was used to construct the PPI 

network and Cytoscape software was used to visualize 

and analyze the biological networks.  

 

Computing the immune infiltration pattern 

 

Two most popular methods were applied to quantify  

the infiltration of immune cell populations.  
The deconvolution method CIBERSORT [63] 

(https://cibersort.stanford.edu/) estimates the proportion 

of each immune cell population within the sample 

https://www.affymetrix.com/
https://www.affymetrix.com/
file:///C:/Users/OKrasnova/Desktop/IMPACT%20AGING/2021/January/202486/(http:/www.mircode.org/
http://cytoscape.org/
http://string-db.org/
https://cibersort.stanford.edu/
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admixture, and the perm parameter was set as 1000. The 

Gene Set Variation Analysis (GSVA) [64] method 

computes the relative abundance of each immune cell 

population in each sample. We obtained gene signatures 

identifying 12 immune cell populations (B cells, Th1 

cells, Th2 cells, Th17 cells, Tregs, CD8+ T cells, 

Macrophage, Neutrophils, Mast cells, Dendritic cells, 

NK cells, and Eosinophils) from the supplemental 

material of Bindea et al. [65]. Using the 12 gene sets, 

we computed the GSVA scores of each sample. 

Comparisons between Advanced and Early groups were 

tested by the Wilcoxon test, and cell type with P-value 

< 0.05 was considered significant.  

 

Construction of macrophage related ceRNA 

subnetwork 

 

The correlation coefficient linking the infiltrating value 

of macrophage and the expression value of the 9 

lncRNAs and 90 mRNAs in the ceRNA network were 

analyzed using Pearson’s method in 96 atherosclerosis 

samples from GSE21545. The key lncRNAs and mRNAs 

strongly correlated with macrophage infiltration were 

selected with a cor > 0.3 and p < 0.05. The corresponding 

lncRNA-miRNA-mRNA network was constructed and 

visualized using the ‘ggplot2’ [66] packages in R 

software.  

 
Prognosis analysis of the macrophage related ceRNA 

subnetwork 

 
The 96 PBMC samples from GSE21545 were used for 

prognosis analysis. The macrophage infiltration scores 

of the 96 samples were computed by the GSVA method 

as previously described. The univariate Cox regression 

analysis was adopted to identify the prognostic values 

of lncRNAs, mRNAs, and macrophage infiltration 

score. Kaplan-Meier was used to visualize each 

biomarker by grouping the patients into high expression 

and low expression by their median value. Factors with 

p<0.05 in the univariate Cox model were integrated into 

a multivariable Cox proportional hazards regression 

analysis with the adjustments of age and gender. Then, 

a nomogram, based on the multivariable models, was 

built to predict the ischemic freedom of atherosclerosis 

patients using ‘rms’ package. To estimate the accuracy 

and discrimination of the nomogram, calibration curves 

and C-index test were applied.  

 
Identification of regulatory pathways of prognostic 

factors  

 
After grouping by the median expression value of the key 

mRNA, lncRNA, and macrophage infiltration score, we 

applied the gene set enrichment analysis (GSEA) to 

detect the downstream KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways. The normalized 

enrichment score (NES) was obtained and was used to 

identify key downstream regulatory pathways. 

 

Data availability statement 

 

GSE21545, GSE28829, and GSE28858 can be 

downloaded from the GEO database. The results of 

WGCNA and R codes used in the present study were 

provided as Supplementary Materials 1 and 2. 

 

Abbreviations 
 

AS: atherosclerosis; MI: myocardial infarction; LDL: 

low-density lipoprotein; EC: endothelial cell; SMC: 

smooth muscle cells; lncRNA: long noncoding RNA; 

miRNA: microRNAs; mRNA: messenger RNA; ceRNA: 

competing endogenous RNA; WGCNA: weighted gene 

co-expression network analysis; MM: module 

membership; GS: gene significance; GO: gene ontology; 

BP: biological process; CC: cellular component; MF: 

molecular function; DEG: differentially expressed gene; 

ox-LDL: oxidized low-density lipoprotein; GEO: Gene 

Expression Omnibus; PBMC: peripheral blood 

mononuclear cells; BiKE: Biobank of Karolinska 

Endarterectomy; CAD: coronary arterial disease; MEs: 

module eigengenes; STRING: Search Tool for the 

Retrieval of Interacting Genes; PPI: protein-protein 

interaction; GSVA: gene set variation analysis; GSEA: 

gene set enrichment analysis; KEGG: Kyoto 

Encyclopedia of Genes and Genomes; NES: normalized 

enrichment score.  

 

AUTHOR CONTRIBUTIONS 
 

Yaozhong Liu performed the bioinformatic analysis 

and was a major contributor in writing the manuscript. 

Na Liu made important modifications to the 

manuscript. Yaozhong Liu and Qiming Liu designed 

the research project and created the final revision of 

the manuscript. 

 

ACKNOWLEDGMENTS 
 

Dr. Yaozhong Liu would like to thank Miss Ziwei Wan 

for her love. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

This work was supported by grants from the National Key 

Research and Development Program of China 



 

www.aging-us.com 3096 AGING 

(no.2016YFC1301005) and the National Natural Science 

Foundation of China (no.81770337 and no.81700309). 

 

REFERENCES 
 
1. Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in 

atherosclerosis: JACC review topic of the week. J Am 
Coll Cardiol. 2018; 72:2380–90. 

 https://doi.org/10.1016/j.jacc.2018.08.2161 
PMID:30384894 

2. Kruk ME, Gage AD, Joseph NT, Danaei G, García-Saisó 
S, Salomon JA. Mortality due to low-quality health 
systems in the universal health coverage era: a 
systematic analysis of amenable deaths in 137 
countries. Lancet. 2018; 392:2203–12. 

 https://doi.org/10.1016/S0140-6736(18)31668-4 
PMID:30195398 

3. Herrington W, Lacey B, Sherliker P, Armitage J, 
Lewington S. Epidemiology of atherosclerosis and the 
potential to reduce the global burden of 
atherothrombotic disease. Circ Res. 2016; 118:535–46. 

 https://doi.org/10.1161/CIRCRESAHA.115.307611 
PMID:26892956 

4. Gisterå A, Hansson GK. The immunology of 
atherosclerosis. Nat Rev Nephrol. 2017; 13:368–80. 

 https://doi.org/10.1038/nrneph.2017.51 
PMID:28392564 

5. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, 
Bittencourt MS, Tokgözoğlu L, Lewis EF. 
Atherosclerosis. Nat Rev Dis Primers. 2019; 5:56. 

 https://doi.org/10.1038/s41572-019-0106-z 
PMID:31420554 

6. Libby P, Ridker PM, Hansson GK. Progress and 
challenges in translating the biology of atherosclerosis. 
Nature. 2011; 473:317–25. 

 https://doi.org/10.1038/nature10146  
PMID:21593864 

7. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, 
Hansson GK. T lymphocytes from human 
atherosclerotic plaques recognize oxidized low density 
lipoprotein. Proc Natl Acad Sci USA. 1995; 92:3893–97. 

 https://doi.org/10.1073/pnas.92.9.3893 
PMID:7732003 

8. Frostegård J, Ulfgren AK, Nyberg P, Hedin U, 
Swedenborg J, Andersson U, Hansson GK. Cytokine 
expression in advanced human atherosclerotic plaques: 
dominance of pro-inflammatory (Th1) and macrophage-
stimulating cytokines. Atherosclerosis. 1999; 145:33–43. 

 https://doi.org/10.1016/s0021-9150(99)00011-8 
PMID:10428293 

9. Li X, Wu Z, Fu X, Han W. Long noncoding RNAs: insights 
from biological features and functions to diseases. 
Med Res Rev. 2013; 33:517–53. 

 https://doi.org/10.1002/med.21254  
PMID:22318902 

10. Mercer TR, Dinger ME, Mattick JS. Long non-coding 
RNAs: insights into functions. Nat Rev Genet. 2009; 
10:155–59. 

 https://doi.org/10.1038/nrg2521  
PMID:19188922 

11. Huang Y. The novel regulatory role of lncRNA-miRNA-
mRNA axis in cardiovascular diseases. J Cell Mol Med. 
2018; 22:5768–75. 

 https://doi.org/10.1111/jcmm.13866 PMID:30188595 

12. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A 
ceRNA hypothesis: the Rosetta Stone of a hidden RNA 
language? Cell. 2011; 146:353–58. 

 https://doi.org/10.1016/j.cell.2011.07.014 
PMID:21802130 

13. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, 
Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, 
Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, et al. A 
draft map of the human proteome. Nature. 2014; 
509:575–81. 

 https://doi.org/10.1038/nature13302 PMID:24870542 

14. Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. 
Unveiling ncRNA regulatory axes in atherosclerosis 
progression. Clin Transl Med. 2020; 9:5. 

 https://doi.org/10.1186/s40169-020-0256-3 
PMID:32009226 

15. Ye ZM, Yang S, Xia YP, Hu RT, Chen S, Li BW, Chen SL, 
Luo XY, Mao L, Li Y, Jin H, Qin C, Hu B. LncRNA MIAT 
sponges miR-149-5p to inhibit efferocytosis in 
advanced atherosclerosis through CD47 upregulation. 
Cell Death Dis. 2019; 10:138. 

 https://doi.org/10.1038/s41419-019-1409-4 
PMID:30755588 

16. García de Tena J. Inflammation, atherosclerosis,  
and coronary artery disease. N Engl J Med. 2005; 
353:429–30. 

 https://doi.org/10.1056/NEJM200507283530425 
PMID:16049220 

17. Tabas I, Bornfeldt KE. Macrophage phenotype and 
function in different stages of atherosclerosis. Circ Res. 
2016; 118:653–67. 

 https://doi.org/10.1161/CIRCRESAHA.115.306256 
PMID:26892964 

18. Wu Y, Zhang F, Lu R, Feng Y, Li X, Zhang S, Hou W, Tian 
J, Kong X, Sun L. Functional lncRNA-miRNA-mRNA 
networks in rabbit carotid atherosclerosis. Aging 
(Albany NY). 2020; 12:2798–813. 

 https://doi.org/10.18632/aging.102778 
PMID:32045883 

19. Yao Y, Zhang T, Qi L, Zhou C, Wei J, Feng F, Liu R, Sun C. 
Integrated analysis of co-expression and ceRNA 

https://doi.org/10.1016/j.jacc.2018.08.2161
https://pubmed.ncbi.nlm.nih.gov/30384894
https://doi.org/10.1016/S0140-6736(18)31668-4
https://pubmed.ncbi.nlm.nih.gov/30195398
https://doi.org/10.1161/CIRCRESAHA.115.307611
https://pubmed.ncbi.nlm.nih.gov/26892956
https://doi.org/10.1038/nrneph.2017.51
https://pubmed.ncbi.nlm.nih.gov/28392564
https://doi.org/10.1038/s41572-019-0106-z
https://pubmed.ncbi.nlm.nih.gov/31420554
https://doi.org/10.1038/nature10146
https://pubmed.ncbi.nlm.nih.gov/21593864
https://doi.org/10.1073/pnas.92.9.3893
https://pubmed.ncbi.nlm.nih.gov/7732003
https://doi.org/10.1016/s0021-9150(99)00011-8
https://pubmed.ncbi.nlm.nih.gov/10428293
https://doi.org/10.1002/med.21254
https://pubmed.ncbi.nlm.nih.gov/22318902
https://doi.org/10.1038/nrg2521
https://pubmed.ncbi.nlm.nih.gov/19188922
https://doi.org/10.1111/jcmm.13866
https://pubmed.ncbi.nlm.nih.gov/30188595
https://doi.org/10.1016/j.cell.2011.07.014
https://pubmed.ncbi.nlm.nih.gov/21802130
https://doi.org/10.1038/nature13302
https://pubmed.ncbi.nlm.nih.gov/24870542
https://doi.org/10.1186/s40169-020-0256-3
https://pubmed.ncbi.nlm.nih.gov/32009226
https://doi.org/10.1038/s41419-019-1409-4
https://pubmed.ncbi.nlm.nih.gov/30755588
https://doi.org/10.1056/NEJM200507283530425
https://pubmed.ncbi.nlm.nih.gov/16049220
https://doi.org/10.1161/CIRCRESAHA.115.306256
https://pubmed.ncbi.nlm.nih.gov/26892964
https://doi.org/10.18632/aging.102778
https://pubmed.ncbi.nlm.nih.gov/32045883


 

www.aging-us.com 3097 AGING 

network identifies five lncRNAs as prognostic markers 
for breast cancer. J Cell Mol Med. 2019; 23:8410–19. 

 https://doi.org/10.1111/jcmm.14721  
PMID:31613058 

20. Zhang Y, Wang L, Xu J, Kong X, Zou L. Up-regulated 
miR-106b inhibits ox-LDL-induced endothelial cell 
apoptosis in atherosclerosis. Braz J Med Biol Res. 2020; 
53:e8960. 

 https://doi.org/10.1590/1414-431X20198960 
PMID:32130290 

21. Zhang J, Li SF, Chen H, Song JX. MiR-106b-5p inhibits 
tumor necrosis factor-α-induced apoptosis by targeting 
phosphatase and tensin homolog deleted on 
chromosome 10 in vascular endothelial cells. Chin Med 
J (Engl). 2016; 129:1406–12. 

 https://doi.org/10.4103/0366-6999.183414 
PMID:27270534 

22. Ji Z, Chi J, Sun H, Ru A, Ni T, Zhang J, Jiang F, Lv H, Peng 
F, Guo H, Chen Y. linc-ROR targets FGF2 to regulate 
HASMC proliferation and migration via sponging miR-
195-5p. Gene. 2020; 725:144143. 

 https://doi.org/10.1016/j.gene.2019.144143 
PMID:31629816 

23. Zeng T, Yuan J, Gan J, Liu Y, Shi L, Lu Z, Xue Y, Xiong R, 
Huang M, Yang Z, Lin Y, Liu L. Thrombospondin 1 is 
increased in the aorta and plasma of patients with 
acute aortic dissection. Can J Cardiol. 2019; 35:42–50. 

 https://doi.org/10.1016/j.cjca.2018.11.008 
PMID:30595182 

24. Maier KG, Ruhle B, Stein JJ, Gentile KL, Middleton FA, 
Gahtan V. Thrombospondin-1 differentially regulates 
microRNAs in vascular smooth muscle cells. Mol Cell 
Biochem. 2016; 412:111–17. 

 https://doi.org/10.1007/s11010-015-2614-9 
PMID:26728995 

25. Liu Y, Chen Y, Tan L, Zhao H, Xiao N. Linc00299/miR-
490-3p/AURKA axis regulates cell growth and 
migration in atherosclerosis. Heart Vessels. 2019; 
34:1370–80. 

 https://doi.org/10.1007/s00380-019-01356-7 
PMID:30734057 

26. Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, Li Y, Li 
M, Cao J, Wang Z. MiR-490-3p modulates the 
proliferation of vascular smooth muscle cells induced 
by ox-LDL through targeting PAPP-A. Cardiovasc Res. 
2013; 100:272–79. 

 https://doi.org/10.1093/cvr/cvt172 PMID:23821525 

27. Boyden SE, Desai A, Cruse G, Young ML, Bolan HC, 
Scott LM, Eisch AR, Long RD, Lee CC, Satorius CL, 
Pakstis AJ, Olivera A, Mullikin JC, et al. Vibratory 
urticaria associated with a missense variant in ADGRE2. 
N Engl J Med. 2016; 374:656–63. 

 https://doi.org/10.1056/NEJMoa1500611 
PMID:26841242 

28. Chang GW, Davies JQ, Stacey M, Yona S, Bowdish DM, 
Hamann J, Chen TC, Lin CY, Gordon S, Lin HH. CD312, 
the human adhesion-GPCR EMR2, is differentially 
expressed during differentiation, maturation, and 
activation of myeloid cells. Biochem Biophys Res 
Commun. 2007; 353:133–38. 

 https://doi.org/10.1016/j.bbrc.2006.11.148 
PMID:17174274 

29. van Eijk M, Aust G, Brouwer MS, van Meurs M, 
Voerman JS, Dijke IE, Pouwels W, Sändig I, Wandel E, 
Aerts JM, Boot RG, Laman JD, Hamann J. Differential 
expression of the EGF-TM7 family members CD97 and 
EMR2 in lipid-laden macrophages in atherosclerosis, 
multiple sclerosis and gaucher disease. Immunol Lett. 
2010; 129:64–71. 

 https://doi.org/10.1016/j.imlet.2010.02.004 
PMID:20167235 

30. Papathanassiu AE, Ko JH, Imprialou M, Bagnati M, 
Srivastava PK, Vu HA, Cucchi D, McAdoo SP, Ananieva 
EA, Mauro C, Behmoaras J. BCAT1 controls metabolic 
reprogramming in activated human macrophages and 
is associated with inflammatory diseases. Nat 
Commun. 2017; 8:16040. 

 https://doi.org/10.1038/ncomms16040 
PMID:28699638 

31. Thiagarajan PS, Yakubenko VP, Elsori DH, Yadav SP, 
Willard B, Tan CD, Rodriguez ER, Febbraio M, Cathcart 
MK. Vimentin is an endogenous ligand for the pattern 
recognition receptor Dectin-1. Cardiovasc Res. 2013; 
99:494–504. 

 https://doi.org/10.1093/cvr/cvt117 PMID:23674515 

32. Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, 
John D, Lunella FF, Jaé N, Rossbach O, Amrhein C, 
Sigala F, Boon RA, Fürtig B, Manavski Y, et al. 
Adenosine-to-inosine RNA editing controls cathepsin S 
expression in atherosclerosis by enabling HuR-
mediated post-transcriptional regulation. Nat Med. 
2016; 22:1140–50. 

 https://doi.org/10.1038/nm.4172  
PMID:27595325 

33. Pires D, Bernard EM, Pombo JP, Carmo N, Fialho C, 
Gutierrez MG, Bettencourt P, Anes E. Mycobacterium 
tuberculosis modulates miR-106b-5p to control 
cathepsin S expression resulting in higher pathogen 
survival and poor T-cell activation. Front Immunol. 
2017; 8:1819. 

 https://doi.org/10.3389/fimmu.2017.01819 
PMID:29326705 

34. Bakogiannis C, Sachse M, Stamatelopoulos K, Stellos K. 
Platelet-derived chemokines in inflammation and 
atherosclerosis. Cytokine. 2019; 122:154157. 

https://doi.org/10.1111/jcmm.14721
https://pubmed.ncbi.nlm.nih.gov/31613058
https://doi.org/10.1590/1414-431X20198960
https://pubmed.ncbi.nlm.nih.gov/32130290
https://doi.org/10.4103/0366-6999.183414
https://pubmed.ncbi.nlm.nih.gov/27270534
https://doi.org/10.1016/j.gene.2019.144143
https://pubmed.ncbi.nlm.nih.gov/31629816
https://doi.org/10.1016/j.cjca.2018.11.008
https://pubmed.ncbi.nlm.nih.gov/30595182
https://doi.org/10.1007/s11010-015-2614-9
https://pubmed.ncbi.nlm.nih.gov/26728995
https://doi.org/10.1007/s00380-019-01356-7
https://pubmed.ncbi.nlm.nih.gov/30734057
https://doi.org/10.1093/cvr/cvt172
https://pubmed.ncbi.nlm.nih.gov/23821525
https://doi.org/10.1056/NEJMoa1500611
https://pubmed.ncbi.nlm.nih.gov/26841242
https://doi.org/10.1016/j.bbrc.2006.11.148
https://pubmed.ncbi.nlm.nih.gov/17174274
https://doi.org/10.1016/j.imlet.2010.02.004
https://pubmed.ncbi.nlm.nih.gov/20167235
https://doi.org/10.1038/ncomms16040
https://pubmed.ncbi.nlm.nih.gov/28699638
https://doi.org/10.1093/cvr/cvt117
https://pubmed.ncbi.nlm.nih.gov/23674515
https://doi.org/10.1038/nm.4172
https://pubmed.ncbi.nlm.nih.gov/27595325
https://doi.org/10.3389/fimmu.2017.01819
https://pubmed.ncbi.nlm.nih.gov/29326705


 

www.aging-us.com 3098 AGING 

 https://doi.org/10.1016/j.cyto.2017.09.013 
PMID:29198385 

35. Paramel Varghese G, Folkersen L, Strawbridge RJ, 
Halvorsen B, Yndestad A, Ranheim T, Krohg-Sørensen 
K, Skjelland M, Espevik T, Aukrust P, Lengquist M, 
Hedin U, Jansson JH, et al. NLRP3 inflammasome 
expression and activation in human atherosclerosis. J 
Am Heart Assoc. 2016; 5:e003031. 

 https://doi.org/10.1161/JAHA.115.003031 
PMID:27207962 

36. Xiao Q, Zhu X, Yang S, Wang J, Yin R, Song J, Ma A, Pan 
X. LPS induces CXCL16 expression in HUVECs through 
the miR-146a-mediated TLR4 pathway. Int 
Immunopharmacol. 2019; 69:143–49. 

 https://doi.org/10.1016/j.intimp.2019.01.011 
PMID:30710793 

37. Hu ZB, Chen Y, Gong YX, Gao M, Zhang Y, Wang GH, 
Tang RN, Liu H, Liu BC, Ma KL. Activation of the 
CXCL16/CXCR6 pathway by inflammation contributes 
to atherosclerosis in patients with end-stage renal 
disease. Int J Med Sci. 2016; 13:858–67. 

 https://doi.org/10.7150/ijms.16724  
PMID:27877078 

38. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S. 
Cathepsin cysteine proteases in cardiovascular disease. 
FASEB J. 2007; 21:3029–41. 

 https://doi.org/10.1096/fj.06-7924com 
PMID:17522380 

39. Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. 
Cysteine protease cathepsins in cardiovascular disease: 
from basic research to clinical trials. Nat Rev Cardiol. 
2018; 15:351–70. 

 https://doi.org/10.1038/s41569-018-0002-3 
PMID:29679024 

40. Abd-Elrahman I, Meir K, Kosuge H, Ben-Nun Y, Weiss 
Sadan T, Rubinstein C, Samet Y, McConnell MV, Blum 
G. Characterizing cathepsin activity and macrophage 
subtypes in excised human carotid plaques. Stroke. 
2016; 47:1101–08. 

 https://doi.org/10.1161/STROKEAHA.115.011573 
PMID:26941255 

41. Bai H, Yang B, Yu W, Xiao Y, Yu D, Zhang Q. Cathepsin B 
links oxidative stress to the activation of NLRP3 
inflammasome. Exp Cell Res. 2018; 362:180–87. 

 https://doi.org/10.1016/j.yexcr.2017.11.015 
PMID:29196167 

42. Wuopio J, Hilden J, Bring C, Kastrup J, Sajadieh A, 
Jensen GB, Kjøller E, Kolmos HJ, Larsson A, Jakobsen JC, 
Winkel P, Gluud C, Carlsson AC, Ärnlöv J. Cathepsin B 
and S as markers for cardiovascular risk and all-cause 
mortality in patients with stable coronary heart disease 
during 10 years: a CLARICOR trial sub-study. 
Atherosclerosis. 2018; 278:97–102. 

 https://doi.org/10.1016/j.atherosclerosis.2018.09.006 
PMID:30261474 

43. Hamada M, Nakamura M, Tran MT, Moriguchi T, Hong 
C, Ohsumi T, Dinh TT, Kusakabe M, Hattori M, 
Katsumata T, Arai S, Nakashima K, Kudo T, et al. MafB 
promotes atherosclerosis by inhibiting foam-cell 
apoptosis. Nat Commun. 2014; 5:3147. 

 https://doi.org/10.1038/ncomms4147 PMID:24445679 

44. Hasegawa H, Watanabe T, Kato S, Toshima T, 
Yokoyama M, Aida Y, Nishiwaki M, Kadowaki S, Narumi 
T, Honda Y, Otaki Y, Honda S, Shunsuke N, et al. The 
role of macrophage transcription factor MafB in 
atherosclerotic plaque stability. Atherosclerosis. 2016; 
250:133–43. 

 https://doi.org/10.1016/j.atherosclerosis.2016.05.021 
PMID:27214395 

45. Santos-Gallego CG. MafB and the role of macrophage 
apoptosis in atherosclerosis: a time to kill, a time to 
heal. Atherosclerosis. 2016; 252:194–96. 

 https://doi.org/10.1016/j.atherosclerosis.2016.06.026 
PMID:27338219 

46. Chen Y, Kennedy DJ, Ramakrishnan DP, Yang M, Huang 
W, Li Z, Xie Z, Chadwick AC, Sahoo D, Silverstein RL. 
Oxidized LDL-bound CD36 recruits an Na⁺/K⁺-ATPase-
Lyn complex in macrophages that promotes 
atherosclerosis. Sci Signal. 2015; 8:ra91. 

 https://doi.org/10.1126/scisignal.aaa9623 
PMID:26350901 

47. Sharpe AH, Pauken KE. The diverse functions of the 
PD1 inhibitory pathway. Nat Rev Immunol. 2018; 
18:153–67. 

 https://doi.org/10.1038/nri.2017.108 PMID:28990585 

48. Weyand CM, Berry GJ, Goronzy JJ. The 
immunoinhibitory PD-1/PD-L1 pathway in 
inflammatory blood vessel disease. J Leukoc Biol. 2018; 
103:565–75. 

 https://doi.org/10.1189/jlb.3MA0717-283 
PMID:28848042 

49. Calabretta R, Hoeller C, Pichler V, Mitterhauser M, 
Karanikas G, Haug A, Li X, Hacker M. Immune 
checkpoint inhibitor therapy induces inflammatory 
activity in large arteries. Circulation. 2020; 142: 
2396–98. 

 https://doi.org/10.1161/CIRCULATIONAHA.120.048708 
PMID:32894978 

50. Folkersen L, Persson J, Ekstrand J, Agardh HE, Hansson 
GK, Gabrielsen A, Hedin U, Paulsson-Berne G. Prediction 
of ischemic events on the basis of transcriptomic and 
genomic profiling in patients undergoing carotid 
endarterectomy. Mol Med. 2012; 18:669–75. 

 https://doi.org/10.2119/molmed.2011.00479 
PMID:22371308 

https://doi.org/10.1016/j.cyto.2017.09.013
https://pubmed.ncbi.nlm.nih.gov/29198385
https://doi.org/10.1161/JAHA.115.003031
https://pubmed.ncbi.nlm.nih.gov/27207962
https://doi.org/10.1016/j.intimp.2019.01.011
https://pubmed.ncbi.nlm.nih.gov/30710793
https://doi.org/10.7150/ijms.16724
https://pubmed.ncbi.nlm.nih.gov/27877078
https://doi.org/10.1096/fj.06-7924com
https://pubmed.ncbi.nlm.nih.gov/17522380
https://doi.org/10.1038/s41569-018-0002-3
https://pubmed.ncbi.nlm.nih.gov/29679024
https://doi.org/10.1161/STROKEAHA.115.011573
https://pubmed.ncbi.nlm.nih.gov/26941255
https://doi.org/10.1016/j.yexcr.2017.11.015
https://pubmed.ncbi.nlm.nih.gov/29196167
https://doi.org/10.1016/j.atherosclerosis.2018.09.006
https://pubmed.ncbi.nlm.nih.gov/30261474
https://doi.org/10.1038/ncomms4147
https://pubmed.ncbi.nlm.nih.gov/24445679
https://doi.org/10.1016/j.atherosclerosis.2016.05.021
https://pubmed.ncbi.nlm.nih.gov/27214395
https://doi.org/10.1016/j.atherosclerosis.2016.06.026
https://pubmed.ncbi.nlm.nih.gov/27338219
https://doi.org/10.1126/scisignal.aaa9623
https://pubmed.ncbi.nlm.nih.gov/26350901
https://doi.org/10.1038/nri.2017.108
https://pubmed.ncbi.nlm.nih.gov/28990585
https://doi.org/10.1189/jlb.3MA0717-283
https://pubmed.ncbi.nlm.nih.gov/28848042
https://doi.org/10.1161/CIRCULATIONAHA.120.048708
https://pubmed.ncbi.nlm.nih.gov/32894978
https://doi.org/10.2119/molmed.2011.00479
https://pubmed.ncbi.nlm.nih.gov/22371308


 

www.aging-us.com 3099 AGING 

51. Döring Y, Manthey HD, Drechsler M, Lievens D, 
Megens RT, Soehnlein O, Busch M, Manca M, Koenen 
RR, Pelisek J, Daemen MJ, Lutgens E, Zenke M, et al. 
Auto-antigenic protein-DNA complexes stimulate 
plasmacytoid dendritic cells to promote 
atherosclerosis. Circulation. 2012; 125:1673–83. 

 https://doi.org/10.1161/CIRCULATIONAHA.111.046755 
PMID:22388324 

52. Liao Y, Smyth GK, Shi W. The R package rsubread is 
easier, faster, cheaper and better for alignment and 
quantification of RNA sequencing reads. Nucleic Acids 
Res. 2019; 47:e47. 

 https://doi.org/10.1093/nar/gkz114 PMID:30783653 

53. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson 
M, Gentleman R, Morgan MT, Carey VJ. Software for 
computing and annotating genomic ranges. PLoS 
Comput Biol. 2013; 9:e1003118. 

 https://doi.org/10.1371/journal.pcbi.1003118 
PMID:23950696 

54. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—
analysis of affymetrix GeneChip data at the probe 
level. Bioinformatics. 2004; 20:307–15. 

 https://doi.org/10.1093/bioinformatics/btg405 
PMID:14960456 

55. Langfelder P, Horvath S. WGCNA: an R package for 
weighted correlation network analysis. BMC 
Bioinformatics. 2008; 9:559. 

 https://doi.org/10.1186/1471-2105-9-559 
PMID:19114008 

56. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. Limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 

 https://doi.org/10.1093/nar/gkv007  
PMID:25605792 

57. Jeggari A, Marks DS, Larsson E. miRcode: a map of 
putative microRNA target sites in the long non-coding 
transcriptome. Bioinformatics. 2012; 28:2062–63. 

 https://doi.org/10.1093/bioinformatics/bts344 
PMID:22718787 

58. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, 
Tang Y, Chen YG, Jin CN, Yu Y, Xu JT, Li YM, Cai XX, et al. 
miRTarBase 2020: updates to the experimentally 
validated microRNA-target interaction database. 
Nucleic Acids Res. 2020; 48:D148–54. 

 https://doi.org/10.1093/nar/gkz896 PMID:31647101 

59. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, Amin N, Schwikowski B, Ideker T. 
Cytoscape: a software environment for integrated 
models of biomolecular interaction networks. Genome 
Res. 2003; 13:2498–504. 

 https://doi.org/10.1101/gr.1239303  
PMID:14597658 

60. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–87. 

 https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

61. Yu G, He QY. ReactomePA: an r/bioconductor package 
for reactome pathway analysis and visualization. Mol 
Biosyst. 2016; 12:477–79. 

 https://doi.org/10.1039/c5mb00663e  
PMID:26661513 

62. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, 
Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, 
Jensen LJ, von Mering C. The STRING database in 2017: 
quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 
2017; 45:D362–68. 

 https://doi.org/10.1093/nar/gkw937  
PMID:27924014 

63. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 
enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–57. 

 https://doi.org/10.1038/nmeth.3337  
PMID:25822800 

64. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. 
BMC Bioinformatics. 2013; 14:7. 

 https://doi.org/10.1186/1471-2105-14-7 
PMID:23323831 

65. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner 
M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, 
Berger A, Bruneval P, Fridman WH, Becker C, et al. 
Spatiotemporal dynamics of intratumoral immune cells 
reveal the immune landscape in human cancer. 
Immunity. 2013; 39:782–95. 

 https://doi.org/10.1016/j.immuni.2013.10.003 
PMID:24138885 

66. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. 
Springer Publishing Company, Incorporated. 2009. 

  

https://doi.org/10.1161/CIRCULATIONAHA.111.046755
https://pubmed.ncbi.nlm.nih.gov/22388324
https://doi.org/10.1093/nar/gkz114
https://pubmed.ncbi.nlm.nih.gov/30783653
https://doi.org/10.1371/journal.pcbi.1003118
https://pubmed.ncbi.nlm.nih.gov/23950696
https://doi.org/10.1093/bioinformatics/btg405
https://pubmed.ncbi.nlm.nih.gov/14960456
https://doi.org/10.1186/1471-2105-9-559
https://pubmed.ncbi.nlm.nih.gov/19114008
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1093/bioinformatics/bts344
https://pubmed.ncbi.nlm.nih.gov/22718787
https://doi.org/10.1093/nar/gkz896
https://pubmed.ncbi.nlm.nih.gov/31647101
https://doi.org/10.1101/gr.1239303
https://pubmed.ncbi.nlm.nih.gov/14597658
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1039/c5mb00663e
https://pubmed.ncbi.nlm.nih.gov/26661513
https://doi.org/10.1093/nar/gkw937
https://pubmed.ncbi.nlm.nih.gov/27924014
https://doi.org/10.1038/nmeth.3337
https://pubmed.ncbi.nlm.nih.gov/25822800
https://doi.org/10.1186/1471-2105-14-7
https://pubmed.ncbi.nlm.nih.gov/23323831
https://doi.org/10.1016/j.immuni.2013.10.003
https://pubmed.ncbi.nlm.nih.gov/24138885


 

www.aging-us.com 3100 AGING 

SUPPLEMENTARY MATERIALS  

 

Please browse Full Text version to see the data of Supplementary Materials 1 and 2. 

 

Supplementary Material 1. Results of WGCNA. 
 

Supplementary Material 2. R language codes used in the present study. 


