
 

www.aging-us.com 5824 AGING 

INTRODUCTION 
 

Gastric cancer (GC) is the fifth most frequently 

diagnosed cancer and the third leading cause of cancer-

related mortality worldwide, with an incidence of 

approximately 1,000,000 cases, accounting for 

approximately 800,000 deaths every year [1, 2]. Owing 

to the lack of early symptoms, most GC patients are 

diagnosed at an advanced stage [3–5]. Despite effective 
treatment, relapse and metastasis are common for 

advanced GC, which causes a quite low survival rate  

[3, 4, 6]. Currently, the tumor-node-metastasis (TNM) 

system is still the most common assessment system in 

predicting GC prognosis. However, the prognosis of GC 

patients within the same TNM stage is usually different, 

suggesting that the TNM system is not sufficiently 

satisfactory to predict GC prognosis [7–9]. Thus, a 

novel effective signature for predicting the prognosis of 

GC is urgently needed. 

 

Alternative splicing (AS) is one of the most critical 

posttranscriptional regulatory processes and modifies 

more than 90% of all human genes [10]. The process of 

AS significantly contributed to protein diversity by 
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ABSTRACT 
 

Gastric cancer (GC) is a heterogeneous disease with different clinical manifestations and prognoses. Alternative 
splicing (AS) is a determinant of gene expression and contributes to protein diversity from a rather limited gene 
transcript in metazoans. AS events are associated with different aspects of cancer biology, including cell 
proliferation, apoptosis, invasion, etc. Here, we present a comprehensive analysis of the prognostic AS profile 
in GC. GC-specific AS (GCAS) events were analyzed, and overall survival-associated GCAS (OS-GCAS) events were 
verified among the genome-wide AS events identified in The Cancer Genome Atlas (TCGA) database. In total, 
1,287 GCAS events of 837 genes and 173 OS-GCAS events of 130 genes were identified. The parental genes of 
OS-GCAS events were significantly enriched in the development of GC. Protein-protein interaction (PPI) and OS-
GCAS-associated splicing factor (SF) interaction networks were constructed. Multivariate Cox regression 
analysis with least absolute shrinkage and selection operator (LASSO) penalty was performed to establish a 
prognostic risk formula, representing 23 OS-GCAS events. The low-risk group had better OS than the high-risk 
group and lower immune and stromal scores. Cox proportional hazard regression was applied to generate an 
AS-clinical integrated prognostic model with a considerable area under the curve (AUC) value in both the 
training and validation datasets. Our study provides a profile of OS-GCAS events and an AS-clinical nomogram 
to predict the prognosis of GC. 

mailto:xueyingwei@hrbmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 5825 AGING 

generating different mRNA isoforms from a single gene 

[11]. Splicing abnormalities may cause a series of 

consequences from changing the stability to adding or 

deleting structural domains, modifying the interactive 

relationship of proteins, which significantly alters the 

abundance and complexity of the organism’s protein-

protein interactions (PPIs) [12, 13]. Abnormal AS 

events participate in several tumorigenic processes, 

such as proliferation, apoptosis, hypoxia, angiogenesis, 

immune escape and metastasis [14, 15]. More 

importantly, growing evidence has demonstrated that 

AS has clinical potential in cancer therapy [12, 16, 17]. 

Thus, cancer-specific AS events might serve not only as 

prognostic signatures but also as potential therapeutic 

targets. 

 

Despite the indispensable role of AS in oncogenesis, 

systematic analyses of the clinical significance of AS 

events in GC and the potential regulatory mechanism 

are still lacking. Thus, our study aimed to conduct 

systematic profiling of genome-wide AS events and 

their prognostic value associated with GC. First, we 

identified GC-specific AS (GCAS) events and 

investigated the relationship between GCAS events and 

overall survival (OS). The potential biological function 

and underlying molecular regulatory network of these 

OS-GCAS events were further explored. Second,  

we constructed an AS prognostic signature, which could 

stratify risk for patients with GC. We also uncovered 

the distinct clinical, molecular and immune features 

between high- and low-risk patients. Finally, by 

integrating the AS signature with clinical charac-

teristics, an AS-clinical nomogram with high 

performance was established for clinical application. 

 

RESULTS 
 

Overview of AS events in the TCGA GC cohort 

 

We preliminarily detected 119,697 AS events from 

14,433 genes, which accounted for approximately 70% 

of protein-coding genes [18]. A large proportion of AS 

events could only be detected in a few samples, and 

specific splicing isoforms were barely detected (PSI 

value < 0.05). Then, we implemented a series of filters 

(percentage of samples with PSI values ≥ 75 and 

average PSI value ≥ 0.05) to obtain a reliable set of AS 

events in GC. Consequently, a total of 37,139 AS events 

were obtained from 10,380 genes, which were used for 

further analysis. Among these AS events, they were 

comprised of “15,816 ES events from 6,462 genes”, 

“6,633 AP events from 4,016 genes”, “5,988 AT events 

from 3,665 genes”, “3,285 AA events from 2,404 

genes”, “2,691 AD events from 1,986 genes”, “2,564 RI 

events from 1,780 genes” and “162 ME events in 156 

genes” (Supplementary Figure 1A). Among these seven 

types of splicing patterns, ES was the most frequent 

splicing pattern, followed by AP and AT, while ME was 

the least frequent splicing pattern. Of note, the number 

of AS events far exceeded the total number of genes, 

which indicated that one gene might undergo multiple 

splicing patterns. As shown in Supplementary Figure 

1B, most genes contained two or more AS events, and 

several genes could have up to five different splicing 

modes. 

 

Identification of GC-associated AS events 

 

To identify GC-associated AS events, we compared the 

PSI values between 33 paired tumor and normal tissues. 

According to the defined threshold, a total of 1,287 

GCAS events were identified from 837 genes, which 

included 738 upregulated AS events from 625 genes and 

549 downregulated AS events from 509 genes (Figure 

1A and Supplementary Table 1). The proportion of AS 

splicing modes between the GCAS profiles and the 

entire AS profile was inconsistent (Figure 1B). A larger 

proportion of ES events (42.6%) were detected among 

all AS profiles than among GCAS events (32.6%). 

Moreover, AP events accounted for 17.9% of events 

among all AS profiles and accounted for 35.1% of 

GCAS events. Forty percent of the splicing-parent genes 

possessed more than one GCAS event. However, the 

proportion of splicing-parent genes derived from more 

than two GCAS events was very low (Supplementary 

Figure 1C). 

 

Identification of OS-GCAS events 

 

To investigate the relationship between GCAS and OS in 

GC patients, we performed a univariate Cox regression 

analysis of 1,287 GCAS events in 354 patients. As 

shown in Figure 1C, 173 OS-GCAS events were 

identified from 130 genes (Supplementary Table 2). The 

proportion of AS splicing modes between the OS-GCAS 

and GCAS profiles was also inconsistent 

(Supplementary Figure 1D). The AP pattern (69 cases) 

contained the most OS-GCAS events, followed by the 

ES pattern (55 cases) and AT pattern (29 cases), while 

the AA pattern (2 cases) contained the fewest OS-GCAS 

events. Although 33.3% of splicing-parent genes had 

two or more OS-GCAS events, almost all the genes had 

only one splicing pattern (Supplementary Figure 1E). Of 

note, among the 130 splicing-parent genes, 38 genes 

contained paired survival-related GCAS events. For 

example, the AP of IL11RA in exon site 1 

(IL11RA_86209_AP) was a favorable prognostic 

indicator, whereas the AP of IL11RA in exon site 2 

(IL11RA_86208_AP) was a poor prognostic indicator 
(Figure 1D). Interestingly, the splicing pattern of all the 

paired survival-related GCAS events was either AP or 

AT, and the expression of the paired survival-related 
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GCAS events was opposite between tumor and normal 

tissues (Figure 1E). 

 

Enrichment and interaction analysis of OS-GCAS 

events 

 

All 130 splicing-parent genes derived from 173 OS-

GCAS events were assessed by functional and pathway 

enrichment analysis to explore the underlying 

mechanisms of the OS-GCAS events. The results 

revealed that genes were enriched in GO categories 

closely related to GC development, such as “microtubule 

polymerization”, “centrosome localization” and 

“cytokinesis” (Figure 2 and Supplementary Table 3). In 

addition, some canonical pathways involved in GC 

metastasis and recurrence were also enriched, such as 

the “Notch signaling pathway”, “adherens junction” and 

“bacterial invasion of epithelial cells” (Figure 2 and 

Supplementary Table 3). 

 

Since AS events could inevitably affect protein 

characteristics, it is necessary to investigate these OS-

GCAS events at the protein level [19]. A protein 

interaction network of OS-GCAS events was 

constructed not only to provide an overview of the 

interactions under normal conditions but also to reveal 

the potential influence of OS-GCAS events on the entire 

network. After removing the isolated nodes, 79 genes 

were mapped in the protein interaction network, and 

these parental genes were significantly correlated with 

each other (Supplementary Figure 2A). The top three 

hub genes were SORBS1, BPTF and SEPT2, which 

were determined by the maximal clique centrality 

method. The MCODE algorithm identified three 

individual modules from the whole protein interaction 

network (Supplementary Figure 2B–2D). 

 

The network of OS-GCAS events and SFs 

 

SFs are critical regulators of AS events that bind to pre-

mRNAs and influence exon selection and splicing site 

choice [20]. It has been determined that dysregulated AS 

events within the tumor microenvironment may be 

regulated by a limited number of SFs [21]. Thus, 

correlation analysis was performed to explore the 

potential interaction networks of OS-GCAS events and 

SFs. As shown in Figure 3A, 103 of 173 OS-GCAS 

events were significantly associated with 41 

experimentally validated SFs in the regulatory network 

(|R| ≥ 0.4 and P-value < 0.05). Among the networks, 

most SFs were significantly correlated with more than 

one OS-GCAS event, while a single OS-GCAS could be 

regulated by up to 21 different SFs (Figure 3A). 

Moreover, we found that some SFs played opposite roles 

 

 
 

Figure 1. Profiling of AS events identified in the TCGA GC cohort. (A) GCAS events between GC and adjacent normal tissues were 
visualized in a volcano plot. (B) The number of GCAS events and total AS events were depicted according to the seven AS types. (C) Heat map 
for the PSI values of 173 OS-GCAS events identified in 354 GC patients. (D) Kaplan-Meier curves for the paired survival-related GCAS events 
(IL11RA_86208_AP and IL11RA_86209_AP). (E) Violin plots for the PSI values of the paired survival-related GCAS events (IL11RA_86208_AP 
and IL11RA_86209_AP) between GC and adjacent normal tissues. 
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in the regulation of different AS events. For example, 

the expression of SRSF9 was negatively correlated with 

ATP2B4_9450_ES but positively correlated with 

APOLD1_20517_AT (Figure 3B). 

 

Construction and evaluation of the AS prognostic 

signature 

 

To facilitate the application of AS events in the clinical 

monitoring of the prognosis of GC patients, we applied 

a LASSO penalty with a multivariate Cox regression 

analysis to the 173 OS-GCAS events in the training set 

of 261 patients. A total of 23 features were identified 

with nonzero coefficients (Figure 4A, 4B). These 23 

LASSO-selected features were used to build the AS 

prognostic signature. The coefficients and PSI values of 

these 23 OS-GCAS events were used together to 

calculate the risk scores for both the training and 

validation datasets (Figure 4C). 

 

This 23-AS event prognostic signature showed excellent 

performance in both datasets (Figure 4D). The C-index 

values of the signature were 0.725 and 0.762 in the 

training and validation datasets, respectively. The 

signature significantly stratified patients into low- and 

high-risk groups in the training set and validation set 

(Figure 4E, 4F). Significant RMS time ratios were also 

observed in the two datasets (Table 1). Moreover, the 

23-AS event prognostic signature remained an 

independent prognostic factor in multivariate analyses 

after adjusting for clinical and pathologic factors, such 

as age, TNM stage and microsatellite instability (MSI) 

status (Table 2). 

 

Furthermore, we performed sensitivity analyses 

according to age, sex and TNM stage to evaluate the 

robustness of the 23-AS event prognostic signature in 

different clinical subgroups. The prognostic signature 

could stratify patients into significantly different 

prognostic groups in all the subgroups, which indicated 

that this prognostic signature might predict OS 

independently of clinical characteristics in GC 

(Supplementary Figure 3). 

 

Clinical, molecular and immune features underlying 

the 23-AS event prognostic signature 

 

To explore the relationship between patient 

characteristics and the 23-AS event prognostic 

signatures, patients in the entire TCGA dataset were 

stratified into high- and low-risk groups according to the 

optimal cut-off of 0.046 (Figure 5A). Among the 327 

patients, 137 patients were assigned to the high-risk 

group, and 190 patients were assigned to the low-risk 

group. The low-risk group had a significantly more 

favorable prognosis of OS than the high-risk group 

(Figure 5B). We found that almost all 23 LASSO-

selected features were significantly differentially 

 

 
 

Figure 2. Potential biological functions of 173 OS-GCAS events in GC. 
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expressed between the two risk groups (Figure 5C, 5D). 

Moreover, the distribution of MSI status, TNM stage and 

molecular subtype were significantly different between 

the high- and low-risk groups (Figure 5C and Table 3). 

 

We then performed GSEA to verify the difference in 

biological function and pathway between the high- and 

low-risk groups. The results revealed that some well-

known pathways related to GC development, such as 

“apoptosis”, “hypoxia” and “epithelial-mesenchymal 

transition”, were significantly enriched in the high-risk 

group (Figure 5E). Intriguingly, immune-related 

pathways, such as “inflammatory response”, 

“interferon-alpha response” and “interferon-gamma 

response”, were also significantly enriched in the high-

risk group (Figure 5F). 

Thus, we compared the tumor immune micro-

environment between the high- and low-risk groups to 

comprehensively characterize their different immune 

features. Both the immune and stromal scores were 

significantly higher in the high-risk group (Figure 6A). 

Correspondingly, a lower tumor purity was also found in 

the high-risk group (Figure 6A). In detail, our studies of 

immune cell infiltration revealed that many types of 

immune cells were not randomly distributed across the 

two groups (Figure 6B, 6C). We found a significantly 

higher proportion of T cells, monocytes, myeloid 

dendritic cells, endothelial cells and fibroblasts in the 

high-risk group (Figure 6B, 6C). However, the 

proportions of the other five types of immune cells were 

comparable between the two groups (Figure 6B, 6C). 

These results indicated the activation of stromal 

 

 
 

Figure 3. The regulatory splicing correlation network in GC. (A) The correlation of OS-GCAS events with SFs is shown in network plots. 
The circular node represents the OS-GCAS event. The diamond node represents the SF. (B) Representative positive correlations between OS-
GCAS events and SFs are shown in scatter plots. (C) Representative negative correlations between OS-GCAS events and SFs are shown in 
scatter plots. 
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Figure 4. Construction and evaluation of the 23-AS event prognostic signature for GC patients. (A, B) LASSO regression analysis of 
OS- GCAS events. (C) The 23 OS-GCAS events included in the signature. Corresponding coefficients from multivariate Cox regression using 
LASSO and log10(HRs) are depicted by horizontal bars and dots, respectively. (D) Time-dependent ROC curves for the 23-AS event signature 
in the training and validation datasets. (E, F) Kaplan-Meier curves with difference detection by log-rank test for patients from the training and 
validation datasets. 
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Table 1. Restricted mean survival (RMS) time ratio between the two risk groups in different datasets. 

Dataset Nhigh-risk Nlow-risk 
RMSHRisk RMSLRisk RMS ratio 

P-value 
(95% CI) a (95% CI) a (95% CI) b 

Training dataset 130 131 25.8 (21.8-29.9) 46.4 (42.5-50.3) 0.56 (0.47-0.67) <0.001 

Validation dataset 33 33 34.3 (22.1-46.5) 66.1 (55.9-76.3) 0.52 (0.35-0.77) <0.001 

aRMS time: months. 
bRMS ratio = RMSHRisk/RMSLRisk. 

 

Table 2. Multivariate Cox proportional hazard regression in the training and validation datasets. 

 
Training dataset (n =261) Validation dataset (n = 66) 

Univariate regression Multiple regression Univariate regression Multiple regression 

HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value 

Age 1.02 (1.003, 1.037) 0.022 1.025 (1.006, 1.043) 0.008 1.005 (0.958, 1.055) 0.825    

Gender             

Female Reference      Reference      

Male 1.186 (0.810, 1.736) 0.38    2.39 (0.808, 7.069) 0.115    

MSI status             

MSS Reference      Reference   Reference   

MSI-H 0.685 (0.421, 1.114) 0.127    0.709 (0.200, 2.519) 0.595 2.28 (0.553, 9.409) 0.254 

MSI-L 1.145 (0.681, 1.925) 0.611    4.436 (1.594, 12.343) 0.004 2.786 (0.973, 7.976) 0.056 

TNM stage             

Stage I Reference   Reference   Reference   Reference   

Stage II 1.845 (0.843, 4.036) 0.125 1.543 (0.697, 3.413) 0.284 1.018 (0.170, 6.099) 0.985 1.214 (0.196, 7.500) 0.835 

Stage III 2.902 (1.389, 6.062) 0.005 2.222 (1.055, 4.682) 0.036 3.927 (0.883, 17.464) 0.072 2.919 (0.621, 13.713) 0.175 

Stage IV 4.128 (1.793, 9.501) 0.001 3.737 (1.598, 8.739) 0.002 7.888 (1.312, 47.411) 0.024 4.385 (0.612, 31.440) 0.141 

Molecular 

subtype 
            

CIN Reference      Reference      

EBV 0.718 (0.347, 1.487) 0.372    1.483 (0.319, 6.901) 0.616    

GS 0.968 (0.573, 1.635) 0.903    2.453 (0.912, 6.599) 0.075    

HM-SNV 0.974 (0.239, 3.974) 0.971    2.277 (0.280, 18.492) 0.441    

MSI 0.618 (0.374, 1.021) 0.06    0.783 (0.210, 2.927) 0.717    

Neoplasm 

grade 
            

G1 Reference      NA    

G2 0.56 (0.173, 1.809) 0.333    Reference      

G3 0.754 (0.238, 2.394) 0.632    2.583 (0.949, 7.029) 0.063    

Risk score 8.182 (5.357, 12.496) < 0.001 7.765 (4.834, 12.475) < 0.001 19.3 (6.015, 61.925) < 0.001 13.545 (3.295, 55.687) < 0.001 

 

and immune components in the tumor immune 

microenvironment of high-risk patients together with the 

activation of oncogenic pathways based on the proposed 

signatures, which likely contributed at least partially to 

the poor prognosis of these patients. 

 

Integrating the 23-AS event prognostic signature 

with clinical characteristics 

 

In addition to the 23-AS event prognostic signature, age 

and TNM stage were also determined as independent 

prognostic factors in the training dataset, which 

suggested their complementary value (Table 2). To 

further improve the prognostic accuracy, we integrated 

the 23-AS event prognostic signature with the other two 

independent prognostic factors, age and TNM stage, 

using the coefficients generated from the multivariate 

Cox regression model in the training dataset and derived 

an AS-clinical prognostic model as follows: Risk score = 

(1.948 × RSASS) + (0.348 × stage) + (0.022 × age). This 

integrated model was further validated in the validation 

dataset. Significant improvement in the assessment of 

survival was achieved with the AS-clinical model relative 

to the 23-AS event signature only (Figure 7A, 7B). 

 

Moreover, a nomogram was established for model 

visualization and clinical application (Figure 7C). The 

ROC curve confirmed that the nomogram showed great 

performance in predicting the prognosis of GC (Figure 

7D). The calibration curve also presented an optimal 

prediction for 1-year, 3-year and 5-year OS compared 

with the actual observations (Figure 7E). All these 
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findings indicated that the nomogram built in our study 

might contribute significantly to the prediction of 

prognosis for patients with GC. 
 

DISCUSSION 
 

AS is a critical posttranslational modification process 

that generates multiple mRNA and protein isoforms 

with distinct structural, regulatory and functional 

properties [11, 12]. It has been determined that 

abnormal AS events contribute to numerous diseases, 

including several types of cancers [14, 15]. In 

particular, accumulating evidence has proven that the 

specific dysregulation of AS events plays critical roles 

in GC initiation, progression and metastasis [22]. For 

instance, CD44, MUTYH, HOXA10 and MRPL33 

splice variants participate in the carcinogenesis, 

proliferation, metastasis and drug resistance of GC  

[23–27]. However, previous studies mainly focused on 

monogenic isoforms with limited sample sizes, which 

lacked a general view of all AS events. Hence, we 

systematically profiled AS events in a large-scale GC 

cohort to characterize the role of AS events in the 

tumorigenesis and prognosis of GC. 

 

 
 

Figure 5. Clinical and molecular features underlying the 23-AS event signature. (A) The optimal cut-off of the 23-AS event signature 

in the entire TCGA dataset. (B) Kaplan-Meier curve with difference detection by log-rank test for patients in the entire TCGA dataset. (C) Heat 
map for the expression patterns of the 23 OS-GCAS events for the entire TCGA sample set sorted by the risk score in ascending order. (D) The 
differential expression of the 23 OS-GCAS events between the high- and low-risk groups. (E, F) GSEA of the 50 hallmark gene sets between 
the high- and low-risk groups. 
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Table 3. Differences in patient characteristics between the high- and low-risk groups in the entire TCGA dataset. 

 Total sample High-risk group Low-risk group P-value 

MSI status    < 0.001 

MSS 221 107 (48.42%) 114 (51.58%)  

MSI-H 62 11 (17.74%) 51 (82.26%)  

MSI-L 44 19 (43.18%) 25 (56.82%)  

TNM stage    0.006 

Stage I 44 10 (22.73%) 34 (77.27%)  

Stage II 108 41 (37.96%) 67 (62.04%)  

Stage III 140 62 (44.29%) 78 (55.71%)  

Stage IV 29 18 (62.07%) 11 (37.93%)  

Molecular subtype    < 0.001 

CIN 194 92 (47.42%) 102 (52.58%)  

EBV 24 8 (33.33%) 16 (66.67%)  

GS 42 23 (54.76%) 19 (45.24%)  

HM-SNV 7 3 (42.86%) 4 (57.14%)  

MSI 60 11 (18.33%) 49 (81.67%)  

Neoplasm grade    0.11 

G1 6 4 (66.67%) 2 (33.33%)  

G2 124 44 (35.48%) 80 (64.52%)  

G3 190 86 (45.26%) 104 (54.74%)  

 

 
 

Figure 6. Immune microenvironment features underlying the 23-AS event signature. (A) Violin plots for the immune scores, 
stromal scores, and tumor purity between the high- and low-risk groups. (B) Heat map for immune cell infiltration between the high- and 
low-risk groups. (C) The differential expression of immune and stromal cells between the high- and low-risk groups. 
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Figure 7. Construction and evaluation of the AS-clinical nomogram for GC patients. (A, B) RMS curves for the 23-AS event 
prognostic signature and the AS-clinical signature in the training and validation datasets. P-values represent the difference between the two 
signatures in terms of the C-index. (C) Nomogram prediction of 1-year, 3-year, and 5-year OS. For stage, 0 means TNM stage I, 1 means TNM 
stage II, 2 means TNM stage III, and 3 means TNM stage IV. (D) Time-dependent ROC curves for the nomogram at different time points. (E) 
Calibration curves of observed and predicted probabilities for the nomogram. 
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In the current study, a total of 37,139 AS events from 

10,380 genes were detected after the rigorous filter, 

which indicated that AS is a common process in GC. By 

comparing the tumor and paired normal tissues, 1,287 

AS events from 837 genes were detected as GCAS 

events. As expected, all these experimentally validated 

splice variants were also identified by our procedure, 

suggesting that the GCAS events identified in our study 

are ubiquitous in GC. Interestingly, we found that GC 

shared some common cancer-specific AS events with 

colorectal and head-neck squamous cell cancers, which 

also illustrated the role of shared AS events in cancer 

tumorigenesis and development [28, 29]. 

 

Among the 1,287 detected GCAS events, 173 OS-

GCAS events from 130 genes were identified by 

univariate Cox regression analysis. In our study, a 

higher proportion of AP and AT events was found in the 

prognostic AS profile, even though ES events are the 

predominant components in the entire AS profile and 

the cancer-specific AS profile (Supplementary Figure 

1A, 1D). Previous studies also confirmed that AP and 

AT splicing types often confer splicing isoform-specific 

localization and control the survival and migration of 

cancer cells [30, 31]. Moreover, for OS-GCAS events 

of AP and AT splicing types, splicing isoforms at 

different splice sites had distinct expression patterns and 

prognostic values. All the results suggested that AP and 

AT splicing types played important roles in the 

development and progression of GC. 

 

The potential biological function and underlying 

molecular regulatory network of these OS-GCAS events 

were further explored. We found that their splicing-

parent genes were significantly enriched in GC 

initiation and maintenance by GO term and KEGG 

pathway enrichment analysis. In the PPI network, we 

found that 79 proteins interacted closely with each 

other. The complexity of the network indicated that the 

prognosis of GC was not driven by a single AS-relevant 

protein; it was a process regulated by the whole 

integrated system. 

 

Given the influence of SFs on the process of RNA 

splicing, we performed an integrated analysis of SFs 

and OS-GCAS events to explore the underlying 

mechanism of the splicing pathway involved in GC 

patient survival [32]. The splicing correlation network 

showed distinguished interactions between SFs and OS-

GCAS events. Of note, we found that a given SF might 

play dual roles in the positive and negative regulation of 

different AS events and that the same OS-GCAS event 

could be synergistically or antagonistically regulated by 
different SFs, which suggested that multiple SFs could 

affect the survival of GC patients by synergistically 

regulating the AS events of genes. The relationships 

between AS events and SFs might be suitable to 

consider as a dynamic interaction network instead of a 

simple “one-to-one” pattern. 

 

To explore the prognostic significance of AS events, we 

constructed a robust signature for GC. The 23-AS event 

prognostic signature showed excellent performance in 

both the training and validation datasets. The 23-AS 

event prognostic signature precisely stratified risk. 

Patients in the high-risk group had a poorer prognosis 

than those in the low-risk group. Subgroup analysis also 

indicated that the prognostic signature was stable in 

different situations. All the results suggest that the 23-

AS event prognostic signature could provide patients 

with new predictive information and facilitate patient 

assessment. 

 

Of note, we found that the distribution of MSI status, 

TNM stage and molecular subtype was significantly 

different between the high- and low-risk groups, which 

indicated different biological functions between the 

high- and low-risk groups. Consistent with the results, 

GSEA revealed that several GC-associated pathways 

were significantly enriched in the high-risk group. 

Intriguingly, immune-related pathways were also 

significantly enriched, which suggested an enhanced 

immune phenotype in the high-risk group. 

 

Correspondingly, we further estimated the population 

abundance of tissue-infiltrating immune and stromal 

cell populations to characterize the tumor immune 

microenvironment of the high- and low-risk groups. 

Generally, significantly higher immune and stromal 

scores were found in the high-risk group, which was 

characterized by a low tumor purity. Consistent with 

our study, previous studies have determined that low 

tumor purity is associated with poor prognosis and an 

enhanced immune phenotype [33–35]. Specifically, 

significantly higher proportions of T cells, monocytes, 

myeloid dendritic cells, endothelial cells and fibroblasts 

were identified in the high-risk group. The higher 

proportion of T cells in the high-risk group might be an 

essential factor for the immunotherapy response [36]. 

 

To further improve the prognostic accuracy, we 

integrated the 23-AS event prognostic signature with 

clinicopathologic factors. The prediction performance 

of the integrative AS-clinical prognostic model was 

superior to that of the single 23-AS event prognostic 

signature. Finally, a nomogram was established for 

model visualization and clinical application. The 

nomogram also showed great performance in predicting 

the prognosis of GC. Thus, we propose that the AS-
clinical nomogram could serve as an individualized, 

single-sample estimate of survival of GC and might be 

readily translated to clinical practice. 
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In summary, our study comprehensively investigated 

the prognostic value of genome-wide AS events in GC 

and explored their potential biological function and the 

underlying splicing pathways of these 173 OS-GCAS 

events. More importantly, we constructed a 23-AS 

event prognostic signature to classify the risk of GC 

patients and identified differential clinical, molecular 

and immune features underlying the 23-AS event 

prognostic signature. In addition, combining data 

concerning age, TNM stage and the 23-AS event 

prognostic signature, we constructed an AS-clinical 

nomogram to predict the survival of GC patients. These 

results provide fundamental information for under-

standing the roles of the AS process and indicate the 

potential clinical implications of AS events in GC. 

 

MATERIALS AND METHODS 
 

Data acquisition and curation process 

 

Patients who met the following criteria were included in 

The Cancer Genome Atlas (TCGA) GC cohort: (1) 

histologically confirmed primary GC; (2) alternative 

RNA splicing data available; (3) detailed clinico-

pathological and follow-up information available, 

including sex, age, TNM stage, neoplasm grade, 

microsatellite status, molecular subtype, and OS status; 

and (4) an OS time of over 90 days; this latter criterion 

was applied to, avoid immortal time bias. The alternative 

RNA splicing data of the TCGA GC cohort were 

downloaded from the TCGASpliceSeq dataset [37]. 

Corresponding clinical information and RNA-seq data 

were downloaded from the Genomic Data Commons data 

portal using the "GDCRNATools" package [38]. 

 

Splicing events in the TCGASpliceSeq dataset were 

divided into seven categories: exon skip (ES), retained 

intron (RI), alternate promoter (AP), alternate terminator 

(AT), alternate donor site (AD), alternate acceptor site 

(AA), and mutually exclusive exons (ME). Each splicing 

event was quantified by the percent spliced in (PSI) 

value, which ranges from 0 to 1 and represents the ratio 

of normalized read counts to indicate the inclusion of a 

transcript element over the total normalized reads for 

that event [39]. To generate a reliable set of AS events, 

we implemented a series of stringent filters, which 

included "percentage of samples with a PSI value ≥ 

75%" and "average PSI value ≥ 0.05" [28, 29]. The 

missing PSI values were further filled in using the k 

nearest neighbors (KNN) algorithm [40]. 

 

Identification of GCAS events and OS-GCAS events 

 
To identify GCAS events, we applied the Wilcoxon 

matched-pairs signed-rank test to compare the PSI 

values between tumor tissues and matched adjacent 

normal tissues. The P-value was adjusted by the 

Benjamini-Hochberg (BH) method. GCAS events were 

defined as a median PSI value that varied more than 0.1 

between tumor tissues and matched adjacent normal 

tissues with a BH-adjusted P-value < 0.05 [30, 41]. 

 

To determine the survival-associated GCAS events, we 

performed univariate Cox proportional hazards 

regression analysis to estimate the PSI values of GCAS 

events with OS. GCAS events with a P-value < 0.05 in 

the univariate Cox regression analysis were selected as 

OS-GCAS events. 

 

Functional enrichment analysis and protein 

interaction network 

 

To investigate the potential functions of OS-GCAS 

events, we subjected their parent genes to enrichment 

analyses of Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

pathways using the ClueGO plug-in of Cytoscape [42]. 

For the functional enrichment analysis, a BH-adjusted 

P-value < 0.05 was considered statistically significant. 

 

To observe the PPIs among the OS-GCAS events, we 

mapped their corresponding genes to the Search Tool 

for the Retrieval of Interacting Genes/Proteins 

(STRING) database [43]. A minimum required 

interaction score of 0.4 was used to identify the protein 

interaction results in STRING, which were further 

visualized by Cytoscape [44]. In addition, hub genes 

and specific modules of the protein interaction network 

were identified by the CytoHubba and Molecular 

Complex Detection (MCODE) plug-ins of Cytoscape 

[45, 46]. The maximal clique centrality (MCC) 

algorithm of CytoHubba was used to predict the top 

three hub genes in the PPI network. The MCODE 

options were set as degree cutoff = 2, K-core = 2, and 

node score cutoff = 0. 

 

Splicing factors (SFs) and the splicing correlation 

network 

 

A total of 78 genes that participated in the process of 

alternative RNA splicing (GO:0000380) were obtained 

from the Molecular Signatures Database (MSigDB) 

[47]. The read count values of these SFs were extracted 

from the RNA-seq data, normalized by the trimmed 

means of M (TMM) method and further transformed by 

"voom" [48, 49]. Differentially expressed SFs were 

identified through the "limma" package, and a BH-

adjusted P-value < 0.05 was used as the significance 

threshold [50]. Spearman's correlation analysis was 
conducted to explore the underlying correlation between 

the expression of the SFs and the PSI values of the OS-

GCAS events. The absolute value of the correlation 
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coefficient ≥ 0.4 with a P-value < 0.05 was considered 

statistically significant. The splicing correlation network 

of SFs and the OS-GCAS events was visualized by 

Cytoscape [44]. 

 

Identification of the AS prognostic signature 

 

To enhance the robustness of the AS prognostic 

signature, the entire TCGA cohort of 327 samples was 

first randomly distributed into two datasets (7:3), 

namely, the training and validation datasets. Next, to 

avoid overfitting in the multivariate model, the least 

absolute shrinkage and selection operator (LASSO) 

penalty was applied in the training dataset to build an 

optimal prognostic signature with the minimum number 

of OS-GCAS events. Ten-fold cross-validation was 

conducted to determine the optimal value of the penalty 

parameter λ, which gives the minimum partial 

likelihood deviance. Finally, a set of OS-GCAS events 

and their nonzero coefficients were identified, which 

was used to build the AS prognostic signature. The 

time-dependent receiver operator characteristic (ROC) 

curve and concordance index (C-index) were applied to 

assess the performance of the prognosis model. 

 

The risk score for the AS signature was calculated for 

each sample via a linear combination of the selected 

features, weighted by the corresponding coefficients. 

Patients were divided into high- and low-risk groups 

using the cohort-specific median risk score as the cut-

off for each dataset. Kaplan-Meier survival analysis was 

performed to compare patient prognosis between the 

high- and low-risk groups. Furthermore, the restricted 

mean survival (RMS) time was also used to compare 

the prognostic differences between the two groups [51]. 

The higher the RMS value was, the greater the 

prognostic difference. A P-value < 0.05 was considered 

statistically significant. 

 

Association between different risk groups and 

clinical, molecular, and immune features 

 

Patients in the entire TCGA cohort were divided into 

high-risk and low-risk groups according to the optimal 

cut-off value, which was determined by the maximally 

selected rank statistics test. For the difference 

between the two groups, clinical features (age, sex, 

TNM stage, neoplasm grade, and survival status), 

molecular features (microsatellite status and 

molecular subtype), and immune features (immune 

score, stromal score, tumor purity, and immune cell 

infiltration) were analyzed. 

 
Tumor purity was measured by “ABSOLUTE” [52]; 

immune and stromal scores were calculated by 

“ESTIMATE” [53]; and immune cell infiltration was 

estimated with “MCPcounter” [54]. Kaplan-Meier 

curve with log-rank test was used for survival data; 

Mann-Whitney test was used for continuous data; chi-

square test was used for categorical data. A P-value < 

0.05 was considered statistically significant. In 

addition, to further explore the difference in 

biological functions and pathways between high-risk 

and low-risk groups, gene set enrichment analysis 

(GSEA) was performed using the “hallmark gene 

sets” downloaded from MSigDB [47, 55]. A BH-

adjusted P-value < 0.05 was considered statistically 

significant. 
 

Development and verification of an AS-clinical 

nomogram 
 

Based on the results derived from multivariate 

analyses, we integrated age, TNM stage, and AS 

prognostic signature to generate an AS-clinical 

prognostic model by applying Cox proportional 

hazard regression in the training dataset. The AS-

clinical prognostic model was then applied to the 

validation dataset for further validation. Next, the 

prognostic value of the AS-clinical model was 

compared with that of the AS signature in terms of C-

index, and the results were revealed by the RMS 

curve [18]. RMS represents the life expectancy at five 

years for patients with different risk scores. Finally, 

based on the AS-clinical prognostic model, a 

nomogram was developed to estimate the individual 

survival probability of patients. The ROC and 

calibration curves were used to assess the 

discrimination and calibration ability of the AS-

clinical nomogram. 
 

AUTHOR CONTRIBUTIONS 
 

Conception and design: Yingwei Xue and Shenghan 

Lou. Data acquisition and assembly: Shenghan Lou and 

Jian Zhang. Data analyses and interpretation: Shenghan 

Lou, Jian Zhang, Zhao Zhai, Xin Yin, Yimin Wang and 

Tianyi Fang. Financial support: Yingwei Xue. All 

authors contributed to the manuscript. All authors read 

and approved the final manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 
 

FUNDING 
 

This work was supported by funding from Project No. 
10 of Harbin Medical University Cancer Hospital 

(Grant Number 102017–03) and the fundamental 

research funds for the provincial universities. 



 

www.aging-us.com 5837 AGING 

REFERENCES 
 
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 

Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 

 https://doi.org/10.3322/caac.21492 PMID:30207593 

2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, 
Jemal A. Global cancer statistics, 2012. CA Cancer J 
Clin. 2015; 65:87–108. 

 https://doi.org/10.3322/caac.21262 PMID:25651787 

3. Gomceli I, Demiriz B, Tez M. Gastric carcinogenesis. 
World J Gastroenterol. 2012; 18:5164–70. 

 https://doi.org/10.3748/wjg.v18.i37.5164 
PMID:23066309 

4. Siegel R, Naishadham D, Jemal A. Cancer statistics, 
2013. CA Cancer J Clin. 2013; 63:11–30. 

 https://doi.org/10.3322/caac.21166 PMID:23335087 

5. Van Cutsem E, Sagaert X, Topal B, Haustermans K, 
Prenen H. Gastric cancer. Lancet. 2016; 388:2654–64. 

 https://doi.org/10.1016/S0140-6736(16)30354-3 
PMID:27156933 

6. Dikken JL, van de Velde CJ, Coit DG, Shah MA, Verheij 
M, Cats A. Treatment of resectable gastric cancer. 
Therap Adv Gastroenterol. 2012; 5:49–69. 

 https://doi.org/10.1177/1756283X11410771 
PMID:22282708 

7. Shi H, Jiang Y, Cao H, Zhu H, Chen B, Ji W. Nomogram 
based on systemic immune-inflammation index to 
predict overall survival in gastric cancer patients. Dis 
Markers. 2018; 2018:1787424. 

 https://doi.org/10.1155/2018/1787424 
PMID:30627220 

8. Hu L, Li HL, Li WF, Chen JM, Yang JT, Gu JJ, Xin L. 
Clinical significance of expression of proliferating cell 
nuclear antigen and E-cadherin in gastric carcinoma. 
World J Gastroenterol. 2017; 23:3721–29. 

 https://doi.org/10.3748/wjg.v23.i20.3721 
PMID:28611525 

9. Zhu X, Tian X, Yu C, Shen C, Yan T, Hong J, Wang Z, Fang 
JY, Chen H. A long non-coding RNA signature to 
improve prognosis prediction of gastric cancer. Mol 
Cancer. 2016; 15:60. 

 https://doi.org/10.1186/s12943-016-0544-0 
PMID:27647437 

10. Feng H, Qin Z, Zhang X. Opportunities and methods for 
studying alternative splicing in cancer with RNA-Seq. 
Cancer Lett. 2013; 340:179–91. 

 https://doi.org/10.1016/j.canlet.2012.11.010 
PMID:23196057 

11. Matera AG, Wang Z. A day in the life of the 
spliceosome. Nat Rev Mol Cell Biol. 2014; 15:108–21. 

 https://doi.org/10.1038/nrm3742  
PMID:24452469 

12. Lee SC, Abdel-Wahab O. Therapeutic targeting of 
splicing in cancer. Nat Med. 2016; 22:976–86. 

 https://doi.org/10.1038/nm.4165  
PMID:27603132 

13. Blencowe BJ. The relationship between alternative 
splicing and proteomic complexity. Trends Biochem 
Sci. 2017; 42:407–08. 

 https://doi.org/10.1016/j.tibs.2017.04.001 
PMID:28483376 

14. Oltean S, Bates DO. Hallmarks of alternative splicing in 
cancer. Oncogene. 2014; 33:5311–18. 

 https://doi.org/10.1038/onc.2013.533 PMID:24336324 

15. Climente-González H, Porta-Pardo E, Godzik A, Eyras E. 
The functional impact of alternative splicing in cancer. 
Cell Rep. 2017; 20:2215–26. 

 https://doi.org/10.1016/j.celrep.2017.08.012 
PMID:28854369 

16. Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in 
cancers: from aberrant regulation to new therapeutics. 
Semin Cell Dev Biol. 2018; 75:13–22. 

 https://doi.org/10.1016/j.semcdb.2017.09.018 
PMID:28919308 

17. Martinez-Montiel N, Rosas-Murrieta NH, Anaya Ruiz 
M, Monjaraz-Guzman E, Martinez-Contreras R. 
Alternative splicing as a target for cancer treatment. 
Int J Mol Sci. 2018; 19:545. 

 https://doi.org/10.3390/ijms19020545 
PMID:29439487 

18. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans 
M, Harrow J, Vazquez J, Valencia A, Tress ML. Multiple 
evidence strands suggest that there may be as few as 
19,000 human protein-coding genes. Hum Mol Genet. 
2014; 23:5866–78. 

 https://doi.org/10.1093/hmg/ddu309 PMID:24939910 

19. Neverov AD, Artamonova II, Nurtdinov RN, Frishman D, 
Gelfand MS, Mironov AA. Alternative splicing and 
protein function. BMC Bioinformatics. 2005; 6:266. 

 https://doi.org/10.1186/1471-2105-6-266 
PMID:16274476 

20. Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim 
RI. Aberrant RNA splicing in cancer; expression changes 
and driver mutations of splicing factor genes. 
Oncogene. 2016; 35:2413–27. 

 https://doi.org/10.1038/onc.2015.318 PMID:26300000 

21. Brosseau JP, Lucier JF, Nwilati H, Thibault P, Garneau D, 
Gendron D, Durand M, Couture S, Lapointe E, Prinos P, 
Klinck R, Perreault JP, Chabot B, Abou-Elela S. Tumor 

https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.3322/caac.21262
https://pubmed.ncbi.nlm.nih.gov/25651787
https://doi.org/10.3748/wjg.v18.i37.5164
https://pubmed.ncbi.nlm.nih.gov/23066309
https://doi.org/10.3322/caac.21166
https://pubmed.ncbi.nlm.nih.gov/23335087
https://doi.org/10.1016/S0140-6736(16)30354-3
https://pubmed.ncbi.nlm.nih.gov/27156933
https://doi.org/10.1177/1756283X11410771
https://pubmed.ncbi.nlm.nih.gov/22282708
https://doi.org/10.1155/2018/1787424
https://pubmed.ncbi.nlm.nih.gov/30627220
https://doi.org/10.3748/wjg.v23.i20.3721
https://pubmed.ncbi.nlm.nih.gov/28611525
https://doi.org/10.1186/s12943-016-0544-0
https://pubmed.ncbi.nlm.nih.gov/27647437
https://doi.org/10.1016/j.canlet.2012.11.010
https://pubmed.ncbi.nlm.nih.gov/23196057
https://doi.org/10.1038/nrm3742
https://pubmed.ncbi.nlm.nih.gov/24452469
https://doi.org/10.1038/nm.4165
https://pubmed.ncbi.nlm.nih.gov/27603132
https://doi.org/10.1016/j.tibs.2017.04.001
https://pubmed.ncbi.nlm.nih.gov/28483376
https://doi.org/10.1038/onc.2013.533
https://pubmed.ncbi.nlm.nih.gov/24336324
https://doi.org/10.1016/j.celrep.2017.08.012
https://pubmed.ncbi.nlm.nih.gov/28854369
https://doi.org/10.1016/j.semcdb.2017.09.018
https://pubmed.ncbi.nlm.nih.gov/28919308
https://doi.org/10.3390/ijms19020545
https://pubmed.ncbi.nlm.nih.gov/29439487
https://doi.org/10.1093/hmg/ddu309
https://pubmed.ncbi.nlm.nih.gov/24939910
https://doi.org/10.1186/1471-2105-6-266
https://pubmed.ncbi.nlm.nih.gov/16274476
https://doi.org/10.1038/onc.2015.318
https://pubmed.ncbi.nlm.nih.gov/26300000


 

www.aging-us.com 5838 AGING 

microenvironment-associated modifications of 
alternative splicing. RNA. 2014; 20:189–201. 

 https://doi.org/10.1261/rna.042168.113 
PMID:24335142 

22. Li Y, Yuan Y. Alternative RNA splicing and gastric 
cancer. Mutat Res. 2017; 773:263–73. 

 https://doi.org/10.1016/j.mrrev.2016.07.011 
PMID:28927534 

23. Chen XY, Wang ZC, Li H, Cheng XX, Sun Y, Wang XW, 
Wu ML, Liu J. Nuclear translocations of beta-catenin 
and TCF4 in gastric cancers correlate with lymph node 
metastasis but probably not with CD44 expression. 
Hum Pathol. 2005; 36:1294–301. 

 https://doi.org/10.1016/j.humpath.2005.09.003 
PMID:16311123 

24. Kobayashi K, Shida A, Yamada H, Ishibashi Y, Nakayama 
R, Toriumi Y, Mitsumori N, Kashiwagi H, Yanaga K. 
Frequent splicing aberration of the base excision repair 
gene hMYH in human gastric cancer. Anticancer Res. 
2008; 28:215–21. 

 PMID:18383848 

25. Zhang Y, Yuan Z, Jiang Y, Shen R, Gu M, Xu W, Gu X. 
Inhibition of splicing factor 3b subunit 1 (SF3B1) 
reduced cell proliferation, induced apoptosis and 
resulted in cell cycle arrest by regulating homeobox 
A10 (HOXA10) splicing in AGS and MKN28 human 
gastric cancer cells. Med Sci Monit. 2020; 26:e919460. 

 https://doi.org/10.12659/MSM.919460 
PMID:31927557 

26. Li J, Feng D, Gao C, Zhang Y, Xu J, Wu M, Zhan X. 
Isoforms S and L of MRPL33 from alternative splicing 
have isoform-specific roles in the chemoresponse to 
epirubicin in gastric cancer cells via the PI3K/AKT 
signaling pathway. Int J Oncol. 2019; 54:1591–600. 

 https://doi.org/10.3892/ijo.2019.4728 PMID:30816492 

27. Peng WZ, Liu JX, Li CF, Ma R, Jie JZ. hnRNPK promotes 
gastric tumorigenesis through regulating CD44E 
alternative splicing. Cancer Cell Int. 2019; 19:335. 

 https://doi.org/10.1186/s12935-019-1020-x 
PMID:31857793 

28. Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, Liu RQ, 
Huang XD, Lv JW, Chen FP, He XJ, Guan JL, Kou J, et al. 
Comprehensive characterization of the alternative 
splicing landscape in head and neck squamous cell 
carcinoma reveals novel events associated with 
tumorigenesis and the immune microenvironment. 
Theranostics. 2019; 9:7648–65. 

 https://doi.org/10.7150/thno.36585 PMID:31695792 

29. Xiong Y, Deng Y, Wang K, Zhou H, Zheng X, Si L, Fu Z. 
Profiles of alternative splicing in colorectal cancer and 
their clinical significance: a study based on large-scale 
sequencing data. EBioMedicine. 2018; 36:183–95. 

 https://doi.org/10.1016/j.ebiom.2018.09.021 
PMID:30243491 

30. Zhang Y, Yan L, Zeng J, Zhou H, Liu H, Yu G, Yao W, 
Chen K, Ye Z, Xu H. Pan-cancer analysis of clinical 
relevance of alternative splicing events in 31 human 
cancers. Oncogene. 2019; 38:6678–95. 

 https://doi.org/10.1038/s41388-019-0910-7 
PMID:31391553 

31. Taliaferro JM, Vidaki M, Oliveira R, Olson S, Zhan L, 
Saxena T, Wang ET, Graveley BR, Gertler FB, 
Swanson MS, Burge CB. Distal alternative last exons 
localize mRNAs to neural projections. Mol Cell. 
2016; 61:821–33. 

 https://doi.org/10.1016/j.molcel.2016.01.020 
PMID:26907613 

32. Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic 
regulation of alternative splicing. Am J Cancer Res. 
2018; 8:2346–58. 

 PMID:30662796 

33. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, Han S, 
Jiang T, Wu A. Tumor purity as an underlying key factor 
in glioma. Clin Cancer Res. 2017; 23:6279–91. 

 https://doi.org/10.1158/1078-0432.CCR-16-2598 
PMID:28754819 

34. Mao Y, Feng Q, Zheng P, Yang L, Liu T, Xu Y, Zhu D, 
Chang W, Ji M, Ren L, Wei Y, He G, Xu J. Low tumor 
purity is associated with poor prognosis, heavy 
mutation burden, and intense immune phenotype in 
colon cancer. Cancer Manag Res. 2018; 10:3569–77. 

 https://doi.org/10.2147/CMAR.S171855 
PMID:30271205 

35. Rhee JK, Jung YC, Kim KR, Yoo J, Kim J, Lee YJ, Ko YH, 
Lee HH, Cho BC, Kim TM. Impact of tumor purity on 
immune gene expression and clustering analyses 
across multiple cancer types. Cancer Immunol Res. 
2018; 6:87–97. 

 https://doi.org/10.1158/2326-6066.CIR-17-0201 
PMID:29141981 

36. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer 
immunotherapy: from T cell basic science to clinical 
practice. Nat Rev Immunol. 2020; 20:651–68. 

 https://doi.org/10.1038/s41577-020-0306-5 
PMID:32433532 

37. Ryan M, Wong WC, Brown R, Akbani R, Su X, Broom B, 
Melott J, Weinstein J. TCGASpliceSeq a compendium of 
alternative mRNA splicing in cancer. Nucleic Acids Res. 
2016; 44:D1018–22. 

 https://doi.org/10.1093/nar/gkv1288 PMID:26602693 

38. Li R, Qu H, Wang S, Wei J, Zhang L, Ma R, Lu J, Zhu J, 
Zhong WD, Jia Z. GDCRNATools: an R/Bioconductor 
package for integrative analysis of lncRNA, miRNA and 
mRNA data in GDC. Bioinformatics. 2018; 34:2515–17. 

https://doi.org/10.1261/rna.042168.113
https://pubmed.ncbi.nlm.nih.gov/24335142
https://doi.org/10.1016/j.mrrev.2016.07.011
https://pubmed.ncbi.nlm.nih.gov/28927534
https://doi.org/10.1016/j.humpath.2005.09.003
https://pubmed.ncbi.nlm.nih.gov/16311123
https://pubmed.ncbi.nlm.nih.gov/18383848
https://doi.org/10.12659/MSM.919460
https://pubmed.ncbi.nlm.nih.gov/31927557
https://doi.org/10.3892/ijo.2019.4728
https://pubmed.ncbi.nlm.nih.gov/30816492
https://doi.org/10.1186/s12935-019-1020-x
https://pubmed.ncbi.nlm.nih.gov/31857793
https://doi.org/10.7150/thno.36585
https://pubmed.ncbi.nlm.nih.gov/31695792
https://doi.org/10.1016/j.ebiom.2018.09.021
https://pubmed.ncbi.nlm.nih.gov/30243491
https://doi.org/10.1038/s41388-019-0910-7
https://pubmed.ncbi.nlm.nih.gov/31391553
https://doi.org/10.1016/j.molcel.2016.01.020
https://pubmed.ncbi.nlm.nih.gov/26907613
https://pubmed.ncbi.nlm.nih.gov/30662796
https://doi.org/10.1158/1078-0432.CCR-16-2598
https://pubmed.ncbi.nlm.nih.gov/28754819
https://doi.org/10.2147/CMAR.S171855
https://pubmed.ncbi.nlm.nih.gov/30271205
https://doi.org/10.1158/2326-6066.CIR-17-0201
https://pubmed.ncbi.nlm.nih.gov/29141981
https://doi.org/10.1038/s41577-020-0306-5
https://pubmed.ncbi.nlm.nih.gov/32433532
https://doi.org/10.1093/nar/gkv1288
https://pubmed.ncbi.nlm.nih.gov/26602693


 

www.aging-us.com 5839 AGING 

 https://doi.org/10.1093/bioinformatics/bty124 
PMID:29509844 

39. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, 
Mayr C, Kingsmore SF, Schroth GP, Burge CB. 
Alternative isoform regulation in human tissue 
transcriptomes. Nature. 2008; 456:470–76. 

 https://doi.org/10.1038/nature07509  
PMID:18978772 

40. Beretta L, Santaniello A. Nearest neighbor imputation 
algorithms: a critical evaluation. BMC Med Inform 
Decis Mak. 2016 (Suppl 3); 16:74. 

 https://doi.org/10.1186/s12911-016-0318-z 
PMID:27454392 

41. Sebestyén E, Singh B, Miñana B, Pagès A, Mateo F, 
Pujana MA, Valcárcel J, Eyras E. Large-scale analysis of 
genome and transcriptome alterations in multiple 
tumors unveils novel cancer-relevant splicing 
networks. Genome Res. 2016; 26:732–44. 

 https://doi.org/10.1101/gr.199935.115 
PMID:27197215 

42. Bindea G, Mlecnik B, Hackl H, Charoentong P, 
Tosolini M, Kirilovsky A, Fridman WH, Pagès F, 
Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to 
decipher functionally grouped gene ontology and 
pathway annotation networks. Bioinformatics. 2009; 
25:1091–93. 

 https://doi.org/10.1093/bioinformatics/btp101 
PMID:19237447 

43. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, 
Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, 
Bork P, Jensen LJ, Mering CV. STRING v11: protein-
protein association networks with increased coverage, 
supporting functional discovery in genome-wide 
experimental datasets. Nucleic Acids Res. 2019; 
47:D607–13. 

 https://doi.org/10.1093/nar/gky1131 PMID:30476243 

44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, Amin N, Schwikowski B, Ideker T. 
Cytoscape: a software environment for integrated 
models of biomolecular interaction networks. Genome 
Res. 2003; 13:2498–504. 

 https://doi.org/10.1101/gr.1239303  
PMID:14597658 

45. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 
cytoHubba: identifying hub objects and sub-networks 
from complex interactome. BMC Syst Biol. 2014 (Suppl 
4); 8:S11. 

 https://doi.org/10.1186/1752-0509-8-S4-S11 
PMID:25521941 

46. Bader GD, Hogue CW. An automated method for 
finding molecular complexes in large protein 
interaction networks. BMC Bioinformatics. 2003; 4:2. 

 https://doi.org/10.1186/1471-2105-4-2 
PMID:12525261 

47. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, 
Mesirov JP, Tamayo P. The molecular signatures 
database (MSigDB) hallmark gene set collection. Cell 
Syst. 2015; 1:417–25. 

 https://doi.org/10.1016/j.cels.2015.12.004 
PMID:26771021 

48. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a 
Bioconductor package for differential expression 
analysis of digital gene expression data. Bioinformatics. 
2010; 26:139–40. 

 https://doi.org/10.1093/bioinformatics/btp616 
PMID:19910308 

49. Law CW, Chen Y, Shi W, Smyth GK. Voom: precision 
weights unlock linear model analysis tools for RNA-seq 
read counts. Genome Biol. 2014; 15:R29. 

 https://doi.org/10.1186/gb-2014-15-2-r29 
PMID:24485249 

50. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. Limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 

 https://doi.org/10.1093/nar/gkv007 PMID:25605792 

51. Uno H, Claggett B, Tian L, Inoue E, Gallo P, Miyata T, 
Schrag D, Takeuchi M, Uyama Y, Zhao L, Skali H, 
Solomon S, Jacobus S, et al. Moving beyond the hazard 
ratio in quantifying the between-group difference in 
survival analysis. J Clin Oncol. 2014; 32:2380–85. 

 https://doi.org/10.1200/JCO.2014.55.2208 
PMID:24982461 

52. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, 
Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, 
Beroukhim R, Pellman D, Levine DA, et al. Absolute 
quantification of somatic DNA alterations in human 
cancer. Nat Biotechnol. 2012; 30:413–21. 

 https://doi.org/10.1038/nbt.2203 PMID:22544022 

53. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, 
Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, 
Levine DA, Carter SL, Getz G, Stemke-Hale K, et al. 
Inferring tumour purity and stromal and immune cell 
admixture from expression data. Nat Commun. 2013; 
4:2612. 

 https://doi.org/10.1038/ncomms3612 PMID:24113773 

54. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, 
Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman C, 
Fridman WH, de Reyniès A. Estimating the population 
abundance of tissue-infiltrating immune and stromal 
cell populations using gene expression. Genome Biol. 
2016; 17:218. 

 https://doi.org/10.1186/s13059-016-1070-5 
PMID:27765066 

https://doi.org/10.1093/bioinformatics/bty124
https://pubmed.ncbi.nlm.nih.gov/29509844
https://doi.org/10.1038/nature07509
https://pubmed.ncbi.nlm.nih.gov/18978772
https://doi.org/10.1186/s12911-016-0318-z
https://pubmed.ncbi.nlm.nih.gov/27454392
https://doi.org/10.1101/gr.199935.115
https://pubmed.ncbi.nlm.nih.gov/27197215
https://doi.org/10.1093/bioinformatics/btp101
https://pubmed.ncbi.nlm.nih.gov/19237447
https://doi.org/10.1093/nar/gky1131
https://pubmed.ncbi.nlm.nih.gov/30476243
https://doi.org/10.1101/gr.1239303
https://pubmed.ncbi.nlm.nih.gov/14597658
https://doi.org/10.1186/1752-0509-8-S4-S11
https://pubmed.ncbi.nlm.nih.gov/25521941
https://doi.org/10.1186/1471-2105-4-2
https://pubmed.ncbi.nlm.nih.gov/12525261
https://doi.org/10.1016/j.cels.2015.12.004
https://pubmed.ncbi.nlm.nih.gov/26771021
https://doi.org/10.1093/bioinformatics/btp616
https://pubmed.ncbi.nlm.nih.gov/19910308
https://doi.org/10.1186/gb-2014-15-2-r29
https://pubmed.ncbi.nlm.nih.gov/24485249
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1200/JCO.2014.55.2208
https://pubmed.ncbi.nlm.nih.gov/24982461
https://doi.org/10.1038/nbt.2203
https://pubmed.ncbi.nlm.nih.gov/22544022
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1186/s13059-016-1070-5
https://pubmed.ncbi.nlm.nih.gov/27765066


 

www.aging-us.com 5840 AGING 

55. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for interpreting  

genome-wide expression profiles. Proc Natl Acad Sci 
USA. 2005; 102:15545–50. 

 https://doi.org/10.1073/pnas.0506580102 
PMID:16199517 

 

  

https://doi.org/10.1073/pnas.0506580102
https://pubmed.ncbi.nlm.nih.gov/16199517


 

www.aging-us.com 5841 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Overview of AS event profiling in the TCGA cohort. (A) The numbers of AS events and corresponding 

genes are depicted according to the seven AS types. (B) UpSet plot for the intersection of the seven types of detected AS events. (C) UpSet 
plot for the intersection of the seven types of GCAS events. (D) The numbers of GCAS events and OS-GCAS events are depicted according to 
the seven AS types. (E) UpSet plot for the intersection of the seven types of OS-GCAS events. 



 

www.aging-us.com 5842 AGING 

 
 

Supplementary Figure 2. PPI analysis of the 173 OS-GCAS events. (A) The PPI network for the interactome of 130 parental genes for 

173 OS-GCAS events. (B–D) Three individual modules from the whole PPI network. 
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Supplementary Figure 3. Estimation of the prognostic value of the 23-AS event signature in diverse subgroups classified by 
different clinical characteristics. The dataset was classified into diverse subgroups according to age (< 60 years or ≥ 60 years), sex (female 
or male), and TNM stage (I + II or III + IV). (A–F) shows the validation dataset. (G–L) shows the training dataset. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. Identification of GCAS events. 

 

Supplementary Table 2. Identification of OS-GCAS events. 

 

Supplementary Table 3. Functional enrichment analysis of the parent genes of OS-GCAS events. 


