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INTRODUCTION 
 

Lung cancer serves as the most prevailing malignancy and 

is the principal cause of cancer-associated mortality 

globally, according to the latest annual statistics report of 

global cancer [1]. Non-small cell lung cancer (NSCLC) 

makes up about 83% of primary lung cancer [2]. 

Although the surgical and chemotherapeutic interventions 

have been advanced, the 5-year survival rate of NSCLC 

patients remains unsatisfactory, and the recurrence 

incidence of NSCLC patients is high due to drug 

resistance or tumor metastasis [3]. Understanding the 

mechanism underlying NSCLC development is critical for 

the diagnosis, therapy, and prognosis for NSCLC [4]. 

However, the advancement in this research field is still 

limited. 

 

Long non-coding RNAs (lncRNAs) as the emerging 

essential biological modulator, play crucial roles in 

many physiological and pathological processes such as 

cell cycle, differentiation, apoptosis, cardiovascular 

diseases, and cancer progression [5, 6]. Many 

lncRNAs are involved in the modulation of NSCLC 

progression. For example, lncRNA-HIT increases 

NSCLC cell proliferation by affecting the expression 

of E2F1 [7]. LncRNA MALAT1 promotes the 

progression of NSCLC by regulating miR-200a-

3p/programmed death-ligand-1 signaling [8]. The role 
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ABSTRACT 
 

Non-small cell lung cancer (NSCLC) is the most common tumor affecting modern people and is associated with severe 
morbidity and high mortality. Exosomal long non-coding RNAs as crucial regulators are involved in cancer progression. 
However, the role of exosomal lncRNA LINC00662 in the development of NSCLC remains unclear. Here, we aimed  
to explore the impact of exosomal lncRNA LINC00662 on the NSCLC progression and the underlying mechanism. 
Significantly, we revealed that the expression of lncRNA LINC00662 was elevated in the plasma exosome of NSCLC 
patients. Exosomal LINC00662 promoted proliferation, invasion, and migration, and inhibited apoptosis and cell  
cycle arrest of NSCLC cells. Mechanically, LINC00662 was able to serve as a miR-320d sponge in NSCLC cells. MiR-320d 
could target E2F1 in NSCLC cells. Exosomal LINC00662 contributed to the progression of NSCLC by miR-320d/E2F1 axis  
in vitro. Remarkably, exosomal LINC00662 enhanced the tumor growth of NSCLC in vivo. Thus, we conclude  
that exosomal lncRNA LINC00662 promotes NSCLC progression by modulating miR-320d/E2F1 axis. Our finding 
provides new insights into the mechanism by which exosomal lncRNA LINC00662 contributes to the development of 
NSCLC. LncRNA LINC00662, miR-320d, and E2F1 may serve as potential targets for NSCLC therapy. 
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of lncRNA LINC00662 in cancer development has 

been widely investigated [9]. It has been reported that 

lncRNA LINC00662 is involved in the modulation of 

lung cancer stem cells [10]. However, the effect of 

lncRNA LINC00662 on NSCLC progression is still 

unreported. Moreover, the nano-sized particles called 

exosome serves as transport vesicles of biological 

loads, such as miRNAs, mRNAs, proteins, and 

lncRNA, leading to the phenotypic impact on the 

receiver cells [11]. Circulating exosomes, loaded with 

regulative lncRNAs, display a critical function in long-

distance cell communication, participating in cancer 

development [12]. It has been identified that the 

particular lncRNAs can be packaged into exosomes 

and are closely associated with the cancer patho-

genesis and the clinical outcomes, which are highly 

correlated with the clinicopathological characteristics 

of cancer and thus may function as meaningful 

biomarkers [13]. Nevertheless, whether the lncRNA 

LINC00662 is packed in exosome and the role of 

exosomal lncRNA LINC00662 in the modulation of 

NSCLC remains elusive. 

 

MicroRNAs (miRNAs) are described as short non-

coding RNAs with a length of approximately 20-25 

nucleotides and are involved in the modulation of 

numerous biological processes [14]. MiRNAs are able 

to control gene expression in the post-transcriptional 

levels by pairing with target mRNAs at the 3′ 

untranslated region (3′ UTR [14]. MiRNAs modulate 

different targets that hold essential functions in a broad 

spectrum of biological and medical processes, 

including cell apoptosis, proliferation, differentiation, 

invasion, metastasis, and tumorigenesis [15]. A 

substantial number of investigations have revealed that 

miRNAs are involved in the progression of NSCLC 

[16, 17]. Meanwhile, previous investigations identified 

that miR-320d played crucial roles in modulating 

tumorigenesis by interacting with the targeted genes 

[18]. In addition, the E2F transcription factor 1 (E2F1) 

serves as an essential transcription factor that is 

involved in diverse critical biological processes [19]. 

The abnormal elevation of E2F1 is observed in 

different types of human cancers and is associated with 

poor survival prognosis and malignant progress [20, 

21]. E2F1 is involved in the modulation of NSCLC 

[22]. However, the correlation of miR-320d and E2F1 

with lncRNA LINC00662 in the modulation of 

NSCLC is still unclear. 

 

In this study, we aimed to explore the role and  

the underlying mechanism of exosomal lncRNA 

LINC00662 in the development of NSCLC. We 
identified a novel function of exosomal lncRNA 

LINC00662 in promoting NSCLC progression by 

regulating miR-320d/E2F1 axis. 

RESULTS 
 

The expression of lncRNA LINC00662 is elevated in 

the plasma exosome of NSCLC patients 
 

To assess the potential correlation of exosomal lncRNA 

LINC00662 with the NSCLC progression, we analyzed 

their expression in the plasma exosome of NSCLC 

patients. Significantly, the expression levels of 

LINC00662 were elevated in the plasma exosome from 

NSCLC patients (n=50) compared to those from normal 

cases (n=50) (Figure 1A). Besides, the expression levels of 

LINC00662 were up-regulated in the NSCLC patient 

tissues (n=50) compared to the adjacent normal tissues 

(n=50) (Figure 1B), implying that LINC00662 may be 

associated with the clinical development of NSCLC. 

Moreover, the transmission electron microscopy (TEM) 

showed that exosomes from the NSCLC patients presented 

the same sizes as those from the normal cases (Figure 1C). 

Western blot analysis revealed the existence of the 

exosome markers, including TSG101 and CD63, in the 

exosome of NSCLC patients and normal cases (Figure 1D). 
 

Exosomal LINC00662 promotes proliferation and 

inhibits apoptosis of NSCLC cells 
 

Then, we further explored the effect of exosomal lncRNA 

LINC00662 on the progression of NSCLC in vitro. The 

exosomes were isolated from the culture medium of 

HCC827 and A549 cells and the characteristics were 

identified by TEM (Figure 2A). In addition, the expression 

of the exosome markers, including CD9 and CD63 was 

enriched in the exosomes (Figure 2B). Then, the 

expression of LINC00662 was measured in culture 

medium treated with RNase A or co-treated with RNase A 

and Triton X-100. Our data showed that the expression of 

LINC00662 was unacted on the treatment of RNase A 

while remarkably reduced upon the simultaneous co-

treatment of RNase A and Triton X-100, indicating that 

extracellular LINC00662 was packaged in the membranes 

(Figure 2C). To evaluate the effect of LINC00662 on the 

progression of NSCLC in vitro, the HCC827 and A549 

cells were infected with the lentiviral plasmids carrying 

LINC00662 shRNA (shLINC00662) or corresponding 

control shRNA (shNC), or transfected with the 

LINC00662 overexpression vector or the corresponding 

control vector, and the exosomes were extracted and 

further treated the cells. The efficiency of the LINC00662 

depletion and the LINC00662 overexpression was 

validated in the cells (Figure 2D). MTT assays revealed 

that the overexpression of LINC00662 enhanced while the 

depletion of LINC00662 reduced the cell viability of the 

HCC827 and A549 cells (Figure 2E, 2F). Similarly, the 

LINC00662 overexpression increased the colony 

formation and the LINC00662 knockdown decreased this 

phenotype in the cells (Figure 2G, 2H). Moreover, cell 
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apoptosis was inhibited by the overexpression of 

LINC00662 while promoted by the depletion of 

LINC00662 in the cells (Figure 2I, 2J). Together these data 

suggest that exosomal LINC00662 promotes proliferation 

and inhibits apoptosis of NSCLC cells. 

 

Exosomal LINC00662 promotes invasion and 

migration, and inhibits cell cycle arrest of NSCLC cells 

 

Then, we investigated the role of exosomal lncRNA 

LINC00662 in modulating the migration and invasion of 

NSCLC cells. Transwell assays revealed that the migration 

and invasion of HCC827 and A549 cells were significantly 

enhanced by the overexpression of exosomal lncRNA 

LINC00662 while were reduced by the depletion of 

exosomal lncRNA LINC00662 (Figure 3A, 3B). Similarly, 

the LINC00662 overexpression remarkably decreased the 

wound healing proportion, and the LINC00662 knock-

down presented the reverse results in the cells (Figure 3C–

3F), suggesting that exosomal lncRNA LINC00662 

contributes to the migration and invasion of NSCLC cells 

in vitro. Moreover, the G0/G1 phase cells were reduced 

while the S phase cells were enhanced by the 

overexpression of LINC00662 in the cells, but the 

depletion of exosomal lncRNA LINC00662 showed a  

reversed effect (Figure 3G–3J), suggesting that exosomal 

lncRNA LINC00662 was able to inhibit cell cycle arrest at 

the G0/G1 phase in the NSCLC cells. 

 

LINC00662 serves as a miR-320d sponge in NSCLC 

cells 

 

Next, we tried to explore the mechanism of exosomal 

lncRNA LINC00662-mediated NSCLC progression. We 

identified the potential interaction between lncRNA 

LINC00662 and miR-320d in the bioinformatic  

analysis by using ENCORI (http://starbase.sysu.edu.cn/ 

index.php) (Figure 4A). Then, we treated the HCC827 and 

A549 cells with miR-320d mimic or the corresponding 

control mimic, and the efficiency was verified in the cells 

(Figure 4B). The miR-320d mimic remarkably reduced the 

luciferase activities of LINC00662 but failed to affect the 

LINC00662 with the miR-320d-binding site mutant in the 

cells (Figure 4C, 4D). The efficiency of the LINC00662 

depletion and the LINC00662 overexpression was 

validated in the cells (Figure 4E). The LINC00662 

overexpression reduced while the LINC00662 depletion 

enhanced the expression of miR-320d in the cells (Figure 

4F). Together these suggest that LINC00662 serves as a 

miR-320d sponge in NSCLC cells. 

 

 

Figure 1. The expression of lncRNA LINC00662 is elevated in the plasma exosome of NSCLC patients. (A) The expression levels of 

lncRNA LINC00662 were measured by qPCR in the plasma exosome from NSCLC patients (n=50). (B) The expression levels of lncRNA 
LINC00662 were measured by qPCR in the NSCLC patient tissues (n=50) and the adjacent normal tissues (n=50). (C) The characteristics of 
exosomes were analyzed by the transmission electron microscopy (TEM) in the NSCLC patients. (D) The expression of TSG101, CD63, and 
Grp94 was tested by Western blot analysis in the exosome from NSCLC patients. 

http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
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Figure 2. Exosomal LINC00662 promotes proliferation and inhibits apoptosis of NSCLC cells. (A) The characteristics of exosomes 
were analyzed by the transmission electron microscopy (TEM) in the HCC827 and A549 cells. (B) The expression of CD9 and CD63 was 
measured by the Western blot analysis in the exosome of the HCC827 and A549 cells. (C) The expression of LINC00662 was tested by qPCR in 
the HCC827 and A549 cells treated with RNase A (1 μg/mL) or co-treated with RNase A (1 μg/mL) and Triton X100 (0.1%). (D–J) The HCC827 
and A549 cells were infected with the lentiviral plasmids carrying LINC00662 shRNA (shLINC00662) or corresponding control shRNA (shNC), 
or transfected with the LINC00662 overexpression vector or the corresponding control vector, and the exosomes were extracted and further 
treated the cells. (D) The efficiency of the LINC00662 depletion and the LINC00662 overexpression was validated by qPCR assays in the cells. 
(E, F) The cell viability was analyzed by the MTT assays in the cells. (G, H) The cell proliferation was measured by the colony formation assays 
in the cells. (I, J) The cell apoptosis was measure by flow cytometry analysis in the cells. Data are presented as mean ± SD. Statistic significant 
differences were indicated: * P < 0.05, ** P < 0.01. 



 

www.aging-us.com 6014 AGING 

MiR-320d targets E2F1 in NSCLC cells 

 

Then, we identified the miR-320d-targeted site in E2F1 
3’ UTR in a bioinformatic analysis by using Targetscan 

(http://www.targetscan.org/vert_72/) (Figure 5A). To 

determine the impact of miR-320d on E2F1, the HCC827 

and A549 cells were treated with miR-320d mimic, and 

the efficiency was validated in the cells (Figure 5B). 

Notably, the miR-320d mimic treatment inhibited the 

luciferase activities of wild type E2F1but failed to affect 

 

 
 

Figure 3. Exosomal LINC00662 promotes invasion and migration of NSCLC cells. (A–F) The HCC827 and A549 cells were infected 

with the lentiviral plasmids carrying LINC00662 shRNA (shLINC00662) or corresponding control shRNA (shNC), or transfected with the 
LINC00662 overexpression vector or the corresponding control vector, and the exosomes were extracted and further treated the cells. (A, B) 
The cell migration and invasion were examined by transwell assays in the cells. (C–F) The migration and invasion were measured by wound 
healing assays in the cells. The wound healing proportion was shown. (G–J) The cell cycle was analyzed by flow cytometry analysis in the cells. 
Data are presented as mean ± SD. Statistic significant differences were indicated: * P < 0.05, ** P < 0.01. 

http://www.targetscan.org/vert_72/
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the E2F1 with the miR-320d-binding site mutant in the 

cells (Figure 5C). Furthermore, the mRNA and protein 

expression of E2F1 were significantly decreased by  

miR-320d mimic in the cells (Figure 5D, 5E), suggesting 

that miR-320d is able to target E2F1 in the NSCLC  

cells. Moreover, the expression of E2F1 was enhanced by 

the overexpression of LINC00662, in which the miR-

320d mimic could block this enhancement in the cells 

(Figure 5F). 

Exosomal LINC00662 promotes the progression of 

NSCLC by miR-320d/E2F1 axis in vitro 

 

We then explored the role of the exosomal LINC00662/ 

miR-320d/E2F1 axis in NSCLC development in vitro. 

MTT assays revealed that the exosomal overexpression 

of LINC00662 enhanced the cell viability of HCC827 

and A549 cells, in which the miR-320d mimic or the 

E2F1 depletion by shRNA could block this enhancement 

 

 
 

Figure 4. LINC00662 serves as a miR-320d sponge in NSCLC cells. (A) Potential interaction between lncRNA LINC00662 and miR-

320d was identified by the bioinformatic analysis using ENCORI (http://starbase.sysu.edu.cn/index.php). (B) The expression levels of 
miR-320d were tested by qPCR in the HCC827 and A549 cells treated with control mimic (miR-NC) or miR-320d mimics. (C, D) Luciferase 
activities of LINC00662 (LINC00662 WT) and LINC00662 with the miR-320d-binding site mutant (LINC00662 MUT) were determined  
by luciferase reporter gene assays in the HCC827 and A549 cells treated with control mimic (miR -NC) or miR-320d mimic. (E) The 
efficiency of the LINC00662 depletion and the LINC00662 overexpression was validated by qPCR assays in the cells. (F) The HCC827  
and A549 cells were treated with the lentiviral plasmids carrying LINC00662 shRNA (shLINC00662) or corresponding control shRNA 
(shNC), or transfected with the LINC00662 overexpression vector or the corresponding control vector. The expression of miR-320d  
was tested by qPCR assays in the cells. Data are presented as mean ± SD. Statistic significant differences were indicated: * P < 0.05,  
** P < 0.01. 

http://starbase.sysu.edu.cn/index.php
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(Figure 6A, 6B). The miR-320d mimic or the E2F1 

knockdown rescued the cell apoptosis inhibited by the 

exosomal LINC00662 overexpression in the cells 

(Figure 6C, 6D). Transwell assays revealed that the 

migration and invasion of HCC827 and A549 cells were 

significantly promoted by the overexpression of 

exosomal lncRNA LINC00662, in which the miR-320d 

mimic or the E2F1 depletion could attenuate this 

phenotype (Figure 6E, 6F). Together these indicate that 

exosomal LINC00662 promotes the progression of 

NSCLC by miR-320d/E2F1 axis in vitro. 
 

Exosomal LINC00662 contributes to the tumor 

growth of NSCLC in vivo 

 

We further determined the impact of exosomal 

LINC00662 on the NSCLC development in vivo. For this 

purpose, we performed the tumorigenicity analysis in 

nude mice injected with A549 cells, which were treated 

with LINC00662 overexpression vector or LINC00662 

overexpression exosome. The overexpression of 

LINC00662 significantly enhanced the tumor growth of 

A549 cells in vivo, as demonstrated by the tumor  

size (Figure 7A), tumor volume (Figure 7B), and tumor 

weight (Figure 7C). Besides, the expression of E2F1 was 

increased by the LINC00662 overexpression in the tumor 

tissues of the mice (Figure 7D, 7E). Together these 

suggest that exosomal LINC00662 contributes to the 

tumor growth of NSCLC in vivo. 

 

DISCUSSION 
 

NSCLC is the predominant type of lung cancer with 

severe morbidity and high mortality [23]. As a crucial 

regulator in cancer development, exosomal lncRNAs are 

widely identified in the modulation of NSCLC. It has 

been reported that the exosome-regulated shift of 

lncRNA RP11 838N2.4 elevates the resistance of 

erlotinib in NSCLC [24]. Cancer-originated exosome 

lncRNA GAS5 serves as a marker of diagnosis of 

NSCLC [25]. Plasma lncRNA MALAT-1 protected by 

exosome is elevated and increases cell migration and 

proliferation in NSCLC [26]. Tumor-transmitted lncRNA 

H19 stimulates gefitinib resistance by packaging in the 

exosome of NSCLC [27]. Exosome-transmitted lncRNA 

UFC1 enhances the progression of NSCLC through 

EZH2-regulated epigenetic inhibiting of PTEN 

expression [28]. Moreover, it has been identified that 

 

 
 

Figure 5. MiR-320d targets E2F1 in NSCLC cells. (A) The interaction of miR-320d and E2F1 3’ UTR was identified by bioinformatic 
analysis using Targetscan (http://www.targetscan.org/vert_72/). (B–E) The HCC827 and A549 cells were treated with miR-320d mimic or the 
control mimic. (B) The expression of miR-320d was tested by qPCR assays in the cells. (C) The luciferase activities of wild type E2F1 (E2F1 WT) 
and E2F1 with the miR-320d-binding site mutant (E2F1 MUT) were determined by luciferase reporter gene assays in the cells. (D) The mRNA 
expression of E2F1 was measured by qPCR assays in the cells. (E) The protein expression of E2F1 was analyzed by Western blot analysis in the 
cells. (F) The HCC827 and A549 cells were treated with the control vector, LINC00662 overexpression vector, or co-treated with LINC00662 
overexpression vector and miR-320d mimic. The protein expression of E2F1 was measured by Western blot analysis in the cells. Data are 
presented as mean ± SD. Statistic significant differences were indicated: * P < 0.05, ** P < 0.01. 

http://www.targetscan.org/vert_72/
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lncRNA LINC00662 contributes to the development of 

multiple cancers, such as breast cancer, ovarian cancer, 

and colorectal cancer [29–31]. In this study, we first 

identified that lncRNA LINC00662 was elevated in the 

plasma exosome of NSCLC patients. Exosomal 

LINC00662 promoted proliferation, invasion, and 

migration, and inhibited apoptosis of NSCLC cells. 

These data present a novel function of exosomal lncRNA 

LINC00662 in the NSCLC progression, providing 

valuable evidence for the fundamental role of exosomal 

lncRNAs in the development of NSCLC. 

As a primary component of non-coding RNA and the 

significant interplay factors with lncRNAs in the 

pathological processes, miRNAs are also involved in 

the modulation of NSCLC. It has been reported that 

microRNA-455 represses NSCLC by targeting ZEB1 

[32]. MiR-451a decreases cell invasion and migration 

in NSCLC by modulating the expression of ATF2 

[33]. MiR-24 increases the invasion and migration of 

NSCLC by regulating ZNF367 [34]. MiRNA-4735-3p-

mediated FBXL3 inhibits cell proliferation and 

migration of NSCLC [35]. MiR-760 represses the 

 

 
 

Figure 6. Exosomal LINC00662 promotes the progression of NSCLC by miR-320d/E2F1 axis in vitro. (A–F) The HCC827 and A549 
cells were treated with LINC00662 overexpression vector, or co-treated with LINC00662 overexpression vector and miR-320d mimic or 
lentiviral plasmids carrying E2F1 shRNA. (A, B) The cell viability was analyzed by the MTT assays in the cells. (C, D) The cell apoptosis was 
measure by flow cytometry analysis in the cells. (E, F) The cell migration and invasion were examined by transwell assays in the cells. Data are 
presented as mean ± SD. Statistic significant differences were indicated: * P < 0.05, ** P < 0.01. 
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proliferation and metastasis of NSCLC by controlling 

the expression of ROS1 [36]. MiR-24 increases the 

invasion and migration of NSCLC by regulating 

ZNF367 [34]. Besides, the role of miR-320d in the 

modulation of development of cancer has been identified 

in several tumor models, including hepatocellular 

carcinoma, gastric cardiac adenocarcinoma, and 

colorectal cancer [37–39]. Our mechanical investigation 

further demonstrated that LINC00662 served as a  

miR-320d sponge and miR-320d targeted E2F1 in  

the NSCLC cells. These data display an unreported  

role of miR-320d in the development of NSCLC, 

identifying the new upstream lncRNA LINC00662 and 

downstream target E2F1 of miR-320d in the modulation 

of NSCLC. 

 

It has been identified that E2F1 is involved in the 

development of NSCLC. E2F1 positively controls the 

expression of interferon regulatory factor 5 in NSCLC 

[40]. PAQR4 stimulates cell metastasis and proliferation 

by the CDK4/pRB/E2F1 signaling in NSCLC [41]. 

MiR-1205 serves as a cancer suppressor by disengaging 

the interplay of MDM4/E2F1 and KRAS in NSCLC 

[42]. LncRNA-HAGLR represses tumor growth of 

NSCLC by epigenetically inhibiting E2F1 [43]. The 

clinical significance of the protein expression of E2F1 in 

NSCLC is identified [44]. Our data showed that E2F1 

contributed to the progression of NSCLC and is targeted 

by miR-320d, which could be sponged by lncRNA 

LINC00662 in the system. These data provide new 

evidence that E2F1 serves as a crucial factor in the 

development of NSCLC. 

 

In conclusion, we discovered that exosomal lncRNA 

LINC00662 promoted NSCLC progression by 

modulating miR-320d/E2F1 axis. Our finding provides 

new insights into the mechanism by which exosomal 

lncRNA LINC00662 contributes to the development  

of NSCLC, improving the understanding of exosomal 

lncRNA LINC00662 and NSCLC. LncRNA 

LINC00662, miR-320d, and E2F1 may serve as potential 

targets for NSCLC therapy. 

 

 
 

Figure 7. Exosomal LINC00662 contributes to the tumor growth of NSCLC in vivo. (A–D) The effect of exosomal LINC00662 on 
tumor growth of NSCLC cells in vivo was analyzed by nude mice tumorigenicity assay. The A549 cells were treated with LINC00662 
overexpression vector or LINC00662 overexpression exosome. (A) Representative images of dissected tumors from nude mice were 
presented. (B) The average tumor volume was calculated and shown. (C) The average tumor weight was calculated and shown. (D, E) The 
protein expression levels of E2F1 and β-actin were examined by Western blot analysis in the tumor tissues. Data are presented as mean ± SD. 
Statistic significant differences were indicated: * P < 0.05, ** P < 0.01. 
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MATERIALS AND METHODS 
 

NSCLC clinical samples 

 

A total of 50 NSCLC clinical samples used in this study 

was obtained between June 2017 and February 2019 

from Linyi People's Hospital. The characteristic 

information of the NSCLC patients was listed in 

Supplementary Table 1. All the patients were diagnosed 

by histopathological analysis. All cases were 

independently diagnosed and reviewed by two 

clinicians. Before surgery, no systemic or local therapy 

was carried out in the subjects. The NSCLC tissues and 

corresponding para-neoplastic tissues obtained from the 

patients were immediately frozen into the liquid 

nitrogen, followed by storing at -80° C before further 

analysis. The samples used in this study were under the 

written approval of the patients and healthy cases. This 

study conformed to the experimental guidelines of the 

World Medical Association and the Ethics Committee of 

Linyi People's Hospital. 

 

Exosome isolation and analysis 

 

The culture medium and plasma and were centrifuged 

(3000 × g, 15 minutes) to drop cells and cellular debris. 

Next, Exoquick exosome precipitation solution (System 

Biosciences, USA) was utilized to isolate exosomes. 

The exosome characteristics were analyzed by the 

transmission electron microscopy (TEM) as previously 

reported [45]. 

 

Cell culture and treatment 

 

The HCC827 and A549 cell lines were purchased in 

American Type Tissue Culture Collection. The cells 

were cultured in the medium of DMEM (Gibco, USA) 

containing 10% fetal bovine serum (Gibco, USA), 0.1 

mg/mL streptomycin (Gibco, USA) and 100 units/mL 

penicillin (Gibco, USA) at a condition of 37° C with 5% 

CO2. The LINC00662 overexpression vector and 

control vector, LINC00662 shRNA and control shRNA, 

E2F1 shRNA and control siRNA, miR-320d mimic and 

control mimic were obtained (GenePharma, China). The 

transfection in the cells was performed by Liposome 

3000 (Invitrogen, USA) according to the manufacturer's 

instructions. 

 

Quantitative reverse transcription-PCR (qRT-PCR) 

 

The total RNAs were extracted by TRIZOL (Invitrogen, 

USA) from the tissues and cells. The first-strand cDNA 

was synthesized using Stand cDNA Synthesis Kit 

(Thermo, USA) as the manufacturer's instruction. The 

qRT-PCR was carried out by applying SYBR Real-time 

PCR I kit (Takara, Japan). The standard control for 

mRNA/lncRNA and miRNA was GAPDH and U6, 

respectively. Quantitative determination of the RNA 

levels was conducted by SYBR GreenPremix Ex 

TaqTM II Kit (TaKaRa, Japan). The experiments were 

independently repeated at least three times. The primer 

sequences are as follows: 

 

LncRNA LINC00662 forward: 5′-CACGCTTCTGAA 

ACTGGTGT-3′ 

LncRNA LINC00662 reverse: 5′-TGTACAGCCTGG 

TGACAGAG-3′ 

miR-320d forward: 5′-AAAAGCTGGGTTGAGAGGA-3′ 

miR-320d reverse: 5′-TCCTCTCAACCCAGCTTTT-3′ 

E2F1 forward: 5′-AGCGGCGCATCTATGACATC-3′ 

E2F1 reverse: 5′-GTCAACCCCTCAAGCCGTC-3′ 

GAPDH forward: 5′-AAGAAGGTGGTGAAGCAGG 

C-3′ 

GAPDH reverse: 5′-TCCACCACCCAGTTGCTGTA-3′ 

U6 forward: 5′-GCTTCGGCAGCACATATACTAA-3′ 

U6 reverse: 5′-AACGCTTCACGAATTTGCGT-3′ 

 

MTT assays 

 

The cell viability was measured by MTT assays. Briefly, 

about 2×104 cells were put into 96 wells and cultured for 

12 hours. After indicated treatment for 24 hours, 48 hours, 

and 72 hours, the cells were added with a 10 μL MTT 

solution (5 mg/mL) and cultured for an extra 4 hours. 

Discarded medium, and 150 μL DMSO was used to treat 

the wells. An ELISA browser was applied to analyze the 

absorbance at 570nm (Bio-Tek EL 800, USA). 

 

Colony formation assays 

 

About 1×103 HCC827 and A549 cells were layered in 6 

wells and incubated in DMEM at 37° C. After two 

weeks, cells were cleaned with PBS Buffer, made in 

methanol for about thirty minutes, and dyed with crystal 

violet dye at the dose of 1%, after which the number of 

colonies was calculated. 

 

Transwell assays 

 

Transwell assays analyzed the impacts of the exosomal 

lncRNA LINC00662 on cell invasion and migration of 

NSCLC by using a Transwell plate (Corning, USA) 

according to the manufacturer's instruction. Briefly, the 

upper chambers were plated with around 1 × 105 cells. 

Then solidified through 4% paraformaldehyde and dyed 

with crystal violet. The invaded and migrated cells were 

recorded and calculated. 

 

Wound healing assay 

 

HCC827 and A549 cells were plated in the 24-well 

plate at 3 × 105/well and cultured overnight to reach a 
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full confluent as a monolayer. A 20μl pipette tip was 

applied to slowly cut a straight line across the well. 

Then the well was washed by PBS 3 times and changed 

with the serum-free medium and continued to culture. 

The wound healing percentage was calculated. 

 

Analysis of cell apoptosis 

 

Around 2×105 cells were plated on 6-well dishes. Cell 

apoptosis was analyzed by using the Annexin V-FITC 

Apoptosis Detection Kit (CST, USA) according to the 

manufacture’s instruction. Briefly, about 2×106 collected 

and washed cells collected by binding buffer and were 

dyed at 25° C, followed by the flow cytometry analysis. 

 

Cell-cycle analysis 

 

Approximately 1×105 cells were plated on 6-well dishes 

and treated as indicated. Floating and adherent cells were 

fixed in cold ethanol (4° C, 70% in PBS) overnight. 

RNaseA 1(00 μg/mL) was added to the cells at 37° C for 

30 minutes, followed by the PI staining (50 μg/mL, 30 

minutes) in the dark and the flow cytometric analysis 

using a FACSCalibur cytometry (Becton Dickinson, 

USA). About ten thousand events were calculated for 

each sample and the distribution of cell cycle was 

analyzed by Cell Quest software (Becton Dickinson, 

USA). 

 

Luciferase reporter gene assay 

 

The luciferase reporter gene assays were performed by 

using the Dual-luciferase Reporter Assay System 

(Promega, USA). Briefly, the cells were treated with the 

miR-320d mimic, miR-320d mimic or control mimic, 

pmirGLO-LINC00662, pmirGLO-LINC00662 mutant, 

pmirGLO-E2F1, and pmirGLO-E2F1 mutant were 

transfected in the cells by using Lipofectamine 3000 

(Invitrogen, USA), followed by the analysis of 

luciferase activities, in which Renilla was applied as a 

normalized control. 

 

Western blot analysis 

 

Total proteins were extracted from the cells or mice 

tissues with RIPA buffer (CST, USA). Protein 

concentrations were measured by using the BCA Protein 

Quantification Kit (Abbkine, USA). Same concentration 

of protein was divided by SDS-PAGE (12% 

polyacrylamide gels), transferred to PVDF membranes 

(Millipore, USA) in the subsequent step. The membranes 

were hindered with 5% milk and hatched overnight at  

4° C with the primary antibodies for TSG101 (Abcam, 
USA), CD63 (Abcam, USA), Grp94 (Abcam, USA), 

CD9 (Abcam, USA), E2F1 (Abcam, USA), and β-actin 

(Abcam, USA), in which β-actin served as the control. 

Then, the corresponding second antibodies (Abcam, 

USA) were used for hatching the membranes 1 hour at 

room temperature, followed by the visualization by using 

an Odyssey CLx Infrared Imaging System. 
 

Analysis of tumorigenicity in nude mice 
 

The effect of exosomal lncRNA LINC00662 on tumor 

growth in vivo was analyzed in nude mice of Balb/c (male, 

4-week-old) (n=5). The A549 cells were treated with 

LINC00662 overexpression vector or LINC00662 

overexpression exosome. And about 1×107 cells were 

subcutaneously injected in the mice. After 7 days of 

injection, we measured tumor growth every 7 days. We 

sacrificed the mice after 28 days of injection, and tumors 

were scaled. Tumor volume (V) was observed by 

estimating the length and width with calipers and measured 

with the method × 0.5. The protein expression levels of 

E2F1 (Abcam, USA), and β-actin (Abcam, USA) were 

analyzed by Western blot analysis in the tumor tissues. 

Animal care and method procedure were authorized by the 

Animal Ethics Committee of Linyi People's Hospital. 
 

Statistical analysis 
 

Data were presented as mean ± SD, and the statistical 

analysis was performed by GraphPad prism 7. The 

unpaired Student’s t-test was applied for comparing two 

groups, and the one-way ANOVA was applied for 

comparing among multiple groups. P < 0.05 were 

considered as statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The characteristics of NSCLC patients. 

No. Age Gender Organ Smoking history Tumor size (cm) TNM stage 

1 59 F Lung Non-smokers <3 I–II 

2 60 M Lung Smokers ≥3 III–IV 

3 65 M Lung Smokers <3 I–II 

4 43 M Lung Smokers ≥3 III–IV 

5 60 F Lung Non-smokers ≥3 III–IV 

6 41 M Lung Smokers <3 I–II+ 

7 45 M Lung Smokers ≥3 III–IV 

8 56 M Lung Smokers ≥3 I–II- 

9 70 M Lung Non-smokers ≥3 III–IV 

10 67 M Lung Smokers ≥3 III–IV 

11 59 M Lung Smokers ≥3 III–IV 

12 57 M Lung Smokers <3 I–II 

13 61 F Lung Non-smokers ≥3 III–IV 

14 51 F Lung Non-smokers ≥3 I–II 

15 56 M Lung Smokers ≥3 III–IV 

16 60 M Lung Smokers ≥3 III–IV 

17 54 M Lung Smokers ≥3 III–IV 

18 36 M Lung Smokers ≥3 I–II 

19 46 M Lung Smokers ≥3 III–IV 

20 60 M Lung Smokers ≥3 III–IV 

21 59 M Lung Smokers ≥3 III–IV 

22 57 F Lung Non-smokers <3 I–II 

23 51 M Lung Smokers ≥3 III–IV 

24 38 M Lung Smokers ≥3 III–IV 

25 56 M Lung Smokers ≥3 III–IV 

26 49 M Lung Non-smokers ≥3 III–IV 

27 58 F Lung Non-smokers <3 I–II 

28 46 M Lung Smokers ≥3 III–IV 

29 56 M Lung Smokers ≥3 III–IV 

30 54 M Lung Smokers ≥3 I–II 

31 39 M Lung Smokers <3 III–IV 

32 53 M Lung Non-smokers ≥3 III–IV 

33 60 M Lung Smokers ≥3 III–IV 

34 66 M Lung Smokers <3 I–II 

35 60 F Lung Non-smokers <3 I–II 

36 59 M Lung Smokers ≥3 III–IV 

37 69 M Lung Smokers ≥3 III–IV 

38 38 M Lung Smokers <3 I–II 

39 56 M Lung Smokers ≥3 III–IV 

40 53 F Lung Non-smokers ≥3 I–II 

41 47 M Lung Smokers ≥3 III–IV 

42 67 M Lung Non-smokers <3 I–II 

43 49 M Lung Smokers ≥3 III–IV 

44 46 M Lung Non-smokers ≥3 III–IV 

45 57 M Lung Smokers <3 I–II 

46 49 M Lung Smokers <3r I–II 

47 47 M Lung Smokers ≥3 III–IV 

48 62 M Lung Smokers ≥3 III–IV 

49 68 F Lung Non-smokers <3 I–II 

50 66 M Lung Non-smokers <3 III–IV 
 


