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INTRODUCTION 
 

Bladder urothelial carcinoma (BLCA) is one of the most 

prevalent malignancies, with 40 000 additional diagnoses 

yearly throughout the world [1]. The high malignancy 

and poor prognosis of BLCA are difficult issues for 

patients and health professionals. A biomarker, such as  

a molecule or a clinicopathologic characteristic, has 

practical value for precise prognosis and individualized 

treatment. Currently, clinicopathologic characteristics, 

such as tumour stage (T) and tumour pathological grade 

(G), remain the prevailing prognostic predictors. 

However, studies have shown the inadequacy of these 

clinical features in identifying patients with poor 

prognosis [2]. Novel molecular biomarkers are expected 

to serve as prognostic predictors that can help estimate 

prognosis, select therapeutic strategies and reveal 

mechanisms of disease. 

 

At present, a growing number of researchers are paying 

attention to long noncoding RNAs (lncRNAs), which are 

defined as RNA transcripts longer than 200 nucleotides 
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ABSTRACT 
 

Bladder urothelial carcinoma (BLCA) is recognized to be immunogenic and tumorigenic. This study identified a 
novel long noncoding RNA (lncRNA) signature for predicting survival for patients with BLCA. A univariate Cox 
regression model and the random survival forest-variable hunting (RSF-VH) algorithm were employed to achieve 
variable selection. Ten lncRNAs (LOC105375787, CYTOR, URB1-AS1, C21orf91-OT1, CASC15, LOC101928433, 
FLJ45139, LINC00960, HOTAIR and TTTY19) with the highest prognostic values were identified to establish the 
prognostic model. The nomogram integrating the signature and clinical factors showed high concordance index 
values of 0.94, 0.7 and 0.90 in the three datasets, and the calibration curves showed concordance between the 
predicted and observed 3- and 5-year survival rates. The risk score based on the 10-lncRNA signature accurately 
distinguished high- and low-risk BLCA patients with different disease-specific survival(DSS) or overall survival(OS) 
outcomes, which were stratified according to clinical factors, including T stage and tumour grade. Gene set 
enrichment analysis identified BLCA-specific biological pathways and enriched functional categories, such as the 
cell cycle, DNA repair and immune system. Furthermore, the increased infiltration of immune cells in the high-risk 
group indicated that lncRNA-related inflammation may reduce the survival of BLCA patients. 
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with limited protein coding potential [3, 4]. Many studies 

have shown that lncRNAs can promote tumour initiation, 

development and metastasis by regulating the expression 

of associated genes at the nuclear (transcription) [5, 6], 

cytoplasmic (post-transcription) [7, 8] and epigenetic 

levels [9, 10]. LncRNAs can also serve as competing 

endogenous RNAs (ceRNAs), interacting with 

microRNAs [8, 11] and influencing mRNA expression. 

In addition, abundant evidence suggests that lncRNAs 

contribute to tumour development by activating immune 

system processes and immune responses, including 

antigen release, antigen presentation, immune cell 

differentiation, immune cell migration, T cell infiltration 

and the recognition and killing of cancer cells. Since the 

role of lncRNAs in immuno-oncology is not yet clear, 

this study investigated the potential interaction between 

cancer-related lncRNAs and immune checkpoints, as 

well as the relationship between lncRNAs and immune 

cell infiltration. 

 

Growing evidence suggests that lncRNAs could 

function as potential biomarkers or therapeutic targets 

in many cancer types, especially in carcinomas within 

the urinary tract [12, 13]. Thus, we believe that 

lncRNAs are an emerging star in the diagnosis and 

treatment of various cancers, especially BLCA, because 

they have specific expression patterns, tumour tissue 

specificity and stability in circulation. Cancer-related 

lncRNAs provide novel insight into the complex 

aetiology and mechanism of the carcinogenesis process. 

It is reasonable and of great significance to develop a 

molecular signature based on lncRNAs for identifying 

the population of BLCA patients with poor prognosis. 

 

RESULTS 
 

Determination of prognostic lncRNAs 

 

Figure 1 visualizes the identification process. After 

subjecting the lncRNA expression data to univariable 

Cox regression analysis by BRB-Array Tools, we 

identified 49 lncRNAs that strongly correlated with DSS 

(P<0.01). These 49 lncRNAs and their details, such as 

regression coefficients, P values and hazard ratios 

(HRs), are recorded in Supplementary Table 2. RSF-VH 

was performed on the expression profile consisting of 

these 49 lncRNAs. With this method, 10 lncRNAs 

remained for the construction of a prognostic signature 

for survival prediction. The details of these 10 

prognostic lncRNAs, including their P values, regression 

coefficients, and HRs, are recorded in Table 1. In 

addition, the out-of-bag (OOB) importance value for 

each lncRNA is displayed in Table 1 and Supplementary 

Table 1. We observed that LOC105375787 was the 

strongest risk factor, while TTTY19 acted as the 

strongest cancer suppressor. The importance measures 

the increase (or decrease) in prediction error for the 

forest ensemble when a variable is randomly permuted 

in the OOB samples [14, 15]. Supplementary Figure 1 

illustrates how the expression value of these genes and 

patient mortality correlate in random survival trees. 

 

Inferentially, positive coefficients implied that higher 

expression levels of 8 genes including LOC105375787, 

CYTOR, URB1-AS1, C21orf91-OT1, CASC15, 

LOC101928433, FLJ45139 and HOTAIR predicted 

shorter survival. In contrast, negative coefficients 

implied that higher expression levels of genes including 

LINC00960 and TTTY19 might predict longer survival. 

After grouping the patients using the k-means clustering 

algorithm based on the expression level of each lncRNA, 

we calculated Kaplan-Meier estimates to display the 

prognosis related to each prognostic lncRNA. 

 

The overexpression of CASC15, URB1-AS1, FLJ45139, 

LOC105375787, HOTAIR was related to significantly 

shortened survival times in patients (log-rank test 

<0.05). High TTTY19 expression was significantly 

associated with longer survival in BLCA patients  

(log-rank test<0.05). The detailed results are shown 

 

 
 

Figure 1. Workflow of the construction and validation of the signature. ROC: Receiver operating characteristic; GSEA: gene set 

enrichment analysis; GEO: Gene Expression Omnibus. 
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Table 1. List of BLCA-specific prognostic lncRNAs. 

Probe Id Symbol Coefficient HR (95% CI for HR) p.value Importance Discription 

ILMN_1884070 LOC105375787 4.4 83 (5.2-1300) 1.80E-03 7.15E-03 uncharacterized LOC105375787 

ILMN_1665515 CYTOR 1.2 3.4 (1.5-7.9) 4.60E-03 6.63E-04 cytoskeleton regulator RNA 

ILMN_1728403 URB1-AS1 1.2 3.5 (1.5-7.9) 3.00E-03 2.39E-03 URB1 antisense RNA 1 (head to head) 

ILMN_1909784 C21orf91-OT1 3.2 24 (3.3-170) 1.60E-03 6.88E-03 C21orf91 overlapping transcript 1 

ILMN_1656131 CASC15 0.62 1.9 (1.4-2.5) 7.60E-05 3.09E-03 cancer susceptibility 15 

ILMN_1910948 LOC101928433 0.91 2.5 (1.3-4.9) 8.30E-03 1.30E-03 uncharacterized LOC101928433 

ILMN_1813179 LINC00960 -0.39 0.68 (0.51-0.91) 9.90E-03 6.83E-04 long intergenic non-protein coding RNA 960 

ILMN_2099858 TTTY19 -4.1 0.017 (0.00078-0.37) 9.80E-03 9.15E-04 testis-specific transcript, Y-linked 19 

ILMN_1807464 FLJ45139 1.3 3.5 (1.5-8.4) 4.00E-03 1.60E-03 uncharacterized LOC400867 

ILMN_1904054 HOTAIR 1.9 6.8 (2.9-16) 1.00E-05 1.00E-02 HOX transcript antisense RNA 

 

in Supplementary Figure 2. Additionally, we found that the 

expression levels of CASC15, FLJ45139, LOC101928433 

and C21orf91-OT1 (4 out of 8) were significantly 

increased in BLCA tissues compared to adjacent tissues or 

normal mucosas. The expression level of LINC00960 (1 

out of 2) was decreased in BLCA tissues compared with 

normal tissues. However, in contrast to our expectation, 

lower expression was observed in BLCA tissues. This may 

be caused by the small sample size of normal bladder 

mucosa, as only 9 normal bladder tissue samples were 

included in the analysis (Supplementary Figure 3). 

 

Risk formula and prognosis 

 

To further investigate the association of this 10-lncRNA 

signature with BLCA prognosis, a prognostic model 

was constructed as follows: 

 

∑i Coefficient (lncRNAi) × Expression (lncRNAi), 

which was 

Risk score= 

(4.4 × expression level of LOC105375787) + 

(1.2 × expression level of CYTOR) + (1.2 × expression 

level of URB1-AS1) + 

(3.2 × expression level of C21orf91-OT1) + 

(0.62 × expression level of CASC15) + 

(0.91 × expression level of LOC101928433) + 

(1.3 × expression level of FLJ45139) + 

(1.9 + expression level of HOTAIR) + 

(-0.39 × expression level of LINC00960) + 

(-4.1 × expression level of TTTY19). 

 

Using this formula, we calculated the risk score for each 

patient (Supplementary Tables 6–9). Defining the median 

risk score as a cut-off, the patients in the three series were 

divided into a high-risk subgroup or a low-risk subgroup 

of the same sample size (N=112, N=66, and N=83 and 

N=112, N=65, and N=82). Two prognostic nomograms 

for BLCA patients were successfully constructed to 

provide a clinically applicable quantitative approach for 

individual DSS prediction based on the signature and 

clinical prognostic factors, such as age, sex, grade and  

T stage (Figure 2A, 2D). The calibration curves in Figure 

2B, 2C show a narrow margin between the predicted 3- 

and 5-year DSS rates and the actual values. The 

calibration plots in Figure 2E, 2F show excellent 

agreement between the predicted 3- and 5-year DSS rates 

and the actual observations. The C-index of the molecular 

nomogram was 0.88 (95% confidence interval (CI)=0.86-

0.91) in GSE32894, 0.77 (95% CI=0.72-0.82) in 

GSE32548, and 0.73 (95% CI=0.68-0.77) in GSE13507. 

The C-index of the prognostic model combining the 

molecular signature with clinical risk factors was as high 

as 0.94 (95% CI=0.0.93-0.96) in GSE32894, 0.78 (95% 

CI=0.71-0.85) in GSE32548, and 0.90 (95% CI=0.87-

0.91) in GSE13507. The condition number (K value) of 

the 10-lncRNA signature was calculated in every dataset 

which confirmed that there was no collinearity among 

these 10 genes (Supplementary Table 12). These results 

implied a superior predictive ability of the model, whether 

based on the 10-lncRNA signature alone or the signature 

combined with clinical parameters (Figure 3). 

 
As illustrated in Figure 4A, the Kaplan-Meier analysis 

of GSE32894 showed that patients with higher risk 

scores had shorter DSS times than those with lower risk 

scores (log-rank test P < 0.0001). To further confirm the 

predictive value of this prognostic model, Kaplan-Meier 

analyses were performed to validate our signature in 

two independent external series, GSE32548 and 

GSE13507. An identical conclusion was obtained in 

GSE32548, where patients with high risk scores had 

significantly shorter DSS times than patients in the low-

risk group (log-rank test P=0.00051) (Figure 4B). 

Similarly, in GSE13507, shorter DSS times were 

observed in the high-risk subgroup (log-rank test 

P=0.018) (Figure 4C). Even using overall survival (OS) 

as the follow-up endpoint, the risk score still separated 

patients with different survival times in the GSE13507 

validation series (log-rank test P=0.025) (Figure 4D). 

 
Scatter plots and heatmaps in GSE32548 were used to 

show the relationships among the risk score, the 

expression levels of ten lncRNAs and death from 
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Figure 2. Nomograms to predict 3‐ or 5‐year DSS in the GSE32894 dataset. Instructions: locate each characteristic on the 

corresponding variable axis and draw a vertical line upwards to the points axis to determine the specific point value. Repeat this process. Sum 
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the total points value and locate it on the total points axis. Draw a vertical line down to the 3- or 5-year DSS to obtain the survival probability 
for a specific bladder cancer patient. (A), Nomogram for predicting 3‐ or 5‐year DSS in GSE32894 based on the 10-lncRNA signature. (B), 
Calibration curve for the prediction of 3-year DSS by the nomogram in (A). (C), Calibration curve for the prediction of 5-year DSS by the 
nomogram in (A). (D), Nomogram for predicting 3‐ or 5‐year DSS in GSE32894 based on the 10-lncRNA signature combined with clinical risk 
factors. (E), Calibration curve for the prediction of 3-year DSS by the nomogram in (D). (F), Calibration curve for the prediction of 5-year DSS 
by the nomogram in (D). 

 

 
 

Figure 3. C-indexes with 95% confidence intervals of the prognostic models. 

 

 
 

Figure 4. (A–D) Kaplan-Meier survival curves in subgroups stratified by the risk score. The tick marks on the Kaplan-Meier curves represent 
censored subjects. The differences between the two curves were assessed by the two-sided log-rank test. 
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bladder cancer. Figure 5A shows that patients with 

higher risk scores tended to have higher mortality. The 

expression patterns of BLCA-specific lncRNAs were 

visualized in the heatmaps shown in Figure 5B. Patients 

with higher risk scores were observed to be more likely 

to have higher expression levels of risk-related 

lncRNAs, such as LOC105375787, CYTOR, URB1-

AS1, C21orf91-OT1, CASC15, LOC101928433, 

FLJ45139, and HOTAIR. In contrast, patients with 

lower risk scores were more likely to have higher 

expression levels of suppressor lncRNAs (LINC00960 

and TTTY19). 

 

Independence of the 10-lncRNA signature in 

survival prediction from tumour stage and tumour 

histopathological grade 

 

A good prognostic biomarker should be independent 

of prevailing prognostic clinicopathologic factors. The 

traditional risk stratification of survival mainly 

depends on histopathological evidence, such as tumour 

stage and histopathological grade. To confirm the 

independence and applicability of our 10-lncRNA 

signature, multivariate Cox regression along with 

stratification analysis were conducted in GSE32894 

and GSE32548. 

 

Figure 6A indicates that both the 10-lncRNA risk score 

(HR=1.55, 95% CI=1.223–2.0, P <0.001) and tumour 

stage (HR=12.04, 95% CI=2.665–54.4, P < 0.001) are 

predictors independent of age, sex and histopathological 

grade in GSE32894. In GSE32548, using age, sex, 

tumour stage, histopathological grade and carcinoma  

in situ (CIS) as the covariables, multivariable  

Cox regression analysis further confirmed that the  

10-lncRNA risk score (HR=1.90, 95% CI=1.201–3.0,  

P <0.007) was a prognostic predictor independent of 

tumour stage and histopathological grade (Figure 6B). 

 

 
 

Figure 5. (A) Patients’ survival status and DSS time. (B) Heatmap of the lncRNA expression profiles. Rows represent lncRNA expression, and 

columns represent patients. The middle dividing lines represent the median lncRNA risk score cut-off point. The graduated colour, from blue 
to red, represents the risk score. 



 

www.aging-us.com 6963 AGING 

Stratification analysis was used to investigate whether 

the signature could discriminate patients with different 

prognoses irrespective of the same tumour stage. After 

stratifying the patients from GSE32894 and GSE32548 

into the muscle invasion (≥T2) subgroup or non-muscle 

invasion (Ta or T1) subgroup, Kaplan-Meier plots 

showed that for patients in the same tumour invasion 

subgroup, those with higher risk scores had significantly 

shorter DSS times than those with lower risk scores 

(Figure 7A, 7B). 
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Figure 6. Forest plots showing the hazard ratios (HRs) with 95% confidence intervals (95% CIs) based on the multivariate Cox 
regression results. (A) Risk score and tumour stage are dependent of age, sex and histopathological grade in GSE32894. (B) Risk score is 
dependent of sex, age, tumour stage, histopathological grade and concomitant CIS in GSE32894. (C) Risk score is dependent of sex, age and 
pN in patients with cystectomy in GSE32894. (D) Risk score is dependent on sex, age, histopathological grade, multifocality and tumour size in 
patients with NMIBC in GSE32548. 
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Figure 7. Kaplan-Meier estimates along with stratification of DSS for patient grouping by the signature. (A) Kaplan-Meier curves 
for GSE32894 (N = 224), stratified by whether muscle invasion exists (≤T2 or >T2). (B) Kaplan-Meier curves for GSE32548 (N = 131), stratified 
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by whether muscle invasion exists (≤T2 or >T2). (C) Kaplan-Meier curves for GSE32894 (N = 224), stratified by tumour grade. (D) Kaplan-Meier 
curves for GSE32548 (N = 131), stratified by tumour grade. (E) Kaplan-Meier curves for patients with cystectomy in GSE32894 (N = 51), 
stratified by pN (pN- or pN+). (F) Kaplan-Meier curves for patients with NMIUC (<T2) in the GSE32548 test series (N = 93), stratified by 
multifocality (single or multiple). (G) Kaplan-Meier curves for patients with NMIUC (<T2) in GSE32548 (N = 93), stratified by tumour size (≤3 
cm or >3 cm). (H) Kaplan-Meier curves for GSE32548 (N = 131), stratified by concomitant CIS; the tick marks on the Kaplan-Meier curves 
represent death from disease. The differences between the two curves were assessed by the log-rank test. MI: muscle invasion; NMI: non-
muscle invasion. 

 

Considering that tumour grade is another primary 

prognostic factor in BLCA, stratification analysis was 

conducted to investigate whether the 10-lncRNA 

signature could accurately predict the prognosis of 

bladder cancer patients with the same histopathological 

grade. The patients in both GSE32894 and GSE32548 

were classified into three groups (G1, G2 and G3) based 

on different tumour grades. Kaplan-Meier plots showed 

that for patients with the same tumour histopathological 

grade, patients with higher risk scores had significantly 

lower DSS curves than those with lower risk scores 

(Figure 7C, 7D). 

 

Independence of the 10-lncRNA signature in survival 

prediction from lymph node metastasis, multifocality, 

tumour size and concomitant CIS 

 

Other clinical and pathological characteristics, such as 

lymph node metastasis, multifocality, tumour size and 

concomitant CIS, have been widely recognized to be the 

prevailing predictors for the prognosis of BLCA 

patients. Multivariate Cox regression along with 

stratification analysis were then conducted to determine 

the prognostic independence of the signature. 

 

Fifty-one patients in the GSE32894 series had available 

post-cystectomy information, which made it possible to 

investigate whether the signature is independent of 

lymph node metastasis. We performed multivariable 

Cox regression analysis on this cohort, including age, 

sex, pN at cystectomy, and the 10-lncRNA risk score as 

the covariables. The analysis showed that the 10-

lncRNA risk score (HR=1.4, 95% CI=1.10–1.80, P < 

0.007) was the only independent prognostic factor and 

had a close correlation with DSS (Figure 6C). Kaplan-

Meier plots further confirmed that patients with higher 

risk scores had shorter DSS times than those with lower 

risk scores, despite having the same pN at cystectomy 

(Figure 7E). 

 

Clinical information on multifocality and tumour size 

was available for 93 non-muscle-invasive urothelial 

carcinoma patients (tumour stage <T2) in GSE32548 by 

inspection. Multivariable Cox regression analysis 

performed with the risk score, multifocality and tumour 

size in this cohort suggested that the 10-lncRNA risk 

score (HR=2.23, 95% CI=1.06–4.7, P < 0.037) was the 

only independent prognostic factor (Figure 6D). Since the 

sample size of non-muscle-invasive urothelial carcinoma 

was small, Kaplan-Meier plots generated indistinctive 

Kaplan-Meier curves (P =0.065 and 0.49) among the 

stratifications comparing multifocality and tumour size. 

However, patients with higher risk scores were still more 

likely to have a poor prognosis, which was indicated by 

the red or green curves in Figure 7F, 7G. 

 

When compared with concomitant CIS, age, sex, tumour 

stage and tumour grade, the 10-lncRNA risk score 

(HR=1.90, 95% CI=1.201–3.0, P <0.007) was 

determined to be a survival predictor independent of 

concomitant CIS according to previous results (Figure 

6B). Kaplan-Meier plots with stratification showed that 

the 10-lncRNA signature was able to classify patients 

who had different survival times and the same 

concomitant CIS status (Figure 7H) at some level, 

though the P value did not reach the threshold (log-rank 

test P=0.06>0.05). 

 

The prognostic value of the 10-lncRNA signature 

 

To determine the predictive power of this 10-lncRNA 

signature, ROC curves were employed, and AUC values 

were calculated. AUCs were compared between the 

signature and other prevailing prognostic predictors. 

 

In all three independent series, the 10-lncRNA signature 

demonstrated a discriminatory ability for predicting 

DSS, with AUC values of 0.871 (95% CI=0.808–0.934) 

in GSE32894 (Figure 8A), 0.752 (95% CI=0.624–

0.879) in GSE32548 (Figure 8B) and 0.707 (95% 

CI=0.597–0.816) in GSE13507 (Figure 8C). As shown 

by our data, this 10-lncRNA signature had robust 

sensitivity and specificity to potentially become a 

superior prognostic biomarker. 

 

In GSE32894, as shown in Figure 8A, both the 10-

lncRNA risk score (AUC=0.871) and tumour stage 

(AUC=0.920) showed a high predictive performance 

with no significant difference (P=0.134). Compared with 

histopathological grade, the 10-lncRNA risk score 

showed greater prognostic potential (0.871 versus 0.772, 

P=0.0038). In GSE32548, as shown in Figure 8B, since 
the P value of DeLong's test did not reach the threshold, 

we cannot tell whether the risk score has a greater 

capability to predict survival than tumour stage (0.752 

versus 0.824, P=0.306) or histopathological grade (0.752 
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versus 0.675, P=0.239). However, with an absolute AUC 

value estimated to be 0.752, the prognostic value of this 

10-lncRNA signature was still considered remarkable. In 

GSE13507, as presented in Figure 8C, despite a smaller 

AUC (AUC=0.707), which was still estimated to exceed 

0.70, there was no significant difference between the 

signature and tumour stage or histopathological grade 

(P=0.05 and P=0.36, respectively). 

ROC curves were also calculated for the 10-lncRNA 

risk score, concomitant CIS, lymphovascular invasion, 

multifocality and tumour size. Compared with tumour 

multifocality and tumour size, as presented in Figure 

8D, the AUC of the 10-lncRNA risk score was roughly 

the same (0.637 versus 0.750; 0.637 versus 0.685, 95% 

CI=0.393–0.882, P=0.5667; P=0.9366). As shown in 

Figure 8E, the AUC of the 10-lncRNA risk score was 

 

 
 

Figure 8. ROC curves showing the prognostic performance of the 10-lncRNA signature compared with that of different 
prognostic predictors. (A) Comparison of tumour stage and tumour grade in GSE32894. (B) Comparison of tumour stage and tumour grade 

in GSE32548. (C) Comparison of tumour stage and tumour grade in GSE13507. (D) Comparison of multifocality and tumour size in patients 
with NMIUC from GSE32548. (E) Compared with concomitant CIS in GSE32548. (F) Comparison with pN in patients with MIUC from 
GSE32894. NMIUC: non-muscle-invasive urothelial carcinoma; MIUC: muscle-invasive urothelial carcinoma. 
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estimated to be greater than 0.70 in GSE32548, which 

was larger than that of concomitant CIS despite P>0.05 

(0.752 versus 0.576, 95% CI=0.624–0.879, P=0.5822). 

Compared with lymphovascular invasion, as shown in 

Figure 8F, the 10-lncRNA risk score performed as a 

relatively good predictor and had a larger AUC (0.725 

versus 0.613, 95% CI=0.574–0.876 P=0.22), albeit with 

no significance observed. 

 

Relationship among the 10-lncRNA signature, 

potential therapeutic target signature and immune-

checkpoint blockade (ICB) immunotherapy-related 

signature 

 

A growing body of evidence highlights the key role of 

immune regulation in BLCA, involving some immune 

checkpoints, such as CTLA4, PD-1, and PD-L1. In 

addition, several genomic alterations, such as HER-2 

(ERBB2), ERBB3 and FGFR3, which were included 

in this study, have been identified to be amenable in 

principle to therapeutic targeting and were reported  

to be associated with advanced BLCA in previous 

studies. 

 

Here, we compared our 10-lncRNA signature with  

these biomarkers to determine their prognostic value 

and potential interconnection. Pearson correlation 

coefficients demonstrated that the 10-lncRNA signature 

had a negative correlation with FGFR3 and a positive 

correlation with CD274 (PD-L1) and CTLA4 (P<0.01) 

(Figure 9A). The AUC values of the ROC curves were 

calculated for each biomarker. The ROC curves showed 

that the 10-lncRNA signature had the largest AUC 

(estimated to be 0.871) compared with these therapeutic 

targets and immune checkpoints (DeLong's test P < 

0.05) (Figure 9B). Assuming these molecules are all 

promoters regulating cancer development, the results 

indicated that our lncRNA signature had better stability 

and reliability in predicting the DSS of patients with 

BLCA and implied a closer relation between the cancer 

and the signature. 

 

Determination of disease-related pathways 

 

After grouping the patients in GSE32894 into two 

groups by the median risk score, the whole-genome 

expression profiles were subjected to analysis with 

GSEA 3.0 software to screen for pathways related to the 

signature. Figure 10 visualizes the enriched canonical 

pathways that were identified as “enriched (FDR < 0.01; 

P<0.05)” and maps them in a whole pathway overview. 

The immune system, DNA repair and cell cycle were 

observed to be the top three enriched pathways. 

Activation of E2F1 target genes at G1/S, G1/S-specific 

transcription, activation of the pre-replicative complex, 

activation of ATR in response to replication stress,  

and scavenging by class A receptors were the top 5 

downregulated canonical pathways. RNA polymerase I 

promoter clearance, glucuronidation, RNA polymerase I 

transcription initiation, RNA polymerase I promoter 

escape, and synthesis of glycosylphosphatidylinositol 

(GPI) were the top 5 upregulated canonical pathways. 

Supplementary Table 10 contains all these significantly 

enriched canonical pathways. 

 

 
 

Figure 9. ROC curves and correlation analysis of different prognostic signatures. (A) Correlation analyses among known immune 
checkpoints, potential therapeutic targets and the risk score. The circle size represents the P value, and the colour represents the correlation 
coefficient. Blue indicates a positive correlation, and red indicates a negative correlation. (B) ROC curves show the sensitivity and specificity 
of our 10-lncRNA signature and other known biomarkers in predicting the DSS of patients from GSE32894. 
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Analysis of the immune status of the high-risk and 

low-risk populations 

 

To verify whether the 10-lncRNA signature can reflect 

the status of the tumour immune microenvironment, we 

analysed the relationships between the signature and 

immune cell infiltration. Figure 11A shows that the 

proportions of infiltrating B cells, naive CD4+ T cells, 

naive CD8+ T cells, dendritic cells, exhausted T cells, 

gamma delta T cells, macrophages, monocytes, 

neutrophils, NK cells, natural regulatory T cells, and 

follicular helper T cells were significantly enriched in the 

high-risk group (P<0.05). Central memory T cells, 

effector memory T cells, mucosal-associated invariant T 

cells, NKT cells, T helper 17 cells, and T helper 2 cells 

were significantly enriched in the low-risk group 

(P<0.05). The infiltration score retrieved from the 

ImmuCellAI resource is a reflection of the overall tumour 

immune microenvironment. Figure 11B shows that 

tumours in the low-risk group have higher infiltration 

scores, which suggests the connection between the 

prognostic signature and the inflammatory environment 

of bladder tumours (P<0.05). 

 

DISCUSSION 
 

Recently, by combining clinical survival outcomes with 

data from high-throughput genomic technologies, 

microarrays have emerged as a popular way of 

revealing disease characteristics at the molecular level. 

Although the potential for discovery can be far greater 

when using such genome-wide data, the high-

dimensionality, batch effect and various platforms of 

this kind of data pose challenging statistical issues. 

Currently, Student’s t-test remains the popular method 

to obtain differentially expressed genes (DEGs) from 

microarrays; however, the lists of DEGs for a given 

disease indication identified by different studies are 

highly unstable, and BLCA is no exception [16]. The 

inconsistencies among gene signatures from different 

studies have been attributed to many sources, including 

limited numbers of samples, disease heterogeneity, 

subtle gene expression variation undetected by current 

feature selection method, etc. [17]. This may be part of 

the reason why there is no approved biomarker for the 

diagnosis and treatment of BLCA and why the 

mechanism underlining BLCA pathology remains 

largely unknown. The absence of a suitable model with 

generalization and precision remains a challenge for 

bioinformaticians. However, of course, for a predictive 

model, generalization is far more important than 

precision. The positive performance of a valuable 

biomarker in multiple cohorts is considered worthy of 

further translational research. 

 

To address three datasets with high throughput, 

multiplatform and multidimension data from different 

sources, we employed an artificial intelligence method, 

RFS-VH, to achieve variable selection [14, 18]. It has 

the following advantages: 

 

 
 

Figure 10. GSEA identified biological processes that correlated with the 10-lncRNA signature. Enriched canonical pathways (FDR 
< 0.01) were mapped in the whole pathway overview. Each dot represents a function, and each line indicates a pathway. 
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(1) RSF can handle very high-dimensional data (data 

with many features); 

(2) When there is a large amount of missing data, RSF 

can still give accurate predictions; 

(3) RSF has an anti-overfitting ability. Decision tree 

voting reduces the risk of overfitting; 

(4) RSF is very stable and accurate. Wrong predictions 

will only be made when more than half of the base 

classifiers have errors. When one of the data points 

causes bias, the entire algorithm will not be greatly 

affected. 

 

This paper exemplified the great power of RSF in 

screening potential genes that may have been overlooked 

in other previous bioinformatics analyses. All significant 

lncRNAs were modelled into a risk formula. The 

integration of all molecular predictors into one model is 

more stable than a single-factor prediction [19]. 

Nomograms were established to visualize the integrated 

risk score system. The C-index was estimated to be 

extremely high; for example, in the external validation 

set, it was as high as 90% with the signature and clinical 

factors. Our machine learning-based model has been the 

best performer ever of its type [20–22]. Superior C-

indexes and calibration curves suggested that the risk 

model had an outstanding ability to predict BLCA 

survival, whether based on the signature alone or the 

signature combined with clinical factors. The C-index 

values of the two models were very close, which also 

indicated the excellent predictive ability of the molecular 

biomarker model because it could almost replace the 

prediction by clinical factors. Kaplan-Meier estimates, 

multivariate Cox regression analysis and ROC curves, 

some embedded with stratification analysis, determined 

the independent prognostic value of the signature. All 

these analyses indicated that the signature had stable 

accuracy for predicting the DSS or OS of BLCA patients 

and was even more robust than age, sex, tumour stage, 

histological grade, lymph node metastasis, multifocality, 

tumour size and concomitant CIS. Traditionally, tumour 

grade and tumour stage have been regarded as the top 

survival predictors [23]; however, our calculations in 

multivariate analysis and ROC analysis found a 

prognostic deficiency of BLCA. 

 

We found that LOC105375787, CYTOR, URB1-AS1, 

C21orf91-OT1, CASC15, LOC101928433, FLJ45139, 

and HOTAIR acted as oncogenes, while LINC00960 

and TTTY19 acted as suppressors. 

 

However, we did not observe that every single lncRNA 

in the signature was significantly related to prognosis. 

Batch effects and a limited number of samples may 

account for this difference. We believe that their 

association with DSS may occur directly through 

carcinogenic roles or as tumour progression-associated 

 

 
 

Figure 11. (A) The difference in tumour-infiltrating immune cells among risk groups as defined by the 10-lncRNA prognostic signature.  

(B) The difference in infiltration score among risk groups as defined by the 10-lncRNA prognostic signature. 
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bystanders, and their diverse roles suggest that they may 

function as synergistic facilitators of progression 

(Supplementary Table 13) [24]. LOC105375787, 

LOC101928433, FLJ45139 and URB1-AS1 were 

discovered for the first time as cancer promotors. Except 

for HOTAIR, all 9 prognostic genes were reported for 

the first time as BLCA-specific prognostic genes. 

Cytoskeletal regulator RNA, known as CYTOR, is 

aberrantly overexpressed in various highly malignant 

cancers, including breast cancer, colorectal cancer, 

gastric cancer and non-small cell lung cancer cells [25, 

26]. The lncRNA C21orf91-OT1 was significantly 

increased in foetal growth restriction, although it has no 

cancer-associated evidence published yet [27]. Cancer 

susceptibility candidate 15, termed CASC15, located on 

chromosome 6p22, was reported to suppress the 

aggressive tumour progress; and the overexpression of 

its short isoform (CASC15-S) was found to inhibit 

neuroblastoma progression and increase patient survival 

[28]. In another study, it was reported that CASC15 was 

a frequently gained genomic segment in metastatic 

melanoma tumours [29]. According to He Tianyu et al, 

CASC15 was confirmed to be overexpressed in 59% of 

hepatocellular carcinoma tissues compared with 

corresponding adjacent normal tissues and is believed to 

act as a tumour promoter in tumorigenesis [30]. Long 

intergenic non-protein coding RNA 960 (LINC00960) 

was found to play a suppressor role in BLCA in the 

present study and was found to be involved in idiopathic 

pulmonary fibrosis and pancreatic cancer as a positive 

regulator in the studies by Hadjicharalambous Marina R 

et al. and Wu Yingcheng et al. [31, 32]. Testis-specific 

transcript Y-linked 19 lncRNA, also called TTTY19, is 

considered a male-specific lncRNA, but virtually no 

existing study has described it. Similar to the 

downregulated expression of TTTY19 in BLCA in the 

present study, Lai I-Lu et al. suggested that lower 

expression levels of another testis-specific transcript Y-

linked RNA, termed TTTY15, were related to non-small 

cell lung cancer proliferation and metastasis [33]. Of 

particular note, HOTAIR, which is well characterized in 

many primary tumours, was included in our 10-lncRNA 

signature. Interacting with polycomb repressive complex 

2 (PRC2), HOTAIR acts as a powerful oncogene in 

BLCA [9, 10, 34]. Furthermore, the expression level of 

HOTAIR could be suppressed by inhibitors to limit the 

metastatic potential of cancer, which also indicated that 

HOTAIR has therapeutic value as an efficient drug 

target [35]. 

 

In GSEA, top-ranked pathways, such as RNA 

polymerase I promoter clearance, RNA polymerase I 

transcription initiation, and RNA polymerase I promoter 
escape, were found in the cell cycle functional 

categorization [36, 37], suggesting that the 10 lncRNAs 

exacerbated BLCA by influencing proliferation. Xifeng 

Wu et al. reported that individuals with a higher number 

of altered alleles in DNA repair and the cell cycle are at 

an increased risk of developing bladder cancer, and 

these genetic effects were found to be significantly 

related to smoking. Thus, we can speculate that the 10 

BLCA-specific lncRNAs could regulate cancer at the 

epigenetic level by the same pathway [38]. As BCG 

became the earliest immunotherapy regimen for BLCA, 

it is clear that BLCA is an immunogenic cancer with 

components of the immune system successively 

activated [39]. Intriguingly, GSEA highlighted the 

enriched pathways of the immune system and suggested 

the potential value of the signature for inferring the 

immune characteristics of BLCA. 

 

Inspired by GSEA, to further support our finding, we 

used ImmuCellAI to obtain a high resolution of the 

immune infiltration landscape and estimate the 

abundance of 24 immune cells in the high-risk and low-

risk groups. An increased abundance of B cells, naive 

CD4+ T cells, naive CD8+ T cells, dendritic cells, 

exhausted T cells, gamma delta T cells, macrophages, 

monocytes, neutrophils, NK cells, natural regulatory T 

cells, and follicular helper T cells was proven to 

promote BLCA aggressiveness, and a reduced 

abundance of central memory T cells, effector memory 

T cells, mucosal-associated invariant T cells, NKT cells, 

T helper 17 cells, and T helper 2 cells was observed in 

the high-risk group, indicating a “hot” tumour immune 

microenvironment in BLCA tissues. A higher 

infiltration of inflammatory cells indicates an enhanced 

immune environment; similarly, significantly lower 

immune infiltration has been demonstrated to facilitate 

BLCA progression. For example, Hartana C A et al. 

reported that a high number of memory T cells in tissue 

may infiltrate into tumours of lower stage [40]. Another 

previous study showed that reduced Th17-related 

cytokines were significantly lower in BLCA patients 

than in healthy people, and our data showed a similar 

result; the low-risk group had a higher level of Th17 

infiltration [41]. Agarwal A et al. found that Th2 cell 

expression was significantly lower in BLCA tissues 

than in healthy tissues, and this finding corresponded to 

our data [42]. In summary, the 10-lncRNA signature 

can evaluate the enhancement of the tumour immune 

microenvironment and is correlated with BLCA 

progression. 

 

Interestingly, several previous studies similarly reported 

that some of these noncoding RNAs were involved in 

the regulation of the immune response. For example, 

Wang C et al. reported that CYTOR can enable B cell 

growth and transformation, which is consistent with our 
result that B cells showed significant infiltration in 

high-risk individuals [43]. Li SS et al. found C21orf91-

OT1 to be dominated by functional processes of the 
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immune response [27]. Yin Y et al. reported that 

CASC15 could epigenetically silence the expression of 

the immunomodulatory molecule programmed cell 

death 4 (PDCD4) and facilitate proliferation and 

invasion in melanoma cells [44]. To determine the 

prominent prognostic value of this immune-related-

lncRNA, ROC curves were used to compare the AUC 

values of the risk score, immune checkpoints (PD-1, 

PD-L1 and CTLA4) and potential therapeutic targets 

(HER-2, ERBB3 and FGFR3). The results showed that 

our immune-related-signature did have a higher 

predictive performance than all the other signatures that 

were reported to have the potential to serve as 

predictors of BLCA survival [45–49]. 

 

CONCLUSIONS 
 

In conclusion, this study generated a lncRNA signature 

that can not only predict BLCA patient survival 

outcomes but also reflect the immune status of BLCA  

at some levels. The model built based on this  

BLCA-specific lncRNA signature has an impressively 

high accuracy that indicates a high clinical translation 

value. 

 

MATERIALS AND METHODS 
 

Material preparation 

 

We downloaded three whole-genome expression 

microarray data series from the Gene Expression 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). 

All data series were included based on the following 

criteria: 1. public expression data generated for BLCA 

were obtained; 2. the same manufacturer platform was 

used (in this paper, the following Illumina human 

expression beadchip platforms were used: GPL6947 and 

GPL6102); and 3. raw nonnormalized data and matched 

clinical data with follow-up information were obtained. 

Ultimately, GS32894, GSE32548 and GSE13507 were 

included in the present study after an initial quality 

check. The clinical information of the samples included 

in this study from GSE32894, GSE32548 and 

GSE13507 was recorded in Supplementary Tables 3–5. 

The information relative to the selected datasets has 

been organized in Supplementary Table 11. The BLCA 

samples in GSE32894 were defined as a training series 

(N=224), and the samples in GSE32548 were defined as 

an independent test series (N=131). In addition, 165 

samples from GSE13507 were defined as an external 

validation series (N=165). In this study, we set two 

independent external datasets (GSE32548 and 

GSE13507) as verifiable groups rather than separating 
them because multiple independent validation datasets 

with larger sample sizes could reduce disease 

heterogeneity and improve model stability. 

Data pre-processing and lncRNA mining 

 

All bioinformatic approaches used in the present article 

were conducted with R software version 3.5.2 [50]. The 

raw nonnormalized expression data of the three series 

that were directly downloaded from the GEO database 

underwent noise correction and quantile normalization 

using the “limma” package in R. This method also log2 

transformed the expression values and filtered control 

probes, leaving only the regular probes [51]. 

 

In GEO or other databases, we failed to find a 

microarray specifically designed for lncRNAs with the 

requisite clinical information. Therefore, by annotating 

the probes, we separated a lncRNA profile from total 

RNA expression data. The gene sequence IDs obtained 

from the GPL6947 platform mainly contained Unigene 

ID and Refseq_ID. The “org.Hs.eg.db” package in R 

was used to obtain three maps of the correspondence 

between diverse gene sequence IDs, including Unigene 

ID - Entrez ID, Refseq_ID - Entrez_ID and Entrez ID - 

Ensembl ID. According to these maps, each Unigene ID 

and Refseq_ID was mapped to the corresponding Entrez 

ID. After that, the Entrez ID was further matched to the 

Ensembl ID, which could be annotated into the 

corresponding gene type using annotation information 

obtained from the Ensembl genome database 

(http://www.ensembl.org/). Ultimately, 11 types of 

lncRNAs were filtered from the multigene types. 

Noncoding RNA, lincRNA, processed transcript, TEC, 

bidirectional lncRNA, macro lncRNA, sense 

overlapping, sense intronic, retained intron, antisense 

lincRNA, and 3 prime overlapping ncRNAs were 

finally retained to generate a re-annotated lncRNA 

profile containing 911 lncRNAs. 

 

Bioinformatics analysis 

 

The GSE32894 series, which had a larger sample size 

(N=224), was used to determine the candidate prognostic 

lncRNAs. Through univariate Cox regression analysis of 

the GSE32894 series, lncRNAs that were significantly 

associated with disease-specific survival (DSS) were 

screened out as seed lncRNAs for further analysis 

(P<0.01). The random survival forest-variable hunting 

(RSF-VH) method was employed to identify the optimal 

prognosis-related lncRNAs. Here, we used the method 

with the value argument “nsplit” set to 10, “nrep” set to 

100, and “nstep” set to 5, with 1000 trees grow and the k 

value set to 5 [18, 52]. The expression levels of the most 

valuable lncRNAs were compared among BLCA tissue 

(n=165), cancer-adjacent tissue (n=58) and normal 

bladder mucosa(n=9) in GSE13507. 
 

Weighted by the regression coefficient, a risk score 

formula was constructed based on the expression 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ensembl.org/
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level of each candidate lncRNA. Applying this 

formula, a risk score was calculated for every patient. 

By checking whether the risk score was greater than 

the median, the patients were separated into a high-

risk (higher score) subgroup or a low-risk (lower 

score) subgroup. Kaplan-Meier estimates and the log-

rank test were employed to assess the difference in 

prognosis between the two subgroups. Multivariate 

Cox regression analysis was conducted to determine 

predictive factors for BLCA prognosis and their 

independence from other clinical predictors. Using 

the “rms” package in R, two prognostic nomograms 

were established to predict the 3-year and 5-year DSS 

in GSE32894. One was based on the combination of 

the lncRNA signature with clinical factors, and the 

other was based on this signature alone. The 

predictive abilities of these nomograms were assessed 

with the concordance index (C-index) and calibration 

curves to compare the model-predicted values and 

actual observations of DSS. Receiver operating 

characteristic (ROC) curves were used to determine 

the prognostic value of the risk score, and the area 

under the curve (AUC) was also calculated for 

comparison with other clinical predictors using 

DeLong's test. In this method, patients having shorter 

DSS than the median DSS was labelled as positive 

and patients having longer DSS than the median DSS 

was labelled as negative. Patients surviving shorter 

than the median DSS time at the end of follow-up 

were excluded unless death had been observed. 

Correlation analysis using Pearson correlation 

coefficients was used to explore the associations 

among the 10 lncRNA-based risk scores and the 

expression levels of immune checkpoints and several 

potential therapeutic targets (P<0.01). 

 

P < 0.01 was considered statistically significant in 

univariate Cox regression analysis and Pearson 

correlation analysis. In the rest of the methods, P<0.05 

was considered statistically significant. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA was conducted between the high-risk subgroup 

and low-risk subgroup from the GSE32894 series to 

identify potential cancer-related pathways. GSEA 

software V3.0 was employed to perform this analysis. 

Canonical representations of the biological process 

set, termed “c2.cp.v6.1.entrez.gmt” (1030 gene sets), 

were used in GSEA. The enrichment results were 

visualized in Cytoscape software V3.2.1. 

Dysregulated pathways were mapped in terms of 

biological processes. Gene sets with false discovery 
rate (FDR) values <25% and P<0.05 were termed 

“enriched” after performing 1000 random sample 

permutations. 

ImmuCellAI analysis 

 

ImmuCellAI (http://bioinfo.life.hust.edu.cn/web/ 

ImmuCellAI/) is an emerging tool used to estimate the 

abundance of 24 immune cells and overall infiltration 

scores based on a gene expression data set. The 

infiltrating data of the high-risk group in GSE32894 

(N=112) and the low-risk group in GSE32894 (N=112) 

were obtained from the ImmuCellAI website. The 

abundance of each type of immune cell was then tested 

to detect the differences between the classified 

prognostic risk groups using the Wilcoxon test, and the 

results were visualized by a box plot. P<0.05 was 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Visualization of random survival forest-variable hunting analysis for identifying the ten most 
valuable prognostic lncRNAs. 
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Supplementary Figure 2. Kaplan-Meier estimates of the patients in GSE32894. According to the ncRNA expression level, the 

patients were divided into two groups grouped using the k-means clustering algorithm. 



 

www.aging-us.com 6979 AGING 

 
 

Supplementary Figure 3. Comparison of the expression levels of the 9 (9 out of 10) prognostic lncRNAs in BLCA tissue 
(n=165), cancer-adjacent tissue (n=58) and normal bladder mucosa (n=9) in GSE13507. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–10. 

 

Supplementary Table 1. Out-of-bag importance values of the three lncRNAs. 

Supplementary Table 2. Results of univariate Cox regression analysis of urothelial carcinoma patients’ disease-
specific survival in the GSE32894 training series (N=224). 

Supplementary Table 3. Clinical data of the samples included in this study from the GSE32894 series (N=224). 

Supplementary Table 4. Clinical data of the samples included in this study from the GSE32548 series (N=131). 

Supplementary Table 5. Clinical data of the samples included in this study from the GSE13507 series (N=165). 

Supplementary Table 6. Risk score calculated based on the 10-lncRNA signature for each patient in GSE32894 
(N=224). 

Supplementary Table 7. Risk score calculated based on the 10-lncRNA signature for each patient in GSE32548 
(N=131). 

Supplementary Table 8. Risk score calculated based on the 10-lncRNA signature for each patient in GSE13507 
(N=165). 

Supplementary Table 9. Expression matrix data of three immune checkpoint blockade (ICB) immunotherapy-related 
signatures and three potential therapeutic targeting markers in the GSE32894 training series (N=224). 

Supplementary Table 10. Gene set enrichment analysis describes biological pathways associated with the risk score. 

Supplementary Table 11. Summarized information of the GEO datasets used in the study. 

GEO number Platform 
Number of 

samples 

Date 
Type of sample Experiment type 

Submission  Last update 

GSE13507 GPL6102  

Illumina human-6 v2.0 

expression beadchip 

165 Nov 07, 2008 Feb 03, 2020 primary bladder cancer  Expression profiling by array 

GSE32548 GPL6947  

Illumina HumanHT-12 V3.0 

expression beadchip 

131 Oct 11, 2011 Aug 16, 2018 urothelial carcinomas  Expression profiling by array 

GSE32894 GPL6947  

Illumina HumanHT-12 V3.0 

expression beadchip 

224 Oct 03, 2011 Aug 16, 2018 primary bladder cancer Expression profiling by array 

 

Supplementary Table 12. Condition number of a matrix (K) of the  
10-lncRNA signature in the three data series. 

Series Condition number of a matrix(K) If K<100 

GSE32894 5.25 yes 

GSE32548 2.69 yes 

GSE13507 3.11 yes 

If K < 100, the degree of collinearity is very small; 

If 100 < = k < = 1000, there is a general degree of collinearity; 
If k > 1000, there is a serious collinearity. 
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Supplementary Table 13. Results of univariate Cox regression analysis of the 10 prognostic lncRNAs in every series. 

Univariate Cox proportional-hazards regression model analysis of DSS in patients with BLCA 

Probe ID Gene symbol Beta HR(95%CI for HR) wald.test p 

ILMN_1884070 LOC105375787 4.4 83 (5.2-1300) 9.8 0.0018 

ILMN_1665515 CYTOR 1.2 3.4 (1.5-7.9) 8 0.0046 

ILMN_1728403 URB1-AS1 1.2 3.5 (1.5-7.9) 8.8 0.003 

ILMN_1909784 C21orf91-OT1 3.2 24 (3.3-170) 9.9 0.0016 

ILMN_1656131 CASC15 0.62 1.9 (1.4-2.5) 16 7.60E-05 

ILMN_1910948 LOC101928433 0.91 2.5 (1.3-4.9) 7 0.0083 

ILMN_1813179 LINC00960 -0.39 0.68 (0.51-0.91) 6.7 0.0099 

ILMN_2099858 TTTY19 -4.1 0.017 (0.00078-0.37) 6.7 0.0098 

ILMN_1807464 FLJ45139 1.3 3.5 (1.5-8.4) 8.3 0.004 

ILMN_1904054 HOTAIR 1.9 6.8 (2.9-16) 19 1.00E-05 

GSE13507 

Probe ID Gene symbol Beta HR(95%CI for HR) wald.test p 

ILMN_1656131 CASC15 0.3 1.4 (0.79-2.3) 1.2 0.27 

ILMN_1665515 CYTOR 0.84 2.3 (1.5-3.7) 12 0.00043 

ILMN_1728403 URB1-AS1 0.75 2.1 (0.94-4.8) 3.3 0.069 

ILMN_1807464 FLJ45139 0.16 1.2 (0.8-1.7) 0.69 0.41 

ILMN_1813179 LINC00960 -0.47 0.62 (0.4-0.98) 4.2 0.039 

ILMN_1884070 LOC105375787 0.76 2.1 (0.078-59) 0.2 0.65 

ILMN_1904054 HOTAIR 0.048 1 (0.56-2) 0.02 0.88 

ILMN_1909784 C21orf91-OT1 -0.86 0.42 (0.034-5.3) 0.44 0.51 

ILMN_1910948 LOC101928433 -0.65 0.52 (0.23-1.2) 2.6 0.11 

GSE32548 

Probe ID Gene symbol Beta HR(95%CI for HR) wald.test p 

ILMN_1884070 LOC105375787 2.8 16 (0.4-620) 2.2 0.14 

ILMN_1665515 CYTOR 0.4 1.5 (0.45-5) 0.42 0.52 

ILMN_1728403 URB1-AS1 0.65 1.9 (0.84-4.4) 2.4 0.12 

ILMN_1909784 C21orf91-OT1 1.3 3.5 (0.5-25) 1.6 0.21 

ILMN_1656131 CASC15 0.38 1.5 (1.1-2) 5.4 0.02 

ILMN_1910948 LOC101928433 -0.49 0.61 (0.21-1.8) 0.82 0.36 

ILMN_1807464 FLJ45139 -0.16 0.85 (0.11-6.6) 0.02 0.88 

ILMN_1904054 HOTAIR -0.81 0.44 (0.062-3.2) 0.65 0.42 

ILMN_2099858 TTTY19 2 7.6 (0.25-230) 1.3 0.25 

ILMN_1813179 LINC00960 -0.51 0.6 (0.43-0.84) 8.8 0.0031 

 


