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INTRODUCTION 
 

Renal cell carcinoma (RCC) is one of the most lethal 

cancer types in the urinary system, which accounts for 

85%-95% of renal malignancies and 2%-3% of all 

human tumors [1]. Clear cell renal cell carcinoma 

(ccRCC) is the most common subtype of RCC, 

accounting for approximately 70%-85% of the 

pathological types of cases [2]. In the past three 

decades, the incidence of ccRCC has increased 

gradually and approximately 30% patients already have 

metastasis when they were first diagnosed with ccRCC. 

Currently, treatments for localized ccRCC mainly 

depend on radio-frequency ablation and partial or 

radical nephrectomy; nevertheless, when ccRCC 

progresses to distant metastasis, the curative effect of 
present targeted drug therapies is unsatisfactory [3]. To 

this end, it is necessary to identify accurate predictors in 

ccRCC that are helpful for detecting it early, monitoring 

tumor progression, revealing survival outcome, 
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ABSTRACT 
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carcinoma (ccRCC) patients. In this study, artificial intelligence (AI) algorithms including random forest and 
neural network were trained to build a molecular prognostic score (mPS) system. Afterwards, we investigated 
the potential mechanisms underlying mPS by assessing gene set enrichment analysis, mutations, copy number 
variations (CNVs) and immune cell infiltration. A total of 275 prognosis-related genes were identified, which 
were also differentially expressed between ccRCC patients and healthy controls. We then constructed a 
universal mPS system that depends on the expression status of only 21 of these genes by applying AI-based 
algorithms. Then, the mPS were validated by another independent cohort and demonstrated to be applicable 
to ccRCC subsets. Furthermore, a nomogram comprising the mPS score and several independent variables was 
established and proved to effectively predict ccRCC patient prognosis. Finally, significant differences were 
identified regarding the pathways, mutated genes, CNVs and tumor-infiltrating immune cells among the 
subgroups of ccRCC stratified by the mPS system. The AI-based mPS system can provide critical prognostic 
prediction for ccRCC patients and may be useful to inform treatment and surveillance decisions before initial 
intervention. 
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promoting personalized therapy and for the purpose of 

individualized follow-up strategies. 

 

Currently, the American Joint Committee on Cancer 

(AJCC) tumor node metastasis (TNM) staging system 

and Fuhrman grade have been the most widely accepted 

clinical classification systems for prognostic prediction 

of ccRCC. In addition, the University of California 

Integrated Staging System (UCISS) and stage, size, 

grade, and necrosis (SSIGN) score are also applied [4]. 

However, ccRCC patients with the same clinical stage 

can still have different survival outcomes, suggesting 

that these methods cannot accurately evaluate and 

manage patients with ccRCC [5]. Recent rapid advances 

in research techniques have promoted the development 

of various molecular prognostic indicators [6]. A series 

of genetic or epigenetic alterations have been 

demonstrated to play a vital role in the initiation and 

progression of ccRCC and may serve as potential 

biomarkers for clinical application [7]. Nevertheless, 

none of the tests developed to date are sufficiently 

qualified to predict overall survival. For this reason, a 

more effective and comprehensive tool for under-

standing of the molecular classification characteristics 

of ccRCC is urgently required. 

 

Artificial intelligence (AI) has been known as a field of 

science and engineering involved in the computational 

understanding of intelligent behavior such as perceiving 

one’s environment, acting in complex environments, 

learning and understanding from experience, using 

reasoning to solve problems and to discover hidden 

knowledge, and applying knowledge successfully in 

new situations [8]. Machine learning, a branch of AI 

technology, has been recognized as a collection of data-

analytical techniques aimed at building predictive 

models from multi-dimensional datasets [9]. With the 

utilization of AI-based machine learning method, new 

data could be predicted based on the identified patterns 

through detecting difficult-to-recognize patterns from 

complex combinations of multiple biomarkers [10]. 

Based on these advantages, AI-based machine learning 

has gained great attention and has been widely applied 

in medical fields for image detection, diagnosis, and 

outcome prediction [11]. 

 

In the present study, we created a system applying AI-

based machine learning approaches and applied it to 

establish a universal molecular prognostic score (mPS) 

for overall survival prediction of ccRCC that relies  

on the expression status of 21 genes. During the 

construction of mPS, we applied two prediction models, 

a random forest prediction model and an artificial neural 
network model, for predicting the survival outcome of 

ccRCC. We then validated the mPS system by using 

different patient cohorts. Afterwards, a comprehensive 

nomogram comprising the mPS system and several 

independent variables were set up to predict ccRCC 

patient survival. In addition, we compared the 

differences among three subgroups of ccRCC samples, 

which were divided according to mPS scores, regarding 

mutations and copy number variations (CNVs), and 

immune cell infiltrations. 

 

RESULTS 
 

Differentially expressed genes related to the 

prognosis of ccRCC 
 

The study design was plotted in Figure 1. To study the 

specific genes associated with the prognosis in patients 

with ccRCC, we downloaded gene expression data from 

531 ccRCC samples with clinical survival information 

from The Cancer Genome Atlas (TCGA) database. The 

detailed characteristics are presented in Table 1. We 

divided the 531 ccRCC samples into a high expression 

group and a low expression group according to the 

median expression of genes, and then observed the 

relationships between gene expression level and overall 

survival (OS) in these two groups. A total of 2317 OS-

related genes in the TCGA discovery cohort were 

identified including Interleukin 20 Receptor Subunit 

Beta (IL20RB) and KL (Klotho) (Figure 2A, 2B). Then 

the gene differential expression analysis was conducted 

on 531 ccRCC samples and 72 healthy control samples 

in TCGA. Based on the Limma R package, a total of 

2275 genes were identified to differentially express 

between ccRCC patients and healthy controls. After 

intersection with the prognosis-related genes and 

differential expressed genes, a total of 275 differentially 

expressed genes which were associated with the 

prognosis of ccRCC were retained (Figure 2C). In 

particular, IL20RB and KL were the most promising 

prognosis-related genes, with the lowest and highest 

hazard ratios (HRs), respectively, in the TCGA 

discovery cohort. The integrated HR for top 40 

prognosis related genes in the TCGA data sets were 

plotted at Figure 2D. 
 

AI-based development of the mPS system 
 

In order to verify whether these 275 genes are enough 

to predict the survival rate of ccRCC patients at 3 

years, we used the TCGA ccRCC cohort to construct a 

molecular prognosis score system as illustrated in 

detail in the Materials and methods. We first used the 

random forest algorithm for feature gene screening. 

When the cutoff of feature importance was set to 0.5, a 

total of 21 genes were identified and then used for the 
following artificial neural network construction. The 

survival curves of the 21 genes were illustrated at 

Figure 3. 



 

www.aging-us.com 7363 AGING 

The neural network model consisted of an input layer, 

two hidden layers and an output layer. The 21 genes 

were used as the input layer, and the middle 2 hidden 

layers included 4 neurons and 2 neurons, respectively. 

The output layer used the softmax activation function 

and consisted of two dimensions, each of which 

represented an outcome: alive or deceased. Based on the 

constructed neural network model, we obtained the 

weight of each gene, and then built a mPS system, 

which was measured by summation of “Gene-Score” × 

“Gene-Weight” for all 21 genes. For the TCGA cohort, 

the mPS value ranges from 0 to 71.57 (Table 2). Under 

each mPS value, the samples were stratified into three 

groups: low-mPS (mPS < 22), median-mPS (22 ≤ mPS 

< 30), and high-mPS group (mPS ≥ 30). Then, survival 

analysis was conducted with the Kaplan-Meier (K-M) 

method and log-rank statistical test. The results 

indicated that there was a significant difference among 

the three groups (Figure 4A). 

 

Validation of the mPS system in independent cohorts 

 

To assess whether mPS is feasible for the prediction of 

prognosis in other independent ccRCC cohorts, we 

investigated another ccRCC data set from International 

Cancer Genome Consortium (ICGC, https://icgc.org/). 

The detailed characteristics of ICGC cohort are 

presented in Table 3. We first calculated the mPS score 

of each sample in the ICGC data, and then divided the 

samples into different groups according to the above 

mentioned methods. Since the sample size of ICGC 

database is too small, we only divided the ICGC dataset 

into two groups: low-mPS (mPS < 22) and high-mPS 

(mPS ≥ 22) groups. The results revealed that there was a

 

 
 

Figure 1. Study pipeline. In this study we first used the TCGA clear cell renal cell carcinoma (ccRCC) cohort to identify a list of 275 genes, 

which were associated with the prognosis of ccRCC patients according to survival analysis and were also differentially expressed between 
ccRCC patients and healthy controls. Then, artificial intelligence (AI) methods including random forest and neural network were applied to 
establish the mPS system based on 21 prognosis-related genes. Then, we validated the mPS system by using the ICGC cohort. Next, we found 
that the mPS system could be applied to ccRCC subsets. Moreover, we evaluated the mPS system by conducting univariate and multivariate 
Cox regression analysis of the TCGA dataset and built a nomogram comprising the mPS score and several independent variables to predict 
ccRCC patient prognosis. Finally, we explored the potential mechanisms underlying the mPS system by performing gene set enrichment 
analysis (GSEA), mutations, copy number variations (CNVs) and immune cell infiltration analysis. 

https://icgc.org/
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Table 1. TCGA cohort ccRCC patient characteristics. 

Clinical characteristic Variable Total Percentages (%) 

Age (years) >60 266 50.09 

 ≤60 265 49.91 

Gender Female 186 35.03 

 Male 345 64.97 

Laterality Left 250 47.08 

 Right 280 52.73 

 Others 1 0.19 

Histological grade G1 14 2.64 

 G2 227 42.75 

 G3 207 38.98 

 G4 75 14.12 

 GX 5 0.94 

 Unknown 3 0.56 

T T1 272 51.22 

 T2 69 12.99 

 T3 179 33.71 

 T4 11 2.07 

N N0 239 45.01 

 N1 16 3.01 

 NX 276 51.98 

M M0 420 79.10 

 M1 78 14.69 

 MX 31 5.84 

 Unknown 2 0.38 

Pathological stage Stage I 266 50.09 

 Stage II 57 10.73 

 Stage III 123 23.16 

 Stage IV 82 15.44 

 Unknown 3 0.56 

Survival status Alive 359 67.61 

 Dead 172 32.39 

 

significant difference about the prognosis among 

different mPS groups. These findings demonstrated that 

mPS can stratify prognosis in different ccRCC cohorts 

(Figure 4B). 

 

Application of the mPS system to ccRCC subsets  

 

We further investigated whether mPS is also applicable 

to distinguish samples with different prognosis in 

different ccRCC subsets in TCGA data set. The results 

indicated that there was a significant difference 

regarding the prognosis among different mPS groups of 

patients in low-, median- and high-mPS groups at the 

clinical T1 and T2 stage in TCGA cohort (Figure 4C). 

Meanwhile, we also examined the utility of mPS for 

different TNM tumor stages determined from clinical 

information in ICGC cohort. The results suggested that 
the mPS system also stratified OS of patients in low- 

and high-mPS groups at the clinical T1 and T2 stage in 

the ICGC cohort (Figure 4D). We thus conclude that the 

mPS system can further stratify different ccRCC subsets 

in different ccRCC cohorts. 

 

Univariate and multivariate Cox regression of mPS 

 

To determine whether the prognostic ability of mPS for 

survival prediction was independent from other clinical 

parameters as a prognostic factor for ccRCC, we carried 

out univariate Cox regression analysis and multivariate 

Cox regression analysis on mPS and other clinical factors 

(age, gender, grade, stage, metastasis, lymph node, 

hemoglobin, platelet, and calcium result). The univariate 

analysis revealed that the variables of age, histological 

grade, stage, metastasis result, lymph node result, platelet 

result, hemoglobin and mPS score were significantly 

related to the prognosis of ccRCC patients (P<0.05). 

When entered into the significant factors into multivariate 
Cox regression analysis, the mPS score (HR=0.46, 

P<0.001), metastasis result (HR=1.83, P=0.002), platelet 

result (HR=1.74, P=0.016), hemoglobin result (HR=1.60, 
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P=0.007), age (HR=1.58, P=0.003) and stage (HR=2.18, 

P=0.025) were found to be independently associated with 

OS in the entire TCGA cohort (Table 4). These results 

demonstrated that the mPS system could be applied 

independently to predict the survival outcomes of ccRCC 

patients. 

Establishment of the nomogram model for survival 

prediction 
 

In order to gain an effective tool to predict the survival 

probability with ccRCC patients, a nomogram was 

constructed based on mPS and clinical information

 

 
 

Figure 2. Identification of prognosis-related genes in the TCGA ccRCC cohort. (A, B) Kaplan-Meier curves of OS for the TCGA cohort 
based on IL20RB and KL expression levels, respectively; (C) Venn diagram of prognostic-related genes and differentially expressed genes in 
TCGA cohort; (D) The integrated HR for Top 40 prognosis-related genes in the TCGA data sets. 
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using the TCGA cohort. After integrating all significant 

independent variables, the final model was established 

and presented as a nomogram to estimate the probability 

of the 3- and 5-year OS for ccRCC (Figure 5A). C-

index was calculated to assess the predictive value of 

the model. The nomogram had a C-index of 0.79, which 

revealed relatively high discrimination ability. In 

addition, the calibration plots exhibited optimal 

agreement between the model prediction and actual 

observation for predicting ccRCC survival probability at 

3- and 5- year (Figure 5B, 5C). 

 

Gene set enrichment analysis-based KEGG analysis 

 

Based on the Limma R package, a total of 434 genes 

were identified to differentially express between low- and

 

 
 

Figure 3. The survival curves of the 21 prognosis-related genes used for constructing the mPS system. 
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Table 2. The 21 genes necessary and sufficient for calculation of mPS. 

Symbol Gene ID Full name 
Score 

(high) 

Score 

(low) 
Weight 

DDAH1  23576 Dimethylarginine dimethylaminohydrolase 1 1 0 3.580 

CRABP2  1382 Cellular retinoic acid binding protein 2 0 1 3.009 

TGFA  7039 Transforming growth factor alpha 1 0 3.425 

SEMA3G  56920 Semaphorin 3G 1 0 3.042 

SPATA18  132671 Spermatogenesis associated 18 1 0 4.169 

PTTG1  9232 Pituitary tumor-transforming gene 1 0 1 3.344 

SCGN  10590 Secretagogin 1 0 4.200 

CYP39A1  51302 Cytochrome P450 family 39 subfamily A member 1 1 0 3.595 

CLDN4  1364 Claudin 4 1 0 3.541 

ZNF395  55893 Zinc finger protein 395 1 0 3.977 

IL15RA  3601 Interleukin 15 receptor subunit alpha 0 1 3.859 

APLNR  187 Apelin receptor 1 0 3.072 

APOLD1  81575 Apolipoprotein L domain containing 1 1 0 3.207 

NTN4  59277 Netrin 4 1 0 3.723 

PABPC1L  80336 Poly(A) binding protein cytoplasmic 1 like 0 1 3.670 

UBE2C  11065 Ubiquitin conjugating enzyme E2 C 0 1 4.217 

CDH4  1002 Cadherin 4 1 0 3.183 

GNG7  2788 G protein subunit gamma 7 1 0 3.515 

CEACAM1  634 CEA cell adhesion molecule 1 1 0 3.506 

PLAUR  5329 Plasminogen activator, urokinase receptor 0 1 3.418 

SIM2  6493 SIM bHLH transcription factor 2 0 1 3.364 

 

high-mPS groups, of which 279 genes were up-

regulated and 155 genes were down-regulated in high-

mPS group compared with low-mPS group. The 

principal component analysis result was plotted at 

Figure 6A while the volcano plot of the differentially 

expressed genes was illustrated at Figure 6B. In 

addition, the heat map of the top 50 differentially 

expressed genes was presented at Figure 6C. The 

differentially expressed genes were then selected for 

Gene set enrichment analysis (GSEA) analysis. As a 

result, a total of 20 prominent Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways including 

activated and suppressed pathways were selected (Figure 

6D). Activated pathways mainly includes ultraviolet (UV) 

response, transforming growth factor-beta (TGF-beta), 

heme metabolism, adipogenesis, and bile acid metabolism 

while suppressed pathways were mainly concentrated on 

IL6/JAK/STAT3 signaling, DNA repair, allograft 

rejection, complement, E2F targets, epithelial mesen-

chymal transition, G2M checkpoint, and inflammatory 

response. GSEA enrichment plots of representative gene 

sets on “epithelial mesenchymal transition”, “IL6/ 

JAK/STAT3 signaling”, “complement”, “E2F targets”, 

and “DNA repair” were also shown in Figure 6E–6I. 

 

Landscape of mutation profiles  

 

The somatic mutation profiles of 531 ccRCC patients 

were also downloaded from TCGA. According to the 

above analysis, the TCGA ccRCC samples can be 

divided into three groups, namely low-mPS group 

(mPS<22), median-mPS group (22≤mPS<30), and high-

mPS group (mPS≥30), and the number of samples in 

these three groups were 129, 55, 347, respectively. The 

“maftools” package was applied to visualize the results 

according to the mutation data with VCF format. The 

statistically significant mutated genes were identified. 

Here we mainly focused on the top ten significantly 

mutated genes for in-depth analyses. A total of 16 

significantly mutated genes were then retrieved after 

taking the combination of the top 10 mutated genes in 

the three groups. The mutation distributions and 

annotations of the identified 16 genes in these three 

groups of samples were illustrated in waterfall plot 

(Figure 7A–7C). The results indicated that there were 

significant differences regarding the mutations among 

the three groups stratified by mPS system, which may 

help us understand the promising utility of mPS to some 

degree. 

 

Copy number variation analysis 

 

The segmented CNVs in the three subgroups of ccRCC 

samples were applied to screen the significantly 

frequent CNVs by the Genomic Identification of 

Significant Targets in Cancer (GISTIC) method. 

Specifically, in the low-mPS subgroups (mPS<20), the 

amplifications of 7q, 7p and deletions of 9p, 9q were 
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identified more significant. In addition, in the median-

mPS subgroups (22≤mPS<30), the amplifications of 5q, 

5p and deletions of 3p, 4q were considered statistically 

significant. Moreover, in the high-mPS subgroups 

(mPS≥30), frequent amplifications were observed in 

chromosomal arms 7q, and 7p, and deletions were 

observed in 9p, and 9q. Chi-square test was performed 

on the frequency distribution of each chromosome 

arm. The frequency distribution of amplification and 

deletion of chromosome arms in the three groups of 

samples obtained by GISTIC analysis were presented 

at Figure 7D. 

 

 
 

Figure 4. mPS system can precisely stratify prognosis of ccRCC patients and is applicable to T1 and T2 ccRCC subsets. (A) 
Kaplan-Meier curves of OS according to mPS for the TCGA cohort; (B) Kaplan-Meier curves of OS according to mPS for the ICGC cohort; (C) 
Kaplan-Meier curves according to mPS for OS of patients at clinical T1 and T2 stage in the TCGA cohort; (D) Kaplan-Meier curves according to 
mPS for OS of patients at clinical T1 and T2 stage in the ICGC cohort. 
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Table 3. ICGC cohort ccRCC patient characteristics. 

Clinical characteristic Variable Total Percentages (%) 

Age (years) >60 45 49.45 

 ≤60 46 50.55 

Gender Female 39 42.86 

 Male 52 57.14 

Status Alive 61 67.03 

 Deceased 30 32.97 

T T1 51 56.04 

 T2 9 9.89 

 T3 27 29.67 

 T4 1 1.10 

 Unknown 3 3.30 

N N0 79 86.81 

 N1 2 2.20 

 NX 10 10.99 

M M0 81 89.01 

 M1 9 9.89 

 MX 1 1.10 

Fuhrman grade G1 13 14.29 

 G2 48 52.75 

 G3 15 16.48 

 G4 14 15.38 

 Unknown 1 1.10 

 

Table 4. Univariate and multivariate analyses of OS in the TCGA cohort. 

Variables 
Univariate analysis Multivariate analysis 

HR 95%CI P HR 95%CI P 

mPS  
High vs. Low 

 
0.31 0.22-0.42 <0.001 0.46 0.32-0.65 <0.001 

Grade  
3&4 vs. 1&2 

 
2.60 1.85-3.67 <0.001 1.41 0.98-2.02 0.07 

Gender 
Male vs. Female 

 
0.94 0.69-1.28 0.700    

Hemoglobin  
Low vs. Normal 

 
2.37 1.66-3.39 <0.001 1.60 1.14-2.26 0.007 

Age  
Older vs. Younger 

 
1.70 1.26-2.29 <0.001 1.58 1.17-2.14 0.003 

Metastasis  
M1 vs. M0 

 
4.33 3.17-5.92 <0.001 1.83 1.24-2.70 0.002 

Lymph node  
N1 vs. N0 

 
3.43 1.82-6.46 0.001 1.30 0.67-2.50 0.44 

Stage  
III&IV vs. I&II 

 
3.93 2.86-5.39 <0.001 2.18 1.10-4.32 0.025 

T stage  
T3&T4 vs. T1&T2 

 
3.21 2.39-4.35 <0.001 0.89 0.49-1.62 0.72 

Calcium  
Low vs. Normal 

 
0.82 0.57-1.16 0.300    

Platelet  
Elevated vs. Normal 

 
3.76 2.49-5.68 <0.001 1.74 1.11-2.71 0.016 
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Then, the CNVs located on minimal common regions 

(MCRs) were detected in the three subgroups of ccRCC 

samples (Figure 7E–7G). In the low-mPS subgroups, 26 

MCRs of CNVs were identified including 11 

amplifications and 15 deletions. The most significant 

gained regions were located at 5q35.3, while the most 

significant regions of loss were located at 3p22.1 and 

3p25.3. The distribution of these MCRs in the genome was 

shown in Figure 7. In the median-mPS subgroups, a total 

of 8 amplifications and 8 deletions of MCRs were 

detected. In detail, regions 5q23.3 and 5q23.2 with 

amplifications and 3p22.3, 3p12.3 with deletion were the 

most frequently altered sites. Moreover, a total of 6 

amplifications and 6 deletions of MCRs were detected in 

the high-mPS subgroups. The most significant 

amplification regions were 5q35.3, 5q21.3, etc., while the 

most significant deletion regions were 3p21.31, 3p14.1, 

etc. Collectively, these findings suggested that the level of 

chromosomal amplification and deletion was correlated 

with the mPS score and prognosis, as a worse outcome 

subgroup (low-mPS subgroup) has more genomic 

abnormality compared with other groups. In general, a 

worse outcome may be correlated with more genomic 

abnormality, revealing that the chromosomal amplification 

and deletion identified by mPS system can be a patient 

stratification for immune checkpoint therapy. 

 

Immune cell infiltration in the tumor 

microenvironment 

 

Immune cell infiltration has been recognized as one of 

the most important factors that may positively or 

 

 
 

Figure 5. Nomogram construction results. (A) Nomogram to predict the 3- and 5-year OS for ccRCC patients in the TCGA cohort; (B, C) 
calibration curves for the nomogram model of the 3- and 5-year OS. 



 

www.aging-us.com 7371 AGING 

negatively shape tumor initiation, progression, or 

survival outcome. In this study, we analyzed the 

composition of tumor-infiltrating immune cells in 

ccRCC samples based on the RNA-seq data of ccRCC 

samples in TCGA using CIBERSORT. When 

characterizing the abundances of different immune cell 

types with CIBERSORT, 22 subsets of tumor-

infiltrating immune cells in 531 samples were obtained 

at a threshold of P-value < 0.05, including memory B 

cells, activated dendritic cells, and M0 macrophage. The 

distribution results of the inferred fractions of immune 

cell populations in different samples produced by

 

 
 

Figure 6. GSEA analysis results of differentially expressed genes between low- and high-mPS groups. (A) Principal component 

analysis result; (B) Volcano plot of the differentially expressed genes; (C) The heat map of the top 50 differentially expressed genes; (D) 
Significantly enriched activated and suppressed KEGG pathways. The vertical items are the names of KEGG terms, and the length of 
horizontal graph represents the gene ratio. The depth of the color represents the adjusted p-value. The area of circle in the graph means 
gene counts. (E–I) GSEA-based KEGG-enrichment plots of representative gene sets from activated and suppressed pathways: “IL6/JAK/STAT3 
signaling” (E), “DNA repair” (F), “complement” (G), “E2F targets” (H), and “epithelial mesenchymal transition” (I). 
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Figure 7. Mutations and copy number variations in the three subgroups stratified by mPS system. (A–C) Distribution and 
phenotype of common gene mutations in the three subgroups stratified by mPS system: (A) low-mPS group (mPS<22); (B) median-mPS group 
(22≤mPS<30); (C) high-mPS group (mPS>30). (D) The levels of amplification and deletion of chromosome arms of the three subgroups 
stratified by mPS system. Objects with pentagrams indicate there is a significant difference in the frequency distribution among the three 
subgroup (P < 0.01); (E–G) The copy number variations located on minimal common regions (MCRs) of the three subgroups stratified by mPS 
system: (E) low-mPS group (mPS<22); (F) median-mPS group (22≤mPS<30); (G) high-mPS group (mPS≥30). 
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CIBERSORT were illustrated at Figure 8A. In addition, 

Figure 8B depicted the differences of the ratio 

distributions of 22 infiltrating immune cells in the three 

subgroups of samples including low-mPS, median-mPS, 

and high-mPS group. The significant immune gene 

signatures among the three groups included signatures 

for naive B cells, plasma cells, CD8 T cells, CD4 

memory resting T cells, CD4 activated memory T cells, 

follicular helper T cells, regulatory tregs T cells, resting 

NK cells, monocytes, M0 macrophages, M1 macro-

phages, M2 macrophages, resting mast cells, and 

neutrophils, suggesting that considerable variability 

existed in the nature of the tumor immune infiltrate 

across different subgroups of ccRCC stratified by the 

mPS system, partly accounting for molecular features of 

the tumor underlying mPS system. 

 

DISCUSSION 
 

Although the advances of diagnostic techniques and 

comprehensive treatment have enhanced the survival 

and life quality of ccRCC patients to some extent, about 

30% of patients undergoing curative nephrectomy still 

developed recurrence and metastasis when the clinical 

outcomes are poor. In recent years, the utilization of 

high-throughput sequencing technology has brought up 

a series of genome-wide biomarkers for ccRCC. 

However, they are still not enough for accurate 

prediction and individualized treatment. Therefore, 

exploring prognostic tools to more accurately manage 

patients with ccRCC with poor survival is becoming 

increasingly significant. In this study, we developed a 

new molecular prognostic signature (mPS system) to 

predict the overall survival of ccRCC patients. 

 

We first identified 275 differentially expressed genes 

which were associated with the prognosis of ccRCC. 

We then used two computational learning models 

(neural network and random forest) to further screen 21 

genes for establishing the mPS system, which combined 

gene expression level, HR value and gene weight. The 

survival analysis indicated that there was a significant 

difference among the three subgroups stratified by the 

mPS system. Moreover, the prognostic value of the 

mPS system was validated in independent ccRCC 

cohorts. Besides, we confirmed that the mPS system is 

also applicable to distinguish samples with different 

prognosis in different ccRCC subsets. In our study, we 

demonstrated that the mPS system may offer valuable 

information to clinicians regarding variables that are the 

most useful for patient stratification. 

 

As we all know, ccRCC is a heterogeneous tumor with 

various confounding factors involved in the initiation 

and progression of this disease. In this study, univariate 

and multivariate Cox regression analyses were 

conducted to assess the correlation between several 

clinical factors, along with mPS and survival outcome 

of ccRCC patients. The results showed that mPS  

score and several clinical factors were independent 

prognostic factors in patients with ccRCC. Afterwards, 

a promising clinicopathologic prognostic nomogram 

was constructed by modeling mPS score and significant 

factors to predict the 3-, and 5-year OS for patients with 

ccRCC. Nomograms have frequently served as a vital 

component of modern medical decision-making under 

complicated clinical conditions without needing 

standard guidelines [12]. They can make the results of 

prediction models clear by presenting visual graphical 

interfaces, thus providing an opportunity to assess 

various patient-based variables and predicting a 

patient’s individualized risk for survival or a specific 

outcome [13]. Our developed nomogram has indicated 

moderately high discrimination and sufficient 

calibration. We suggest using this nomogram to further 

improve the personalized management of ccRCC 

patients. 

 

After reviewing the existing literatures, we found that 

these twenty-one genes are more or less related to 

tumors. Among them, ten genes were identified directly 

associated with ccRCC based on PubMed literature 

reports. For example, Semaphorin 3G (SEMA3G) has 

been identified as an immune-related gene which is 

associated with the prognosis of ccRCC patients [14, 

15]. Pituitary tumor-transforming gene 1 (PTTG1) is a 

recently identified oncogene involved in the progression 

of malignant tumors, and the expression of the PTTG1 

oncogene has been confirmed to be related to 

progression and prognosis of ccRCC patients [16]. 

There is growing evidence that Claudin 4 (CLDN4) 

plays a significant role in the occurrence and 

development of chromophobe renal cell carcinoma and 

could serve as an independent risk biomarker for the 

overall survival in patients with chromophobe renal cell 

carcinoma [17]. Zinc finger protein 395 (ZNF395), a 

ccRCC master regulator, was identified as a 

downstream protein of CCDC50-S, and the interaction 

initiated oncogenic pathways which were highly 

associated with the pathogenesis of ccRCC [18]. Apelin 

receptor (APLNR) expression was negatively related to 

PD-L1 expression by tumor cells in a subset of patients 

with ccRCC and the expression of APLNR has been 

recognized as an independent prognostic factor for 

survival of patients with ccRCC [19]. Recent evidence 

has identified Ubiquitin conjugating enzyme E2 C 

(UBE2C) as a pathological stage-relevant gene, which 

is associated with carcinogenesis and progression in 

ccRCC, and may provide potential diagnostic, 
therapeutic and prognostic biomarkers for ccRCC [20]. 

Previous studies have indicated Cadherin 4 (CDH4) was 

significantly linked with the survival outcome of 
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ccRCC patients and the transcriptional level of CDH4 

may serve as an effective diagnostic and prognostic 

biomarker for ccRCC patients [21]. Recent findings 

reveal that G protein subunit gamma 7 (GNG7) is a 

tumor suppressor in ccRCC progression and has a 

potential to serve as a new biomarker or therapeutic 

target in ccRCC [22]. CEACAM1 has been known as a 

tumor suppressor in various epithelial tumors. Transient 

expression of CEACAM1 by tumor cells and 

subsequent homophilic interaction with CEA cell 

adhesion molecule 1 (CEACAM1) on tumor-infiltrating 

lymphocytes may provide a novel immune escape 

mechanism in ccRCC. Moreover, Plasminogen 

activator, urokinase receptor (PLAUR) was developed 

and validated as a prognostic immune-associated gene 

signature in ccRCC along with other six genes [23]. 

 

 
 

Figure 8. Immune subtypes in patients with ccRCC. (A) Unsupervised clustering of all samples based on immune cell proportions in 
low-, median- and high-mPS groups; (B) 22 types of adaptive and innate immune cells in low-, median- and high-mPS groups (ns, P>0.05; 
*,P<0.05; **, P<0.01; ***, P<0.001; ***, P<0.0001;by unpaired two-tailed t test). 
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However, eleven genes (CRABP2, DDAH1, TGFA, 

SPATA18, SCGN, CYP39A1, IL15RA, APOLD1, 

NTN4, PABPC1L, and SIM2) have not been studied in 

relation to ccRCC, according to PubMed searches for 

“GENE and ccRCC”. Further basic and clinical studies 

are required to validate our observations and the 

mechanisms underlying the prognostic value of 21 

genes on which mPS is based and for the development 

of novel therapeutic targets to prolong OS of ccRCC 

patients. 

 

Recently, AI-based algorithms have been successfully 

applied in medical fields as they are capable of learning 

patterns from massive, complex datasets and creating 

useful predictive outputs [24]. Moreover, AI-based 

technologies are well adapted to rapid, high-volume 

data processing, promoting tailored and specific 

management according to each patient’s characteristics 

[25]. In particular, artificial neural networks are 

computational models inspired by biological neural 

networks, which are currently most common practiced 

models of AI-based algorithms developed for survival 

prediction and decision-making [26]. Another AI 

technique is the random forest tool, which is a 

multivariate prediction model that conducts a 

computationally extensive and robust data-mining and 

could handle large sets of proposed variables as inputs 

for screening variables related to the outcomes of 

interest [27]. Recently, Nakayama et al. established a 

universal mPS system that relies on the expression 

status of 23 genes by using AI models (random forest 

and neural network), which is applicable to almost all 

subsets of breast cancer patients [28]. Moreover, 

Aramini et al. set up a mPS system for stratifying early-

stage, resected lung cancer patients, which could be 

used for predicting risk of distant recurrence and 

informing treatment and surveillance decisions [29]. In 

our study, we developed the mPS system based on two 

computational learning models (AI-based random forest 

and neural network), which has exhibited promising 

predictive performance for ccRCC patients.  

 

Based on the mPS system, we preliminarily divided 

ccRCC patients into low- and high-mPS groups. Then, 

differentially expressed genes between these two groups 

were identified and used for GSEA analysis. A series of 

activated and suppressed pathways were identified 

including “epithelial mesenchymal transition”, 

“IL6/JAK/STAT3 signaling”, “complement”, “E2F 

targets”, and “DNA repair”, which are highly involved 

in the initiation and progression of ccRCC. For 

example, the epithelial mesenchymal transition (EMT) 

has now been recognized as a complicated biological 
trans-differentiation process, promoting epithelial cells 

to transiently gain mesenchymal features, containing 

motility and metastatic potential [30]. EMT has been 

highly involved in a extensive range of malignant tumor 

types including ccRCC and can be driven by a 

conserved set of inducing signals, transcriptional 

regulators and downstream effectors [31]. IL-

6/JAK/STAT pathway is aberrantly hyper-activated in 

many types of cancer including ccRCC and plays a 

significant part in the progression of cancer cachexia 

through regulating the inflammatory response [32]. 

Studies have convinced the roles of DNA repair 

deregulation in promoting immune recognition and 

immune destruction of cancer cells [33]. Emerging 

evidence has identified that defects in DNA repair 

machinery play an important part in the pathogenesis 

and progression of human cancer [34]. Moreover, the 

information gathered so far indicated that E2F is one of 

the most important transcription factors that regulates 

various cellular functions related to cell cycle and 

apoptosis and involves not only in proliferation and 

tumorigenesis but also in apoptosis and differentiation 

[35]. These pathways may provide new insights for the 

occurrence and development of ccRCC. 

 

In recent years, it is widely acknowledged that genetic 

or epigenetic alterations play an important role in a 

variety of transcriptional and non-transcriptional 

biological processes [36]. Mutations and CNVs have 

been vital forms of epigenetic modifications, which can 

cause genomic and molecular phenotype heterogeneity, 

promoting the initiation and progression of complex 

diseases, including cancer [37, 38]. In this study, we 

presented an integrative analysis of multiple types of 

genomic data, including mutations, and CNVs. We 

identified 16 significantly mutated genes, the mutation 

distributions and annotations of which were statistically 

different in the three groups stratified by mPS system. 

Moreover, the significantly frequent CNVs in the mPS 

subgroups of ccRCC samples were identified by 

GISTIC. In addition, the CNVs located on MCRs were 

also detected in the three subgroups of ccRCC samples. 

The results revealed that the CNVs were significantly 

different among different mPS subgroups. Moreover, a 

worse outcome is correlated with more genomic 

abnormality. These findings further supported the 

promising predictive value of mPS system and provided 

potential therapeutic targets for ccRCC patients.  

 

Increasing evidence supports the importance of the 

immune infiltration of tumors on the initiation and 

progression of various tumors, which could provide 

potential biomarkers to improve the reliability and 

precision of diagnosis and prognosis [39]. Recent 

studies have extensively investigated the dysfunction of 

immune cell infiltration in promoting the metastasis and 
invasion of ccRCC through mediating tumor cell 

budding and disruption of focal basal cell layer [40]. In 

this study, we applied the newly developed algorithm 
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CIBERSORT to estimate different expressional cell 

patterns of immune infiltration in different mPS 

subgroups. The distributions of immune cell fractions in 

ccRCC tissues were significantly different among 

different subgroups stratified by the mPS system. 

Several important immune cells were identified 

differentially expressed among the mPS subgroups, 

including naive B cells, CD8 T cells, CD4 memory 

resting T cells, CD4 activated memory T cells, which 

may explain the prognosis differences of the low-mPS, 

median-mPS, and high-mPS group. 

 

The advantage of this study is that, firstly, we 

developed a simple and cost-effective mPS system by 

using multivariate models including neural network 

and random forest, which were beneficial to obtain a 

stable scoring system. Secondly, the scoring model 

was verified in the ICGC data set, and this scoring 

model is also effective for subgroups. Moreover, the 

sub-population samples were further characterized, 

adding mutation analysis, CNV analysis, and immune 

infiltrating cell ratio analysis. The mutations, CNVs 

and tumor immune infiltrations will provide new 

insights into carcinogenesis and might promote to 

identify potential therapeutic targets for ccRCC. We 

also combined the mPS system with several 

independent variables into a predictive nomogram, 

which could provide convincing information for 

helping clinicians to illustrate the prognosis of patients 

with ccRCC. 

 

 Nevertheless, there are inevitably several limitations of 

our study that should be acknowledged. To begin with, 

the number of samples with follow-up data of the 

validation cohort was limited due to availability, which 

limits the ability to adjust for confounding factors. 

Thus, additional large validation datasets are required to 

further improve prediction performance of the mPS 

system. Then, we were unable to compare the 

prognostic value of mPS with that of other 

representative models. Furthermore, these results from 

our study were provided through analytic methods and 

machine learning without experimental validation. 

Thus, it is of great importance to find the molecular 

mechanism for further characterization of mPS.  

 

CONCLUSIONS 
 

In summary, we developed a new molecular prognostic 

model with AI-based methods, called the mPS system, 

based on expression levels of twenty-one prognostic 

genes. The mPS system obtained from AI-based method 

can be used as a medical decision support system that 

may provide critical information for prognostic 

assessment of patients with ccRCC before initial 

intervention. In addition, we explored the potential 

mechanisms underlying the mPS system by performing 

GSEA analysis and evaluating the differences of 

mutations, CNVs and immune cell infiltrations among 

the subgroups stratified by the mPS system, which 

should be validated to further characterize the molecular 

background of the mPS system. 

 

MATERIALS AND METHODS 
 

Data source 

 

The mRNA expression data of TCGA ccRCC discovery 

cohort (comprising 72 normal specimens and 539 

ccRCC specimens) were retrieved from the UCSC Xena 

database (https://xenabrowser.net/datapages/) [41]. 

Clinical data pertaining to patients’ age, gender, grade, 

stage, survival outcome were also acquired from the 

TCGA data portal by using cgdsr package in R, which 

contained clinical information of 531 ccRCC patient 

samples. We downloaded 523 SNP6 copy number 

samples with corresponding transcriptome data from 

http://firebrowse.org/. Moreover, the R-based 

TCGAbiolinks was employed to collect the SNP data of 

ccRCC, which consists of 380 samples with 

corresponding transcriptome data. We adopted another 

ccRCC data set from the ICGC database as the 

validation cohort, which covers 91 ccRCC samples with 

mRNA expression and clinical data [42]. 

 

Identification of prognosis-associated genes and 

differential expression analysis 

 

The public data were retrieved from https://xenabrowser. 

net/datapages/. All human protein-coding genes were 

assessed the potential utility as a prognostic predictor 

with the TCGA ccRCC discovery cohort. The K-M 

method was performed for survival analysis by using R 

package survival and survminer [43]. According to the 

median value of gene expression, the ccRCC samples 

were divided into high or low expression group for a 

particular gene. The cox regression analysis in the 

survival package was applied to calculate the HR and 

95% confidence interval (CI) of each prognosis-related 

gene. LIMMA R software package was used to analyze 

differential expressed genes [44]. The adj.P-value <0.05 

and a |log2FC| >2 were regarded as the cutoff values of 

statistical significance. 

 

Random forest prediction model 

 

Random forest is one of the most widely used 

nonparametric techniques for data classification and 

regression analysis [45]. The idea of random forest is to 

establish multiple trees that use randomly generated 

samples from existing situations with a bootstrapping 

technique and to generate an average prediction of the 

https://xenabrowser.net/datapages/
http://firebrowse.org/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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individual trees [46]. The basic unit of random forest is a 

decision tree. To classify a sample, each tree in the forest 

is given a random input vector and all vectors in the 

random forest are independent and identically distributed. 

Random forest is designed to randomize the column 

variables and row observations of the dataset, generate 

multiple classification subgroups, and finally summarize 

the classification results. In this study, we applied the R 

package randomForest to build the random forest 

prediction model by using the ccRCC samples in TCGA. 

The expression status of 275 selected prognostic-related 

differentially expressed genes was used as the model 

input, while the survival status of the sample in the third 

year (alive=0, deceased=1) was selected as the output, 

where ntree was set to 500 and maximum depth (max-

depth) was set to 10. To assess the generalized 

performance, we applied a stratified 10-fold cross-

validation test (CV = 10). We measured the importance 

of each feature by referring to the average decrease value 

of node impurity: the larger the value, the greater 

importance of the variable. After a 10-fold cross-

validation, we identified 21 genes on the basis of feature 

importance values for further artificial neural network 

mode (cutoff=0.5). 

 

Artificial neural network mode 

 

We first transformed the expression status of the 21 

genes to “Gene-Score” based on the expression level 

(above or below the median) and integrated HR for each 

gene with the following step function: 
 

Gene-score matrix 
 Gene expression 

 low high 

Integrated HR 
<1 1 0 

>1 0 1 

 

Subsequently, an artificial neural network system was 

constructed and trained. At each hidden neuron node, 

the ReLU (rectified linear unit) was applied as the 

activation function [47]. In the output layer, two nodes 

were set including a1 and a2, which represented alive 

and deceased, respectively. We employed a softmax 

function for each node, and designated y2 (probability 

of death; that is, the a2 node) as Y. We applied cross 

entropy error for the model loss function (E). 

Moreover, we used the Adam method for the 

optimization of each weight (learning rate=0.001; 

epochs=1000). After the neural network model was 

constructed, the weight of each node in the input layer 

(Gene-Weight) was used to calculate mPS (the sum of 

Gene-Score*Gene-Weight for all 21 genes). In our 

study, the Python-based Keras library was applied for 

neural network training. 

Univariate and multivariate Cox regression analysis 

 

Univariable and multivariable Cox regression analyses 

were applied to evaluate the associations between 

overall survival and potential confounders including 

mPS and other clinical variables [48]. Univariable Cox 

regression analysis was performed to explore the 

potential confounders. Afterwards, significant 

prognostic variables with a P-value < 0.05 in univariate 

analysis were further entered into a multivariate Cox 

proportional hazards model along with the 

corresponding 95% CI for each potential risk factor. P-

values less than 0.05 were considered statistically 

significant. 

 

Construction of prognostic nomogram 

 

A nomogram was established to predict 3- and 5-year 

OS by including all independent prognostic factors of 

the multivariate Cox regression analysis by using RMS 

package in the R Statistical [49]. Afterwards, we 

illustrated the predicted and observed results in the 

calibration curves for the visualization of the predictive 

performance of the nomogram. The discrimination of 

the prognostic models was estimated and compared by 

Harrell’s concordance index (C-index). A higher C-

index indicated a superior discriminative capacity for 

prognostic prediction. Generally, a C-index value ≥0.70 

suggests a good fit [50]. 

 

Gene set enrichment analysis 

 

GSEA was applied to further understand mPS-

associated pathways [51]. The ccRCC patients in the 

TCGA cohort were divided into low- and high-mPS 

groups based on the median expression value of mPS. 

Then, the genes differentially expressed between low- 

and high-mPS groups were identified based on 

Student’s t-test in the Limma R package. The P-value < 

0.05 was regarded as the cutoff value of statistical 

significance. Afterwards, GSEA was performed based 

on GSEABase package on the R platform. 

 

Mutational pattern analysis 

 

The mutation data of ccRCC sample in TCGA were 

processed and visualized by R package maftools. 

Maftool is an efficient and comprehensive tool, which 

provides various analysis and visualization modules that 

are frequently applied in cancer genomic studies, such 

as driver gene identification, pathway, signature, 

enrichment, and association analyses [52]. The top 10 

frequently mutated genes of each group were identified 
and compared by performing Chi-square test. Tumor 

mutation burden (TMB) was defined as the total amount 

of coding errors of somatic genes, base substitutions, 
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insertions or deletions detected across per million bases 

[53]. In the present study, the mutation frequency was 

calculated with number of variants/the length of exons 

(45 million) for each sample. 

 

Copy number variations analysis 

 

Loci of amplification and deletion were investigated 

across samples to define MCRs targeted by 

overlapping events in two or more. In our study, we 

used the GISTIC method to detect the common CNV 

regions in all samples based on SNP6 Copy Number 

segment data, including CNVs at the chromosomal 

arm level and MCRs between samples [54]. GISTIC is 

an algorithm designed to distinguish regions of 

variation that are more possible to trigger cancer 

pathogenesis. We chose the threshold of q-value<0.1 

for the MutSigCV method. In addition, we selected the 

confidence level of 0.95 when the peak interval was 

determined. Moreover, the area (greater than 0.98) was 

applied as the standard when analyzing the variation of 

the chromosomal arm level. We performed these 

analyses by using the MutSigCV module in the online 

GenePattern analysis tool (https://cloud.genepattern. 

org/gp/pages/index.jsf), which is developed by Broad 

Research Institute [55]. 

 

Evaluation of immune cell infiltration 

 

To quantify the proportions of immune cells among 

different subtypes of ccRCC, the CIBERSORT 

algorithm was applied, which is a deconvolution 

method that uses a series of reference gene expression 

values for a minimal representation of each cell type 

and investigates the cell component of complex tissues 

according to the gene expression data from massive 

tumor samples with support vector regression [56]. The 

normalized 531 ccRCC TCGA RNA-seq data were 

uploaded to the CIBERSORT web portal 

(http://cibersort.stanford.edu/), running with the 1000 

permutations and LM22 signature, which defines 22 

immune cell subtypes including B cells, T cells, natural 

killer cells, dendritic cells, macrophages, and myeloid 

subsets. At a threshold of P < 0.05, the results of the 

inferred fractions of immune cell populations identified 

by CIBERSORT were represented to be statistically 

significant. For each sample, the final CIBERSORT 

output estimates were normalized and immune cell type 

fractions summed up to one. 
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